

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp804-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

REGISTER 3 -	-2: CORC	ON: CORE C	ONTROL R	EGISTER						
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0			
_	—	_	US	EDT ⁽¹⁾		DL<2:0>				
bit 15							bit 8			
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0			
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF			
bit 7							bit 0			
Legend:		C = Clear onl	v bit							
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set				
0' = Bit is clear	ed	'x = Bit is unk	nown	U = Unimpler	mented bit, rea	d as '0'				
bit 15-13	Unimplemen	ted: Read as '	0'							
bit 12	US: DSP Mul	tiply Unsigned	- /Signed Contr	ol bit						
	1 = DSP engi	ne multiplies a	re unsigned							
	0 = DSP engi	ne multiplies a	re signed							
bit 11	EDT: Early DO	Loop Termina	ation Control b	oit ⁽¹⁾						
	1 = Terminate 0 = No effect	e executing DO	loop at end of	f current loop it	eration					
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	oits						
	111 = 7 DO lo	ops active								
	•									
	• 001 = 1 DO IO	on active								
	000 = 0 DO lo	ops active								
bit 7	SATA: ACCA	Saturation En	able bit							
	1 = Accumula 0 = Accumula	ator A saturatio ator A saturatio	n enabled n disabled							
bit 6	SATB: ACCB	Saturation En	able bit							
	1 = Accumula	ator B saturatio	n enabled							
	0 = Accumula	ator B saturatio	n disabled							
bit 5	SATDW: Data	a Space Write	from DSP Eng	gine Saturation	Enable bit					
	1 = Data space	ce write saturat	tion enabled							
bit 4	ACCSAT: Acc	cumulator Satu	iration Mode S	Select bit						
	1 = 9.31 saturation (super saturation)									
	0 = 1.31 satur	ration (normal	saturation)							
bit 3	IPL3: CPU In	terrupt Priority	Level Status	bit 3 ⁽²⁾						
	1 = CPU inter	rupt priority lev	vel is greater t	han 7						
hit 0		rupt priority lev	/el is / or less	; nan Enable bit						
DIL Z	1 = Program	n Space visible ir	ny in Dala Spa n data space							
	0 = Program s	space not visib	le in data space	се						
bit 1	RND: Roundi	ng Mode Seleo	t bit							
	1 = Biased (c	onventional) ro	ounding enable	ed						
	0 = Unbiased	(convergent) r	ounding enab	oled						
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit						
	1 = Integer m	ode enabled fo	or DSP multipl	ly ops						
				inhià ohe						

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER	/- 4 . INTOC							
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	—	_	—	—	—	—	
bit 15							bit 8	
r								
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
			—		INT2EP	INT1EP	INT0EP	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15	ALTIVT: Enal 1 = Use alter 0 = Use stand	ble Alternate In nate vector tabl dard (default) v	terrupt Vector le ector table	Table bit				
bit 14	DISI: DISI Ir	nstruction Statu	s bit					
	1 = DISI instruction is active 0 = DISI instruction is not active							
bit 13-3	Unimplemen	nted: Read as '	0'					
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit							
	 1 = Interrupt on negative edge 0 = Interrupt on positive edge 							
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect	Polarity Selec	t bit			
	1 = Interrupt on negative edge 0 = Interrupt on positive edge							

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

bit 0 INT0EP: External Interrupt 0 Edge Detect Polarity Select bit

1 = Interrupt on negative edge 0 = Interrupt on positive edge

© 2007-2012 Microchip Technology Inc.

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section "30. I/O Ports with Peripheral Pin Select" (DS70190) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

© 2007-2012 Microchip Technology Inc.

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_		_	—	_	_
bit 15		•			-	-	bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			SS2R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25	
•	

•

•

00001 = Input tied to RP1 00000 = Input tied to RP0

14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices support up to four input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- 1. Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- 2. Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of two 16bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts
- Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00)

REGISTER 1	9-20: CIRXN REGIS	STER n (n = 0	-2)	ANCE FILTE	R MASK 517	ANDARD IDEI	NIIFIER		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 15							bit 8		
R/M-x	R/M-x	R/M-v	11-0	R/M/-v	11-0	R/M/-v	R/M-y		
SID2	SID1	SID0	_	MIDE	-	EID17	EID16		
bit 7							bit 0		
Legend:		C = Writable bit, but only '0' can be written to clear the bit							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is			x = Bit is unkr	nown		
bit 15-5	SID<10:0>: S 1 = Include bi 0 = Bit SIDx i	Standard Identifi it SIDx in filter o s don't care in f	er bits comparison ilter comparis	son					
bit 4	Unimplemen	ted: Read as ')'						
bit 3	MIDE: Identifier Receive Mode bit								
	 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID)) 								

- bit 2 Unimplemented: Read as '0'
- bit 1-0 EID<17:16>: Extended Identifier bits
 - 1 = Include bit EIDx in filter comparison
 - 0 = Bit EIDx is don't care in filter comparison

REGISTER 19-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

FIGURE 21-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

REGISTER	26-5: PMSTA	T: PARALL	EL PORT ST	ATUS REGI	STER		
R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F
bit 15							bit 8
R-1	R/W-0. HS	U-0	U-0	R-1	R-1	R-1	R-1

bit 7			bit 0
Legend:	HS = Hardware Set bit		
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

OB3E

OB2E

OB1E

OB0E

bit 15	 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty
bit 14	IBOV: Input Buffer Overflow Status bit
	 a write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred
bit 13-12	Unimplemented: Read as '0'
bit 11-8	IB3F:IB0F: Input Buffer x Status Full bits
	 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data
bit 7	OBE: Output Buffer Empty Status bit
	 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full
bit 6	OBUF: Output Buffer Underflow Status bits
	1 = A read occurred from an empty output byte register (must be cleared in software)0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OB3E:OB0E: Output Buffer x Status Empty bit
	1 = Output buffer is empty (writing data to the buffer will clear this bit)
	0 = Output buffer contains data that has not been transmitted

OBE

OBUF

28.0 INSTRUCTION SET SUMMARY

Note:	This da	ta sheet	t summ	arizes	the fea	tures
	of t	the	dsPIC	33FJ3	2GP302	/304,
	dsPIC3	3FJ64G	PX02/X	(04,		and
	dsPIC3	3FJ1280	GPX02/	'X04	families	s of
	devices	. It is no	t intend	led to	be a cor	npre-
	hensive	referen	ce sour	rce. To	comple	ment
	the info	rmation	in this	data s	heet, re	fer to
	the "dsl	PIC33F/	PIC24F	l Fam	ily Refei	rence
	Manual	". Pleas	e see	the M	icrochip	web
	site (w	ww.micr	ochip.c	<mark>om)</mark> f	or the	latest
	reference	ce manu	ial secti	ions.		

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- DSP operations
- · Control operations

Table 28-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The $\ensuremath{\mathtt{MAC}}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- · The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

			Standard (Operating	Operating temperation	g Conditio ure -40° -40°	ons: 3.0V C ≤ Ta ≤ + C ≤ Ta ≤ +	to 3.6V ∙85°C fo ∙125°C fo	(unless otherwise stated) r Industrial or Extended
Param No.	Symbol	Characteris	tic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controll Oscillator (VCO) Inpl Frequency Range	ed ut	0.8		8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO Syster Frequency	n	100	_	200	MHz	—
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	—
OS53	DCLK	CLKO Stability (Jitter	·) ⁽²⁾	-3	0.5	3	%	Measured over 100 ms period

TABLE 30-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: Fosc = 32 MHz, DCLK = 3%, SPI bit rate clock, (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}} \right\rfloor = \left\lfloor \frac{3\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{3\%}{4} \right\rfloor = 0.75\%$$

TABLE 30-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS	Standar Operatir	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Characteristic	Min	Min Typ Max Units Conditions							
	Internal FRC Accuracy @	0 7.3728	MHz ⁽¹⁾							
F20a	FRC	-2	—	+2	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V			
F20b	FRC	-5	_	+5	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V			

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 30-19: INTERNAL RC ACCURACY

АС СН	ARACTERISTICS	Standar Operatir	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended							
Param No.	Characteristic	Min	Min Typ Max Units Conditions							
	LPRC @ 32.768 kHz ⁽¹⁾									
F21a	LPRC	-20	±6	+20	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V			
F21b	LPRC	-30		+30	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V			

Note 1: Change of LPRC frequency as VDD changes.

^{© 2007-2012} Microchip Technology Inc.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

FIGURE 30-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 30-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Charact	teristic		Min	Тур	Мах	Units	Conditions		
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler		Synchronous, no prescaler		Tcy + 20			ns	Must also meet parameter TA15.
			Synchror with pres	nous, scaler	(Tcy + 20)/N	—	_	ns	N = prescale value		
			Asynchro	onous	20	_	—	ns	(1, 8, 64, 256)		
TA11	A11 TTXL TXCK Low Time		Synchronous, no prescaler		(Tcy + 20)		—	ns	Must also meet parameter TA15.		
			Synchronous, with prescaler		(Tcy + 20)/N	_	—	ns	N = prescale value		
			Asynchro	onous	20	_	_	ns	(1, 8, 64, 256)		
TA15	ΤτχΡ	TxCK Input Period	Synchror no presc	nous, aler	2 Tcy + 40	_	—	ns	—		
			Synchror with pres	nous, scaler	Greater of: 40 ns or (2 Tcy + 40)/ N	_	_	_	N = prescale value (1, 8, 64, 256)		
			Asynchro	onous	40		—	ns	—		
OS60	Ft1	SOSCI/T1CK Osc frequency Range enabled by setting (T1CON<1>))	cillator Inpu (oscillator g bit TCS	ut	DC	_	50	kHz	_		
TA20	TCKEXTMRL	Delay from Extern Edge to Timer Inc	nal TxCK C crement	Clock	0.75 Tcy + 40	_	1.75 Tcy + 40	—	—		

Note 1: Timer1 is a Type A.

АС СНА		STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions		
CS10	TCSCKL	CSCK Input Low Time (CSCK pin is an input)	Tcy/2 + 20	—	_	ns	_		
		CSCK Output Low Time ⁽³⁾ (CSCK pin is an output)	30	—	—	ns	—		
CS11	Тсѕскн	CSCK Input High Time (CSCK pin is an input)	Tcy/2 + 20	—	—	ns	_		
		CSCK Output High Time ⁽³⁾ (CSCK pin is an output)	30	—	—	ns	_		
CS20	TCSCKF	CSCK Output Fall Time ⁽⁴⁾ (CSCK pin is an output)	_	10	25	ns	—		
CS21	TCSCKR	CSCK Output Rise Time ⁽⁴⁾ (CSCK pin is an output)	_	10	25	ns	—		
CS30	TCSDOF	CSDO Data Output Fall Time ⁽⁴⁾	—	10	25	ns	_		
CS31	TCSDOR	CSDO Data Output Rise Time ⁽⁴⁾	—	10	25	ns	—		
CS35	Tdv	Clock Edge to CSDO Data Valid	—	—	10	ns	—		
CS36	TDIV	Clock Edge to CSDO Tri-Stated	10	—	20	ns			
CS40	TCSDI	Setup Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	—	—	ns	_		
CS41	THCSDI	Hold Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	—	_	ns	_		
CS50	TCOFSF	COFS Fall Time (COFS pin is output)	—	10	25	ns	See Note 1		
CS51	TCOFSR	COFS Rise Time (COFS pin is output)	_	10	25	ns	See Note 1		
CS55	TSCOFS	Setup Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	—	_	ns	_		
CS56	THCOFS	Hold Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	—	—	ns	_		

TABLE 30-38: DCI MODULE (MULTI-CHANNEL, I²S MODES) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all DCI pins.

31.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0 "Electrical Characteristics"** for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 30.0 "Electrical Characteristics**" is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

40°C to +150°C
65°C to +160°C
0.3V to +4.0V
0.3V to (VDD + 0.3V)
0.3V to (VDD + 0.3V)
0.3V to 5.6V
60 mA
60 mA
+155°C
2 mA
4 mA
8 mA
70 mA
70 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
 - **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGCx, and PGDx pins.
 - 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.

31.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-8: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature -40°C ≤TA ≤+150°C for High Temperature Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-9: PLL CLOCK TIMING SPECIFICATIONS

A CHARAC	AC Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) CACTERISTICS Operating temperature -40°C ≤TA ≤+150°C for High Temperature						e stated) e
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 31-14: ADC MODULE SPECIFICATIONS

CHARAC	AC TERISTICS	Standard Operating Con Operating temperature	n ditions: -40°C ≤⊺	3.0V to Ā ≤+150	3.6V (ur)°C for Hi	nless of gh Tem	herwise stated) perature	
Param No.SymbolCharacteristicMinTypMaxUnits						Conditions		
	Reference Inputs							
HAD08	IREF	Current Drain	_	250 —	600 50	μ Α μΑ	ADC operating, See Note 1 ADC off, See Note 1	

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 31-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)

CHARAC	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature										
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions					
	ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF- ⁽¹⁾											
HAD20a	Nr	Resolution ⁽³⁾	1	2 data bi	ts	bits	_					
HAD21a	INL	Integral Nonlinearity	-2	-	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
HAD22a	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
HAD23a	Gerr	Gain Error	-2	-	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
HAD24a	EOFF	Offset Error	-3	-	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V					
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with In	ternal V	/REF+/VREF- ⁽¹⁾					
HAD20a	Nr	Resolution ⁽³⁾	1	2 data bi	ts	bits						
HAD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V					
HAD22a	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V					
HAD23a	Gerr	Gain Error	2		20	LSb	VINL = AVSS = 0V, AVDD = 3.6V					
HAD24a	EOFF Offset Error 2 - 10				10	LSb	VINL = AVSS = 0V, AVDD = 3.6V					
		Dynamic I	Performa	nce (12	-bit Mode	e) ⁽²⁾						
HAD33a	Fnyq	Input Signal Bandwidth	_		200	kHz						

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

Revision C (May 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description
High-Performance, 16-bit Digital Signal Controllers	Updated all pin diagrams to denote the pin voltage tolerance (see "Pin Diagrams").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).
	Added Peripheral Pin Select (PPS) capability column to Pinout I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).
Section 4.0 "Memory Organization"	Updated Reset value for CORCON in the CPU Core Register Map (see Table 4-1).
	Updated the Reset values for IPC14 and IPC15 and removed the FLTA1IE bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4).
	Updated bit locations for RPINR25 in the Peripheral Pin Select Input Register Map (see Table 4-21).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-33).
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.
Section 9.0 "Oscillator	Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).
Computation	Added Note 1 and Note 2 to the OSCON register (see Register 9-1).
	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 " System Clock Sources ".
	Added Note 3 to Section 9.2.2 "Oscillator Switching Sequence".
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).