

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp804-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 PRODUCT **FAMILIES**

The device names, pin counts, memory sizes, and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

TABLE 1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 **CONTROLLER FAMILIES**

						Rem	appabl	e Peri	iphera	al								Ĵ.			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	Data Converter Interface	UART	IdS	ECANTM	External Interrupts ⁽³⁾	RTCC	I ² C TM	CRC Generator	10-bit/12-bit ADC (Channels)	16-bit Audio DAC (Pins)	Analog Comparator (2 Channels/Voltage Regulato	8-bit Parallel Master Port (Address Lines)	I/O Pins	Packages
dsPIC33FJ128GP804	44	128	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ128GP802	28	128	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ128GP204	44	128	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ128GP202	28	128	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64GP804	44	64	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ64GP802	28	64	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64GP204	44	64	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ64GP202	28	64	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ32GP304	44	32	4	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ32GP302	28	32	4	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SPDIP SOIC QFN-S

Note RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except dsPIC33FJ32GP302/304, which include 1 Kbyte of DMA RAM. 1:

2: 3: Only four out of five timers are remappable.

Only two out of three interrupts are remappable.

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 architecture uses a 24 bit wide program space and a 16 bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

4.8.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-39 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

TABLE 4-39: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	Address <14:1> :1> Data EA<15:0> xxxx xxxx xxxx Data EA<15:0> xxxx xxx xxxx Data EA<15:0> xxxx xxx xxxx Data EA<15:0> xxxx xxx xxxx Data EA<15:0> xxxx xxxx xxxx Data EA<14:0 xxx xxxx xxxx	<0>			
Instruction Access	User	0 PC<22:1>							
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx							
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		1	XXX XXXX	XXX XXXX XXXX					
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0> ⁽¹⁾					
(Block Remap/Read)		0	XXXX XXXX	Z	XXX XXXX XXXX XXXX				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming opera	ati	lons
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program r	nen	nory location to be written
;	program memo:	ry selected, and writes ena	abl	Led
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the '	IBLWT instructions to write	e t	the latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	<pre>lst_program_</pre>	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	63rd_program	_word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BYTE_31, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		C1IP<2:0> ⁽¹⁾		—		C1RXIP<2:0>(1))				
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		SPI2IP<2:0>		—		SPI2EIP<2:0>					
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimpleme	ented: Read as '0)'	(4)							
bit 14-12	C1IP<2:0>:	ECAN1 Event In	terrupt Prior	ity bits ⁽¹⁾							
	111 = Inter	rupt is priority 7 (f	highest prior	ity interrupt)							
	•										
	•										
		rupt is priority 1	ablad								
hit 11		nupt source is us	abieu								
	C1RXIP<2:0>: FCAN1 Receive Data Ready Interrupt Priority hits(1)										
DIL IU-O	111 = Interrupt is priority 7 (highest priority interrupt)										
	•		ingricot prior	ny monuply							
	•										
	• 001 – Intor	rupt is priority 1									
	000 = Inter	rupt source is disa	abled								
bit 7	Unimpleme	ented: Read as ')'								
bit 6-4	SPI2IP<2:0	>: SPI2 Event Int	errupt Priori	ty bits							
	111 = Inter	rupt is priority 7 (ł	nighest prior	ity interrupt)							
	•										
	•										
	001 = Interi	rupt is priority 1									
	000 = Inter	rupt source is disa	abled								
bit 3	Unimpleme	ented: Read as ')'								
bit 2-0	SPI2EIP<2	:0>: SPI2 Error In	terrupt Prior	ity bits							
	111 = Inter	rupt is priority 7 (I	nighest prior	ity interrupt)							
	•										
	•										
	001 = Inter	rupt is priority 1									
	000 = Interi	rupt source is disa	abled								

-.... -----

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
—		DCIEIP<2:0>			—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15	hit 15 IInimplemented: Read as '0'									

DIL 15	Unimplemented. Read as 0
bit 14-12	DCIEIP<2:0>: DCI Error Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 11-0	Unimplemented: Read as '0'

8.3 DMA Control Registers

R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0 U-0 CHEN SIZE DIR HALF NULLW bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 AMODE<1:0> MODE<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Wordbit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DMA RAM address, write to peripheral address 0 = Read from peripheral address, write to DMA RAM address HALF: Early Block Transfer Complete Interrupt Select bit bit 12 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Operating Mode Select bits 11 = Reserved (acts as Peripheral Indirect Addressing mode) 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 00 = Continuous, Ping-Pong modes disabled

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	_	SELACLK	AOSCI	MD<1:0>		APSTSCLR<2:0	>					
bit 15							bit					
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
ASRCSEL	_	—	—		—		—					
bit 7							bit					
Legend:												
R = Readabl	le bit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-14	Unimplemen	ted: Read as '0	,									
bit 13	SELACLK: S	elect Auxiliary (Clock Source	for Auxiliary C	lock Divider							
	1 = Auxiliary	1 = Auxiliary Oscillators provides the source clock for Auxiliary Clock Divider										
	0 = PLL outp	ut (Fosc) provid	es the source	e clock for the A	Auxiliary Clock	Divider						
bit 12-11	AOSCMD<1:	0>: Auxiliary Os	cillator Mode	9								
	11 = EC Exte	11 = EC External Clock Mode Select										
		10 = X1 Oscillator Mode Select										
		01 = 15 Oscillator Nidue Select 00 = Auxiliary Oscillator Disabled										
bit 10-8	APSTSCLR<	2:0>: Auxiliary	Clock Output	t Divider								
	111 = divided	d by 1										
	110 = divideo	d by 2										
	101 = divideo	101 = divided by 4										
	100 = divide	by 8										
		011 = divided by 16										
		1 Dy 32 1 by 64										
		d by 256 (defaul [:]	t)									
bit 7	ASRCSEL: S	Select Reference	, Clock Sour	ce for Auxiliarv	Clock							
	1 = Primarv C	Oscillator is the (Clock Source	e	-							
	0 = Auxiliary	Oscillator is the	Clock Sourc	е								

REGISTER 9-5: ACLKCON: AUXILIARY CONTROL REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

Unimplemented: Read as '0'

bit 6-0

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the Analog-to-Digital (ADC) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/ X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-ofstates even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-ofstate.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

MOV0xFF00, W0; Configure PORTB<15:8> as inputsMOVW0, TRISBB; and PORTB<7:0> as outputsNOP; Delay 1 cyclebtssPORTB, #13; Next Instruction

PORT WRITE/READ EXAMPLE

EXAMPLE 11-1:

12.1 Timer Resources

Many useful resources related to Timers are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

12.1.1 KEY RESOURCES

- Section 11. "Timers" (DS70205)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

13.4 Timerx/y Control Registers

REGISTER 13-1:	TxCON: TIMER CONTROL	REGISTER (x = 2 or 4, y = 3 or 5)
----------------	-----------------------------	-----------------------------------

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL	_	_	—	—	_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
	TGATE	TCKPS	S<1:0>	T32	—	TCS	—				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	DIt	U = Unimplei	mented bit, read	las '0'					
-n = value at P	OR	= Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkn	own				
bit 15 TON: Timerx On bit <u>When T32 = 1 (in 32-bit Timer mode):</u> 1 = Starts 32-bit TMRx:TMRy timer pair 0 = Stops 32-bit TMRx:TMRy timer pair <u>When T32 = 0 (in 16-bit Timer mode):</u> 1 = Starts 16-bit timer 0 = Stops 16-bit timer											
bit 14	Unimplement	Unimplemented: Read as '0'									
bit 13	TSIDL: Stop in	n Idle Mode bit									
	1 = Discontinu 0 = Continue	ue timer operat timer operation	ion when dev in Idle mode	ice enters Idle	mode						
bit 12-7	Unimplement	ted: Read as ')'								
bit 6	TGATE: Time	rx Gated Time	Accumulation	n Enable bit							
	When TCS = This bit is igno	<u>1:</u> pred.									
	$\frac{\text{When TCS} =}{1 = \text{Gated tim}}$ $0 = \text{Gated tim}$	<u>0:</u> e accumulatior e accumulatior	n enabled n disabled								
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescal	e Select bits							
	11 = 1:256 pro 10 = 1:64 pres 01 = 1:8 prese 00 = 1:1 prese	escale value scale value cale value cale value									
bit 3	T32: 32-bit Tir 1 = TMRx and 0 = TMRx and	merx Mode Sel d TMRy form a d TMRy form se	ect bit 32-bit timer eparate 16-bit	timer							
bit 2	Unimplement	ted: Read as ')'								
bit 1	TCS: Timerx (1 = External c	Clock Source S clock from TxCl	Select bit ≺ pin								
	0 = Internal cl	ock (Fosc/2)									
bit 0	Unimplement	ted: Read as ')'								

18.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

18.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

```
Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en532311
```

18.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 21-4: AD1CO	4: ADC1 CONTR	OL REGISTER 4
----------------------	---------------	---------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	DMABL<2:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	leared x = Bit is unknown		

bit 15-3 Unimplemented: Read as '0'

bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

22.4 DAC Clock

The DAC clock signal clocks the internal logic of the Audio DAC module. The data sample rate of the Audio DAC is an integer division of the rate of the DAC clock. The DAC clock is generated via a clock divider circuit that accepts an auxiliary clock from the auxiliary oscillator.

The divisor ratio is programmed by clock divider bits (DACFDIV<6:0>) in the DAC Control register (DAC1CON). The resulting DAC clock must not exceed 25.6 MHz. If lower sample rates are to be used, then the DAC filter clock frequency may be reduced to reduce power consumption. The DAC clock frequency is 256 times the sampling frequency.

FIGURE 22-2: AUDIO DAC OUTPUT FOR RAMP INPUT (UNSIGNED)

REGISTER 2	2-2: DAC1	STAT: DAC S	IAIUS REG	JISTER				
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0	
LOEN	_	LMVOEN		_	LITYPE	LFULL	LEMPTY	
bit 15							bit 8	
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0	
ROEN	—	RMVOEN	—	—	RITYPE	RFULL	REMPTY	
bit 7							bit 0	
Legend:	L :4		L 14			-1 (0)		
R = Readable		vv = vvritable	DIT		mented bit, rea			
-n = Value at P	VOR	'1' = Bit is set		0° = Bit is cle	eared	x = Bit is unk	nown	
bit 15	LOEN: Left C 1 = Positive 0 = DAC out	Channel DAC O and negative D puts are disable	utput Enable AC outputs a ed	bit re enabled				
bit 14	Unimplemen	ted: Read as '	0'					
bit 13	LMVOEN: Le	eft Channel Mid	point DAC Ou	utput Voltage E	Enable bit			
	1 = Midpoint 0 = Midpoint	DAC output is output is disab	enabled led					
bit 12-11	Unimplemen	ted: Read as '	0'					
bit 10	LITYPE: Left Channel Type of Interrupt bit 1 = Interrupt if FIFO is Empty 0 = Interrupt if FIFO is not Full							
bit 9	LFULL: Statu 1 = FIFO is F 0 = FIFO is r	us, Left Channe ⁻ ull not full	l Data Input F	FIFO is Full bit				
bit 8	LEMPTY: Sta 1 = FIFO is E 0 = FIFO is r	atus, Left Chanı Empty not Empty	nel Data Inpu	t FIFO is Empt	y bit			
bit 7	ROEN: Right 1 = Positive 0 = DAC out	Channel DAC and negative D puts are disable	Output Enabl AC outputs a ed	le bit re enabled				
bit 6	Unimplemen	ted: Read as '	0'					
bit 5	RMVOEN: Ri 1 = Midpoint 0 = Midpoint	ight Channel M DAC output is output is disab	idpoint DAC (enabled led	Output Voltage	Enable bit			
bit 4-3	Unimplemen	ted: Read as '	0'					
bit 2	RITYPE: Rig	ht Channel Typ	e of Interrupt	bit				
	1 = Interrupt 0 = Interrupt	if FIFO is Emp if FIFO is not F	ty Full					
bit 1	RFULL: Statu 1 = FIFO is	us, Right Chanı Full	nel Data Inpu	t FIFO is Full b	bit			
hit O			nnal Data Isa					
DILU	1 = FIFO is E 0 = FIFO is r	aius, Right Cha Empty not Empty	nnei Data Inp	DUL FIFU IS EM	אין אונ			

~ ~~

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—		_	_	—	—	—			
bit 15						·	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>				
bit 7			•				bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15-8	Unimplemen	ted: Read as '	0'							
bit 7	CVREN: Con	nparator Voltag	e Reference E	Enable bit						
	1 = CVREF Ci	rcuit powered	on							
	0 = CVREF ci	rcuit powered	down							
bit 6	CVROE: Con	nparator VREF	Output Enable	e bit						
	1 = CVREF VO	oltage level is o	output on CVR	EF pin						
		oltage level is o	disconnected f	rom CVREF pir	1					
bit 5	CVRR: Comp	parator VREF R	ange Selection	n bit						
	1 = CVRSRC 0 = CVRSRC	range should b	e 0 to 0.625 (0 25 to 0 71	CVRSRC with C	VRSRC/24 step s	Size en size				
bit 4	CVPSS: Comparator Vide Source Selection bit									
	1 = Compara	$1 = Comparator reference source CV/PSPC = V/PEE+ _ V/PEE_$								
	0 = Compara	ator reference s	source CVRSR	c = AVDD - AV	'SS					
bit 3-0	CVR<3:0>: Comparator VREF Value Selection 0 ⊴CVR<3:0> ≤15 bits									

REGISTER 23-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

 $\frac{\text{When CVRR} = 1:}{CVREF = (CVR < 3:0 > 1/24) \bullet (CVRSRC)}$

When CVRR = 0:

 $\overline{CVREF} = 1/4 \bullet (CVRSRC) + (CVR < 3:0 > /32) \bullet (CVRSRC)$

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU,Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU,Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU,Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Togale Ws	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	-65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(4)}$	-0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

FIGURE 30-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

АС СНА	RACTERIST	Standard (unless o Operating	Operatin therwise temperat	g Conditionstated) ture -40° -40°	ons: 3.0V °C ≤Ta ≤+8 °C ≤Ta ≤+ <i>°</i>	t to 3.6V 35°C for Industrial 125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions				
SP10	TscP	Maximum SCK Frequency		_	9	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	-	_	—	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	-	_	—	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		6	20	ns	—
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimens	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A