

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp802-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Special MCU Features

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 CPU CORE BLOCK DIAGRAM

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (two's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit can be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read only when the NSTDIS bit (INTCON1<15>) = 1.
 - 4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

• Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).

- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.8.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.8.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.8.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

TABLE 4-30: PORTA REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0		_	_	_	_	TRISA10	TRISA9	TRISA8	TRISA7		_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2	_	_	_	-	-	RA10	RA9	RA8	RA7	-	_	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	_	-	-	-	-	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	_	_	_	_	_	ODCA10	ODCA9	ODCA8	ODCA7	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
ODCB	02CE	_	_	_	_	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	-	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTC REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	—	—	—	-	-	—	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	02D2	_	_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
LATC	02D4	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX
ODCC	02D6	_	_	_	_	_	_	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

TABLE 4-38: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

6.1 Reset Resources

Many useful resources related to Resets are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

6.1.1 KEY RESOURCES

- Section 8. "Resets" (DS70192)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 8	B-8: DMAC	S1: DMA CO	NTROLLER	STATUS RE	GISTER 1						
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1				
_	—	_	—		LSTC	H<3:0>					
bit 15							bit 8				
DA	D 0	DA									
			R-U				R-U				
bit 7	PP310	PP315	PP314	PP313	PP312	PPSII	bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN				
hit 15-12	Unimplemen	ted: Read as '(ז'								
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active t	oits							
	1111 = No DI	MA transfer has	s occurred sin	ice system Res	et						
	1110-1000 =	Reserved									
	0111 = Last o	lata transfer wa	as by DMA Ch as by DMA Ch	nannel 7							
	0101 = Last 0	data transfer wa	as by DMA Cr	nannel 5							
	0100 = Last c	data transfer wa	as by DMA Ch	nannel 4							
	0011 = Last data transfer was by DMA Channel 3										
0010 = Last data transfer was by DMA Channel 2											
	0000 = Last data transfer was by DMA Channel 0										
bit 7	PPST7: Char	nel 7 Ping-Por	ng Mode Statu	is Flag bit							
	1 = DMA7STI 0 = DMA7STA	B register select A register select	ted ted								
bit 6	PPST6: Char	nel 6 Ping-Por	ig Mode Statu	is Flag bit							
	1 = DMA6STI 0 = DMA6STA	B register selec A register selec	ted ted								
bit 5	PPST5: Char	nel 5 Ping-Por	ng Mode Statu	is Flag bit							
	1 = DMA5STI 0 = DMA5STA	B register select A register select	ted ted								
bit 4	PPST4: Char	nel 4 Ping-Por	ig Mode Statu	is Flag bit							
	1 = DMA4STE 0 = DMA4STA	B register selec A register selec	ted ted								
bit 3	PPST3: Char	nel 3 Ping-Por	ig Mode Statu	is Flag bit							
	1 = DMA3STE 0 = DMA3STA	B register selec A register selec	ted ted								
bit 2	PPST2: Char	nel 2 Ping-Por	ng Mode Statu	is Flag bit							
	1 = DMA2STI 0 = DMA2STA	B register selec A register selec	ted ted								
bit 1	PPST1: Char	nel 1 Ping-Por	ng Mode Statu	is Flag bit							
	1 = DMA1STI 0 = DMA1STA	B register selec A register selec	ted ted								
bit 0	PPST0: Char	nnel 0 Ping-Por	ig Mode Statu	is Flag bit							
	1 = DMA0STI 0 = DMA0STA	B register selec A register selec	ted ted								

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
_	_	SELACLK	AOSCI	MD<1:0>		APSTSCLR<2:0	>						
bit 15							bit						
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
ASRCSEL	_	—	—		—		—						
bit 7							bit						
Legend:													
R = Readabl	le bit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'							
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15-14	Unimplemen	ted: Read as '0	,										
bit 13	SELACLK: S	elect Auxiliary (Clock Source	for Auxiliary C	lock Divider								
	1 = Auxiliary	Oscillators provi	des the sour	ce clock for Au	xiliary Clock D	livider							
	0 = PLL outp	ut (Fosc) provid	es the source	e clock for the A	Auxiliary Clock	Divider							
bit 12-11	AOSCMD<1:	0>: Auxiliary Os	cillator Mode	9									
	11 = EC Exte	rnal Clock Mod	e Select										
	10 = XI Oscillator Mode Select 01 = HS Oscillator Mode Select												
		00 = Auxiliary Oscillator Disabled											
bit 10-8	APSTSCLR<	2:0>: Auxiliary	Clock Output	t Divider									
	111 = divided	d by 1											
	110 = divideo	d by 2											
	101 = divideo	d by 4											
	100 = divide	by 8											
		1 by 16											
		1 Dy 32 1 by 64											
		d by 256 (defaul [:]	t)										
bit 7	ASRCSEL: S	Select Reference	, Clock Sour	ce for Auxiliarv	Clock								
	1 = Primarv C	Dscillator is the (Clock Source	e	-								
	0 = Auxiliary	Oscillator is the	Clock Sourc	е									

REGISTER 9-5: ACLKCON: AUXILIARY CONTROL REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

Unimplemented: Read as '0'

bit 6-0

11.6 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

11.6.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

11.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.6.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-16). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 11-2 illustrates remappable pin selection for U1RX input.

FIGURE 11-2: REMAPPABLE MUX INPUT FOR U1RX

11.9 Peripheral Pin Select Registers

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 family of devices implement 33 registers for remappable peripheral configuration:

- 16 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR11 and PRINR18-RPINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note:	Inpu	t and Output	t Re	gister	valu	es can	only
	be	changed	if	the	IOI	_OCK	bit
	(OS	CCON<6>)	is	set	to	'0'.	See
	Sec	tion 11.6.3.1		"Cont	rol	Reg	ister
	Loc	k" for a spec	cific	comm	and	seque	nce.

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	—			INT1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
011 10-10	Unimplementeu. Reau as 0

```
      bit 12-8
      INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin

      1111 = Input tied to Vss

      11001 = Input tied to RP25

      •

      •

      00001 = Input tied to RP1

      00000 = Input tied to RP0

      bit 7-0

      Unimplemented: Read as '0'
```

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_		_			IC8R<4:0>				
bit 15	·						bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
—	—	-			IC7R<4:0>				
bit 7	·						bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, r					mented bit, read	d as '0'			
-n = Value at POR '1' = Bit is set			t	'0' = Bit is cleared x = Bit is unknow			nown		
bit 15-13	Unimplemen	ted: Read as	ʻ0 '						
bit 12-8	IC8R<4:0>: A	Assign Input Ca	apture 8 (IC8)	to the correspo	onding RPn pin				
	11111 = Inpu	it tied to Vss							
	11001 = Input tied to RP25								
	•								
	•								
	•	it find to DD1							
	00001 = Inpu	it fied to RP0							
bit 7-5	Unimplemen	ted: Read as	ʻ0'						
bit 4-0	IC7R<4:0>: A	Assign Input Ca	apture 7 (IC7)	to the correspo	ondina RPn nin				
	11111 = Inpu	it tied to Vss							
	11001 = Inpu	it tied to RP25							
	•								
	•								

REGISTER 11-6: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

00001 = Input tied to RP1 00000 = Input tied to RP0

•

REGISTER 19-7: CiINTE: ECAN™ INTERRUPT ENABLE REGISTER											
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	_			—		—				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	IBIE				
DIL 7							DILU				
Leaend:		C = Writable b	oit. but only '()' can be writter	n to clear the bit						
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-8	Unimpleme	nted: Read as ')'								
bit 7	IVRIE: Invali	d Message Rec	eived Interru	pt Enable bit							
	1 = Interrupt	Request Enable	ed								
bit 6	U – Interrupt	Wake-up Activi	auleu tv Interrunt F	lag hit							
	1 = Interrupt	Request Enable	ed								
	0 = Interrupt	Request not en	abled								
bit 5	ERRIE: Erro	r Interrupt Enab	le bit								
	1 = Interrupt	Request Enable	ed								
	0 = Interrupt	Request not en	abled								
bit 4	Unimpleme	nted: Read as '), '– ''								
bit 3	1 = Interrupt	J Almost Full Ini	terrupt Enabl	e bit							
	0 = Interrupt	Request not en	abled								
bit 2	RBOVIE: RX	K Buffer Overflow	v Interrupt Er	nable bit							
	1 = Interrupt	1 = Interrupt Request Enabled									
	0 = Interrupt	Request not en	abled								
bit 1	RBIE: RX Bu	uffer Interrupt Er	hable bit								
	1 = Interrupt 0 = Interrupt	Request not en	abled								
bit 0	TBIE: TX Bu	iffer Interrupt En	able bit								
	1 = Interrupt	Request Enable	ed								
	0 = Interrupt	0 = Interrupt Request not enabled									

21.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

21.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 13 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 21-1 and Figure 21-2.

21.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

21.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.

The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA standalone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

REGISTER 21-4: AD1CO	4: ADC1 CON	ITROL REGISTER 4
----------------------	-------------	-------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—		DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

NOTES:

REGISTER 26-5: PMSTAT: PARALLEL PORT STATUS REGISTER							
R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F
bit 15							bit 8
R-1	R/W-0. HS	U-0	U-0	R-1	R-1	R-1	R-1

bit 7			bit 0
Legend:	HS = Hardware Set bit		
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

OB3E

OB2E

bit 15	 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty
bit 14	IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software)
	0 = No overflow occurred
bit 13-12	Unimplemented: Read as '0'
bit 11-8	IB3F:IB0F: Input Buffer x Status Full bits
	 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data
bit 7	OBE: Output Buffer Empty Status bit
	 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full
bit 6	OBUF: Output Buffer Underflow Status bits
	1 = A read occurred from an empty output byte register (must be cleared in software)0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OB3E:OB0E: Output Buffer x Status Empty bit
	 1 = Output buffer is empty (writing data to the buffer will clear this bit) 0 = Output buffer contains data that has not been transmitted

OBE

OBUF

OB0E

OB1E

REGISTER 26-6:	PADCFG1: PAD CONFIGURATION CONTROL REGISTER
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_			—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	_	_	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			wn

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾				
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin 				
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit				
	1 = PMP module uses TTL input buffers				
	0 = PMP module uses Schmitt Trigger input buffers				

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL<10>) needs to be set.

Field	Description					
Vm*Wm Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}						
Wm*Wn Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}						
Wn	One of 16 working registers ∈ {W0W15}					
Wnd	One of 16 destination working registers ∈ {W0W15}					
Wns	One of 16 source working registers ∈ {W0W15}					
WREG	W0 (working register used in file register instructions)					
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }					
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }					
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}					
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}					
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}					
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}					

TABLE 28-1: SYN	MBOLS USED IN OPCODE DESCRIPTIO	NS (CONTINUED)
-----------------	---------------------------------	----------------

FIGURE 30-8: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 30-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_		Tcy + 20	ns	_
OC20	TFLT	Fault Input Pulse-Width	Tcy + 20	_	_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions			Conditions	
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	_	_	E/W	-40° C to +150°C ⁽²⁾
HD134	TRETD	Characteristic Retention	20	—	_	Year	1000 E/W cycles or less and no other specifications are violated

TABLE 31-7: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to 150°C.