

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp804-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-37: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ							
	for the source and destination EA.							
	However, the 4-bit Wb (Register Offset)							
	field is shared by both source and							
	destination (but typically only used by							
	one).							

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset					
	Addressing mode is available only for W9									
	(in X spac	ce) and W	/11 (in	Y space).						

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

6.0 RESETS

- Note 1: This data sheet summarizes the features dsPIC33FJ32GP302/304. of the dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

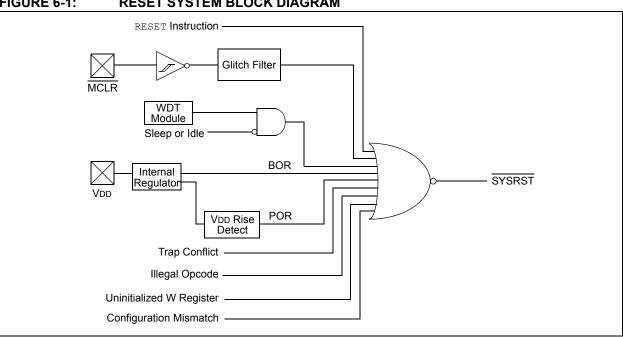
The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.


Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this manual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

The status bits in the RCON register Note: should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

 0 = A Brown-out Reset has not occurred

 bit 0
 POR: Power-on Reset Flag bit

 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 3 CF: Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2 Unimplemented: Read as '0'
- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 39. "Oscillator (Part III)"** (DS70216) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** This register is reset only on a Power-on Reset (POR).

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_		—			SCK2R<4:0	>			
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_		_	SDI2R<4:0>						
bit 7							bit C		
Legend:									
R = Readabl	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
	•	ut tied to RP25							
	00001 = Inpu 00000 = Inpu								
bit 7-5	Unimplemen	ited: Read as ')'						
bit 4-0	11111 = Inpu 11001 = Inpu	Assign SPI2 D ut tied to Vss ut tied to RP25	ata Input (SD	I2) to the corre	esponding RPr	ו pin			
	• •								
	00001 = Inpu 00000 = Inpu								

15.3 Output Compare Control Register

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 OR 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
—	—	OCSIDL	—	—	—	—				
bit 15							bit 8			
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0			
	—	OCM<2:0>								
bit 7							bit C			
Legend:		HC = Cleared ir	n Hardware	HS = Set in H	lardware					
R = Readab	le bit	W = Writable bi	t	U = Unimpler	nented bit, rea	id as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	known			
bit 15-14	Unimplemen	nted: Read as '0'	1							
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit									
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode 									
	•	-	-	in CPU Idle mo	ode					
bit 12-5	-	nted: Read as '0'								
bit 4	OCFLT: PWM Fault Condition Status bit									
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred 									
	(This bit is only used when $OCM<2:0> = 111.$)									
bit 3		OCTSEL: Output Compare Timer Select bit								
	1 = Timer3 is the clock source for Compare x									
	0 = Timer2 is the clock source for Compare x									
bit 2-0	OCM<2:0>: Output Compare Mode Select bits									
	111 = PWM mode on OCx, Fault pin enabled									
	110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin									
		ze OCx pin low, g				JIII				
		are event toggles		e calbar bares (
		ze OCx pin high,								
	001 = Initializ	ze OCx pin low, c	compare event	forces OCy nir	n hiah					
		t compare chann			ringii					

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
FRMEN	SPIFSD	FRMPOL	—	—	—	—	_				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0				
—			—	—	—	FRMDLY	—				
bit 7							bit C				
Legend:											
R = Readab	lo hit	W = Writable	hit	II – Unimploy	mented bit, read	d as '0'					
				•							
-n = Value a	TPOR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
bit 15	FRMEN: Fra	imed SPIx Supp	ort bit								
		SPIx support en		oin used as fram	ne sync pulse ir	nput/output)					
	0 = Framed	SPIx support dis	sabled								
bit 14	SPIFSD: Fra	ame Sync Pulse	Direction Co	ntrol bit							
	•	1 = Frame sync pulse input (slave)									
	0 = Frame sy	0 = Frame sync pulse output (master)									
bit 13	FRMPOL: Fi	rame Sync Puls	e Polarity bit								
		ync pulse is acti									
	0 = Frame sy	ync pulse is acti	ve-low								
bit 12-2	Unimpleme	nted: Read as '	0'								
bit 1	FRMDLY: Fr	ame Sync Pulse	e Edge Selec	t bit							
	1 = Frame sy	ync pulse coinci	des with first	bit clock							
	0 = Frame sy	ync pulse prece	des first bit c	lock							
hit O		ntad. Daad as (o'								

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

bit 0 **Unimplemented:** Read as '0' This bit must not be set to '1' by the user application.

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C Port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip website (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

R/W-xR/W-xR/W-xR/W-xR/W-xSEG2PHTSSAMSEG1PH<2:0>PRSEG<2:0>bit 7bit 7	U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
R/W-x R/W-x <th< td=""><td></td><td>WAKFIL</td><td>_</td><td>_</td><td></td><td></td><td>SEG2PH<2:0></td><td></td></th<>		WAKFIL	_	_			SEG2PH<2:0>					
SEG2PHTS SAM SEG1PH<2:0> PRSEG<2:0> bit 7 bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' WaKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up bit 13-11 Unimplemented: Read as '0' 00 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus Line bit 1 = Length is 1 x To 000 = Length is 1 x To 0 = CaptH SEG2PH<2:0>: Phase Segment 1 bits 1 = Length is 1 x To 000 = Length is 1 x To 0 = Length is 1 x To 000 = Length is 8 x To 0 = Length is 8 x To . 0 = Length is 8 x To . 0 = Length i	bit 15							bit				
SEG2PHTS SAM SEG1PH<2:0> PRSEG<2:0> bit 7 bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' WaKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up bit 13-11 Unimplemented: Read as '0' 00 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus Line bit 1 = Length is 1 x To 000 = Length is 1 x To 0 = CaptH SEG2PH<2:0>: Phase Segment 1 bits 1 = Length is 1 x To 000 = Length is 1 x To 0 = Length is 1 x To 000 = Length is 8 x To 0 = Length is 8 x To . 0 = Length is 8 x To . 0 = Length i												
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14 WAKFIL: Select CAN bus Line filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter for Wake-up 0 = CAN bus line is sample for the CAN bus line bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is 8 x TQ 0 = 0 0 = Length is 1 x TQ 0 = 0 0			R/W-x			R/W-x		R/W-x				
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up bit 13-11 Unimplemented: Read as '0' bit 10-8 SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 1 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ 000 = Length is 0 read the sample point 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled three times at the sample	SEG2PHT	S SAM		SEG1PH<2:0	>		PRSEG<2:0>					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' '' Bit is unknown 0 = CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up '' 0 = CAN bus line filter is not used for wake-up '' '' bit 13-11 Unimplemented: Read as '0' '' SEG2PH<2:0>: Phase Segment 2 bits '' '' 000 = Length is 1 x TQ '' '' 000 = Length is 1 x TQ '' '' 000 = Length is 1 x TQ '' '' 000 = Length is 1 x TQ '' '' 000 = Length is 1 x TQ '' '' 000 = Length is 1 x TQ '' '' 000 = Length is 1 x TQ '' '' 000 = Length is 1 x TQ '' '' 000 = Length is 1 x TQ '' ''' <	bit 7							bit				
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' '' bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up bit 13-11 Unimplemented: Read as '0' SEG2PH-2:0>: Phase Segment 2 bits 111 = Length is 1 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ 000 = Length is is sampled three times at the sample point 000 = Length is 1 x TQ bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ <	Legend:											
bit 15 Unimplemented: Read as '0' bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up bit 13-11 Unimplemented: Read as '0' bit 10-8 SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x To • • • • • • • • • • • • • • • • • • •	R = Readab	le bit	W = Writable	e bit	U = Unimple	mented bit, re	ad as '0'					
bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 111 Unimplemented: Read as '0' SEG2PH2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ 1 = Feely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 1 = Length is 8 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ	-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkno	own				
bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 111 Unimplemented: Read as '0' SEG2PH2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ 1 = Feely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 1 = Length is 8 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ	hit 15	Unimplome	atadı Dood oo	· ^ '								
<pre>1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line is 8 x TQ 0 = Length is 1 x TQ 0 = Length is 1 x TQ 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or lnformation Processing Time (IPT), whichever is greater 0 = Bus line is sampled of the CAN bus Line bit 1 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Length is 8 x TQ 0 = Length is 1 x TQ 0 = Length is 1 x TQ 0 = Length is 8 x</pre>		-			laka wa hit							
 0 = CAN bus line filter is not used for wake-up bit 13-11 Unimplemented: Read as '0' SEG2PH-2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ . 	DIC 14				vake-up bit							
bit 13-11 Unimplemented: Read as '0' bit 10-8 SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ					a_un							
bit 10-8 SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ	hit 13_11				c-up							
<pre>111 = Length is 8 x Tq 111 = Length is 8 x Tq 000 = Length is 1 x Tq bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is 8 x Tq bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 1 x Tq PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x Tq </pre>												
 bit 7 SEG2PHTS: Phase Segment 2 Time Select bit Freely programmable Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit Bus line is sampled three times at the sample point Bus line is sampled once at the sample point Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits Length is 1 x TQ bit 2-0 PRSEG<2:0>: Propagation Time Segment bits Length is 8 x TQ Length is 8 x TQ 												
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ . 000 = Length is 1 x TQ . bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ 		•										
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ . 000 = Length is 1 x TQ . bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ 		•										
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ . 000 = Length is 1 x TQ . bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ 		•	•									
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ . 000 = Length is 1 x TQ . bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ 		000 = 1 enat	h is 1 x To									
 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ . 	bit 7	-	-									
bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ • • • • • • • • • • • • •		1 = Freely pr	ogrammable									
<pre>1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ</pre>					ion Processing	g Time (IPT), v	whichever is greate	er				
<pre>0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ • • • • • bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • • • • •</pre>	bit 6	=	-									
bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ •												
<pre>111 = Length is 8 x TQ bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ</pre>	hit 5_3											
• • • bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • •	DII 0-0											
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • •		•										
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • •			•									
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • •		•										
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • •			h is 1 v To									
111 = Length is 8 x TQ • •	hit 2_0	-		Time Seamen	t hite							
• • •				Time ocginen								
• • $000 = 1 \text{ end} \text{ is } 1 \times \text{To}$		•										
• $000 = 1$ enote is 1 x To		•										
$0.00 = 1 \text{ ength is } 1 \times T_0$		•										
			h is 1 v To									

REGISTER 21	-2: AD1C	ON2: ADC1	CONTROL RE	GISTER 2						
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
	VCFG<2:0>		—		CSCNA	CHPS	6<1:0>			
bit 15							bit			
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	—		SMPI	<3:0>		BUFM	ALTS			
bit 7							bit			
Legend:										
R = Readable b	oit	W = Writab	le bit	U = Unimple	mented bit, rea	id as '0'				
-n = Value at P	OR	'1' = Bit is s	set	'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-13	VCFG<2:0>:	Converter Ve	oltage Reference	Configuration	bits					
	A	DREF+	ADREF-							
	000	Avdd	Avss							
	001 Exte	rnal VREF+	Avss							
	010	Avdd	External VREF-	_						
		rnal VREF+	External VREF-	_						
	1xx	Avdd	Avss							
bit 12-11	Unimplemen	ted: Read a	s '0'							
bit 10	CSCNA: Scan Input Selections for CH0+ during Sample A bit									
	 1 = Scan inputs 0 = Do not scan inputs 									
h # 0 0		•								
bit 9-8	CHPS<1:0>: Selects Channels Utilized bits When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as '0'									
			CH2 and CH3	implementet	i, Reau as 0					
	01 = Convert									
	00 = Convert	s CH0								
bit 7	BUFS: Buffer Fill Status bit (only valid when BUFM = 1)									
	 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF 									
h # 0			-	user snould a	ccess data in u	X8-UXF				
bit 6	Unimplemen						· · · · · · ·			
bit 5-2	SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion									
	operations per interrupt 1111 = Increments the DMA address or generates interrupt after completion of every 16th sample									
	conversion operation									
	1110 = Increments the DMA address or generates interrupt after completion of every 15th sample									
	conversion operation									
	•									
	•									
			MA address after o MA address after o							
bit 1	BUFM: Buffe	r Fill Mode S	elect bit							
			address 0x0 on fir uffer at address 0>		nd 0x8 on next	interrupt				
bit 0	-	-	nple Mode Select							

REGISTER 21-2: AD1CON2: ADC1 CONTROL REGISTER 2

1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
 0 = Always uses channel input selects for Sample A

24.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices, and its operation. The following are some of the key features of this module:

- Time: hours, minutes, and seconds
- 24-hour format (military time)
- · Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- Leap year correction
- · BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 24-1: RTCC BLOCK DIAGRAM

24.3 RTCC Registers

RTCEN ⁽²⁾	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0			
IN OLIV	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPT	R<1:0>			
bit 15	•			· · ·		• 	bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			CAL	<7:0>						
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkn	own			
bit 15		C Enable bit ⁽²⁾								
		odule is enable	d							
		odule is disable								
bit 14	Unimplemen	ted: Read as ')'							
bit 13	RTCWREN:	RTCC Value Re	gisters Write	Enable bit						
				n be written to b						
			•	e locked out fror	•	n to by the user				
bit 12	RTCSYNC: RTCC Value Registers Read Synchronization bit									
	1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple resulting in an invalid data read. If the register is read twice and results in the same data, the data									
	resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid.									
				registers can be	read without	concern over a i	rollover ripp			
bit 11	HALFSEC: ⊢	lalf-Second Sta	tus bit ⁽³⁾							
	1 = Second half period of a second									
	0 = First half	noriad of a acc								
		•								
bit 10	RTCOE: RTC	C Output Enab								
bit 10	RTCOE: RTC 1 = RTCC סו	C Output Enab tput enabled								
	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou	C Output Enat tput enabled utput disabled	ole bit	ndow Pointor hits	,					
bit 10 bit 9-8	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou RTCPTR<1:0	C Output Enab utput enabled utput disabled I>: RTCC Value	e bit Register Wir	ndow Pointer bits		ALH and RTCV/	ALL register			
	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou RTCPTR<1:0 Points to the	C Output Enab tput enabled tput disabled C RTCC Value corresponding	e bit Register Wir RTCC Value r	ndow Pointer bits registers when re	eading RTCV					
	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou RTCPTR<1:0 Points to the the RTCPTR RTCVAL<15:	C Output Enab tput enabled utput disabled C RTCC Value corresponding <1:0> value dec 8>:	e bit Register Wir RTCC Value r	egisters when re	eading RTCV					
	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou RTCPTR<1:C Points to the the RTCPTR <u>RTCVAL<15:</u> 00 = MINUTE	C Output Enab atput enabled atput disabled C RTCC Value corresponding (1:0> value dec 8>: S	e bit Register Wir RTCC Value r	egisters when re	eading RTCV					
	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou RTCPTR<1:C Points to the the RTCPTR· <u>RTCVAL<15:</u> 00 = MINUTE 01 = WEEKD	C Output Enab atput enabled atput disabled C RTCC Value corresponding (1:0> value dec 8>: S AY	e bit Register Wir RTCC Value r	egisters when re	eading RTCV					
	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou RTCPTR<1:C Points to the the RTCPTR- <u>RTCVAL<15:</u> 00 = MINUTE 01 = WEEKD 10 = MONTH	C Output Enab atput enabled atput disabled C Output disabled C Output disabled C Output disabled C Output disabled C Output Enabled C Output disabled C Out	e bit Register Wir RTCC Value r	egisters when re	eading RTCV					
	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou RTCPTR<1:0 Points to the the RTCPTR- <u>RTCVAL<15:</u> 00 = MINUTE 01 = WEEKD 10 = MONTH 11 = Reserve	C Output Enab tput enabled utput disabled C RTCC Value corresponding <1:0> value dec 8>: S AY ed	e bit Register Wir RTCC Value r	egisters when re	eading RTCV					
	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou RTCPTR<1:0 Points to the the RTCPTR RTCVAL<15: 00 = MINUTE 01 = WEEKD 10 = MONTH 11 = Reserve RTCVAL<7:0 00 = SECON	C Output Enabled utput enabled utput disabled C Orresponding <1:0> value dec 8>: S AY 2d DS	e bit Register Wir RTCC Value r	egisters when re	eading RTCV					
	RTCOE: RTC 1 = RTCC ou 0 = RTCC ou RTCPTR<1:0 Points to the the RTCPTR RTCVAL<15: 00 = MINUTE 01 = WEEKD 10 = MONTH 11 = Reserve RTCVAL<7:0	C Output Enabled utput enabled utput disabled C Orresponding <1:0> value dec 8>: S AY 2d DS	e bit Register Wir RTCC Value r	egisters when re	eading RTCV					

REGISTER 24-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

2: A write to the RTCEN bit is only allowed when RTCWREN = 1.

3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 24-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	E<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		SECTEN<2:0>		SECONE<3:0>			
bit 7	•						bit 0
Legend:							

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

DC CHARACTERISTICS			(unless oth		s: 3.0V to 3.6V ≤TA ≤+85°C for Indu ≤TA ≤+125°C for Ex			
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units	Conditions				
Operating Cur	rent (IDD) ⁽¹⁾		•					
DC20d	18	21	mA	-40°C				
DC20a	18	22	mA	+25°C	3.3V	10 MIPS		
DC20b	18	22	mA	+85°C	- 3.3V	10 101195		
DC20c	18	25	mA	+125°C				
DC21d	30	35	mA	-40°C		16 MIPS		
DC21a	30	34	mA	+25°C	3.3V			
DC21b	30	34	mA	+85°C	- 3.3V			
DC21c	30	36	mA	+125°C				
DC22d	34	42	mA	-40°C		20 MIPS		
DC22a	34	41	mA	+25°C	3.3V			
DC22b	34	42	mA	+85°C	3.3V	20 MIPS		
DC22c	35	44	mA	+125°C				
DC23d	49	58	mA	-40°C				
DC23a	49	57	mA	+25°C	2.21/			
DC23b	49	57	mA	+85°C	- 3.3V	30 MIPS		
DC23c	49	60	mA	+125°C	7			
DC24d	63	75	mA	-40°C				
DC24a	63	74	mA	+25°C	2.21/			
DC24b	63	74	mA	+85°C	- 3.3V	40 MIPS		
DC24c	63	76	mA	+125°C	1			

TABLE 30-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode, no PLL until 10 MIPS, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- CPU executing while (1) statement
- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

			Standard Oper (unless otherw Operating temp	vise stat	ed) -40°C ≤	Ta≤+85	3.6V 5°C for Industrial 25°C for Extended
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O pins	Vss	_	0.2 VDD	V	
DI11		PMP pins	Vss	_	0.15 Vdd	V	PMPTTL = 1
DI15		MCLR	Vss	_	0.2 VDD	V	
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V	
DI18		I/O Pins with SDAx, SCLx	Vss	_	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.8 VDD	V	SMBus enabled
	Vih	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd	_	Vdd	V	
		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd	_	5.5	V	
DI21		I/O Pins Not 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	—	Vdd	V	
		I/O Pins 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	—	5.5	V	
DI28		SDAx, SCLx	0.7 Vdd	—	5.5	V	SMBus disabled
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled
	ICNPU	CNx Pull-up Current					
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS

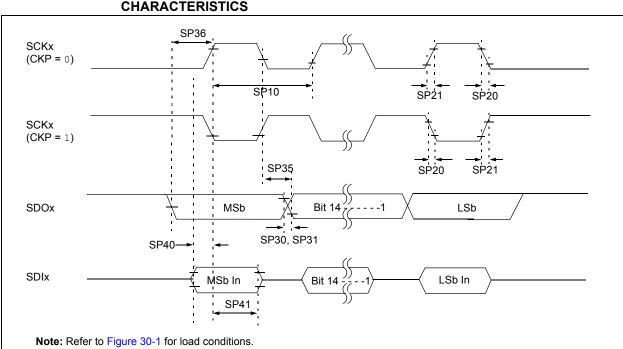
TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.


5: VIL source < (Vss - 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

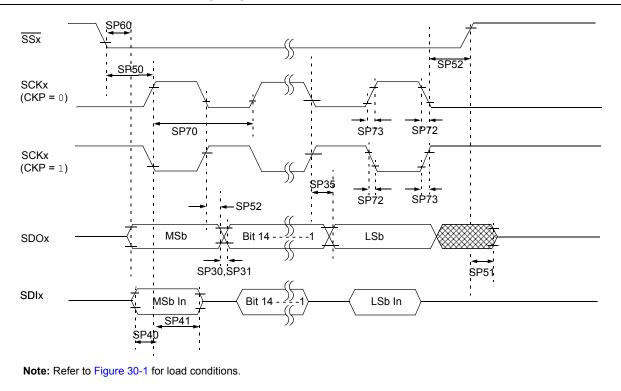
7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 30-11: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS


			(unless c	Operatin otherwise g temperat	stated) ture -40	°C ≤Ta ≤+	/ to 3.6V 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	_	_	9	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

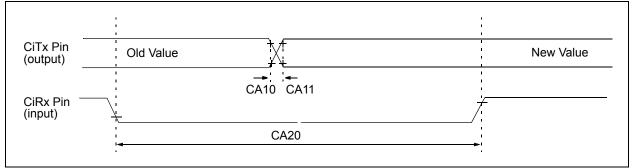

FIGURE 30-14: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS				Standard Op (unless other Operating ten	rwise sta	a ted) e -40°C	ons: 3.0V to 3.6V C \leq TA \leq +85°C for Industrial C \leq TA \leq +125°C for Extended	
Param.	Symbol	Charac	Characteristic		Min Max		Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μs	—	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	5 TSU:DAT		100 kHz mode	250	—	ns	—	
	Setup Time	400 kHz mode	100	_	ns			
		1 MHz mode ⁽¹⁾	100		ns			
IS26	THD:DAT		100 kHz mode	0		μs	—	
	Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	0 Tsu:sta	Start Condition Setup Time	100 kHz mode	4.7		μs	Only relevant for Repeated	
			400 kHz mode	0.6		μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μs	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	Tsu:sto	Tsu:sto	Stop Condition	100 kHz mode	4.7		μs	—
		Setup Time	400 kHz mode	0.6		μs		
			1 MHz mode ⁽¹⁾	0.6		μs		
IS34	THD:ST	Stop Condition Hold Time	100 kHz mode	4000		ns	_	
	0		400 kHz mode	600	—	ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free	
			400 kHz mode	1.3	—	μs	before a new transmission can start	
			1 MHz mode ⁽¹⁾	0.5	—	μs		
IS50	Св	Bus Capacitive Lo	bading	—	400	pF	—	

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 30-23: ECAN™ MODULE I/O TIMING CHARACTERISTICS

TABLE 30-40: ECAN™ MODULE I/O TIMING REQUIREMENTS

		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indus $-40^{\circ}C \le TA \le +125^{\circ}C$ for Ext				≤+85°C for Industrial	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions
CA10	TioF	Port Output Fall Time	—	_	_	ns	See parameter D032
CA11	TioR	Port Output Rise Time	—	_	_	ns	See parameter D031
CA20	Tcwf	Pulse-Width to Trigger CAN Wake-up Filter	120			ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 30-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 30-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 30-7).
	Updated Characteristics for I/O Pin Input Specifications and added parameter DI21 (see Table 30-9).
	Updated Program Memory values for parameters 136, 137, and 138 (renamed to 136a, 137a, and 138a), added parameters 136b, 137b, and 138b, and added Note 2 (see Table 30-12).
	Added parameter OS42 (GM) to the External Clock Timing Requirements (see Table 30-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 30-21).
	Updated the IREF Current Drain parameter AD08 (see Table 30-37).
	Updated parameters AD30a, AD31a, AD32a, AD33a, and AD34a (see Table 30-38)
	Updated parameters AD30b, AD31b, AD32b, AD33b, and AD34b (see Table 30-39)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)