

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp804t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FIGURE 3-2: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 PROGRAMMER'S MODEL

IADEE						LOIOILI		-	-									
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	_	_	_		_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	DMA4IF	PMPIF	_	_	_	_	_	_	_	_	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF	0000
IFS3	008A	_	RTCIF	DMA5IF	DCIIF	DCIEIF	_	_	_	_	_	_	_	_	_	_	—	0000
IFS4	008C	DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	_	_	_	_	—	—	_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	—	0000
IEC0	0094	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	DMA4IE	PMPIE	_	—		—	—	_	—	—	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE	0000
IEC3	009A	_	RTCIE	DMA5IE	DCIIE	DCIEIE	_	_	_	_	_	_	_	_	_	_	—	0000
IEC4	009C	DAC1LIE ⁽²⁾	DAC1RIE ⁽²⁾	—	_	_	_	_	_	_	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	—	0000
IPC0	00A4	_		T1IP<2:0>		_	(OC1IP<2:0)>	—		IC1IP<2:0>		_	11	NT0IP<2:0>	•	4444
IPC1	00A6	_		T2IP<2:0>		_	(OC2IP<2:0)>	—		IC2IP<2:0>		_	DI	MA0IP<2:0	>	4444
IPC2	00A8	_	U	1RXIP<2:0)>	_	Ş	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	—	-	T3IP<2:0>		4444
IPC3	00AA	_	_	—	_	—	D)MA1IP<2:	0>	_		AD1IP<2:0>	>	—	U	1TXIP<2:0	>	0444
IPC4	00AC	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0)>	—	SI	2C1IP<2:0	>	4444
IPC5	00AE	_		IC8IP<2:0>	•	_		IC7IP<2:0	>	_	—	—	—	—	II	NT1IP<2:0>	•	4404
IPC6	00B0	—		T4IP<2:0>		—	(OC4IP<2:0)>	—		OC3IP<2:0>	>	—	DI	MA2IP<2:0	>	4444
IPC7	00B2	—	U	2TXIP<2:0	>	—	L	J2RXIP<2:	0>	—		INT2IP<2:0	>	—	-	T5IP<2:0>		4444
IPC8	00B4	—	C	011P<2:0>(1	1)	—	C,	1RXIP<2:0	>(1)	—		SPI2IP<2:0	>	—	SF	PI2EIP<2:0	>	4444
IPC9	00B6	—	—	—	—	—	—	—	—	—	—	—	—	—	DI	MA3IP<2:0	>	0004
IPC11	00BA	—	—	—	—	—	D)MA4IP<2:	0>	—		PMPIP<2:0	>	—	—	—	—	0440
IPC14	00C0	—	D	CIEIP<2:0	>	—	—	—	—	—	—	—	—	—	—	—	—	4000
IPC15	00C2	—	—	—	—	—		RTCIP<2:0)>	—		DMA5IP<2:0	>	—		OCIIP<2:0>		0444
IPC16	00C4	—	C	CRCIP<2:0	>	—		U2EIP<2:0)>	—		U1EIP<2:0>	>	—	—	—	—	4440
IPC17	00C6	—	-	_	_	-	C.	1TXIP<2:0	>(1)	—		DMA7IP<2:0	>	—	DI	MA6IP<2:0	>	0444
IPC19	00CA	—	DA	C1LIP<2:0	>(2)	—	DA	C1RIP<2:	_{)>(2)}	—	_	-	—	-	_	—	_	4400
INTTREG	00E0	_	_	_	_		ILR<3	3:0>>		_			VE	CNUM<6:0>				4444

TABLE 4-4. INTERRUPT CONTROLLER REGISTER MAP

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1:

Interrupts disabled on devices without ECAN™ modules. Interrupts disabled on devices without Audio DAC modules. 2:

4.6 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1	1 Interrupt Flag Status bit
-------	---------------------------------	-----------------------------

- 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

	-10. 1200.				OIGTERO		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
_	RTCIE	DMA5IE	DCIIE	DCIEIE	_	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	RTCIE: Real-	Time Clock and	d Calendar In	terrupt Enable	bit		
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 13	DMA5IE: DM	A Channel 5 D	ata Transfer (Complete Interi	rupt Enable bit		
	1 = Interrupt	request enableo request not ena	d abled				
bit 12	DCIIE: DCI E	vent Interrupt E	Enable bit				

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 11	DCIEIE: DCI Error Interrupt Enable bit

```
1 = Interrupt request enabled
```

- 0 = Interrupt request not enabled
- bit 10-0 Unimplemented: Read as '0'

REGISTER	7-29: IPC17	: INTERRUPT	PRIORITY	Y CONTROL F	REGISTER 1	7						
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
	—	—		—		C1TXIP<2:0>(1)						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		DMA7IP<2:0>				7 R/W-0 C1TXIP<2:0> ⁽¹⁾ R/W-0 DMA6IP<2:0> ad as '0' x = Bit is unknown						
bit 7							bit (
Legend:												
R = Readab	ole bit	W = Writable I	bit	U = Unimpler	mented bit, rea	ad as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-11	Unimplemer	nted: Read as ')'									
bit 10-8	C1TXIP<2:0	>: FCAN1 Trans	smit Data Re	auest Interrupt	Priority bits ⁽¹⁾							
	111 = Interru	111 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	•											
	•											
	001 = Interru 000 = Interru	upt is priority 1 upt source is disa	abled									
bit 7	Unimplemer	nted: Read as 'o)'									
bit 6-4	DMA7IP<2:0	>: DMA Channe	el 7 Data Tra	ansfer Complete	e Interrupt Prio	ritv bits						
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•		5	- J [J								
	•											
	•											
	001 = Interru	upt is priority 1										
	000 = Interru	pt source is dis	abled									
bit 3	Unimplemer	nted: Read as '0)'									
bit 2-0	DMA6IP<2:0	>: DMA Channe	el 6 Data Tra	ansfer Complete	e Interrupt Prio	rity bits						
	111 = Interru	upt is priority 7 (ł	nighest prior	ity interrupt)								
	•											
	•											
	•											
		ipt is priority 1	ablad									
	000 = Interru	ipi source is disa	aplea									

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

REGISTER 8	B-8: DMAC	S1: DMA CO	NTROLLER	STATUS RE	GISTER 1							
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
_	—	_	—		LSTC	H<3:0>						
bit 15							bit 8					
DA	D 0	DA										
			R-U				R-U					
bit 7	PP310	PP315	PP314	PP313	PP312	PPSII	bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN					
hit 15-12	Unimplemen	ted: Read as '(ז'									
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active t	oits								
	1111 = No DI	MA transfer has	s occurred sin	ice system Res	et							
	1110-1000 =	Reserved										
	0111 = Last o	lata transfer wa	as by DMA Ch as by DMA Ch	nannel 7								
	0101 = Last 0	data transfer wa	as by DMA Cr	nannel 5								
	0100 = Last c	0100 = Last data transfer was by DMA Channel 4										
	0011 = Last o	011 = Last data transfer was by DMA Channel 3										
	0010 = Last c	lata transfer wa lata transfer wa	as by DIVIA Cr as by DMA Cr	iannei∠ iannel 1								
	0000 = Last c	data transfer wa	as by DMA Ch	nannel 0								
bit 7	PPST7: Char	nel 7 Ping-Por	ng Mode Statu	is Flag bit								
	1 = DMA7STI 0 = DMA7STA	B register select A register select	ted ted									
bit 6	PPST6: Char	nel 6 Ping-Por	ig Mode Statu	is Flag bit								
	1 = DMA6STI 0 = DMA6STA	B register selec A register selec	ted ted									
bit 5	PPST5: Char	nel 5 Ping-Por	ng Mode Statu	is Flag bit								
	1 = DMA5STI 0 = DMA5STA	B register select A register select	ted ted									
bit 4	PPST4: Char	nel 4 Ping-Por	ig Mode Statu	is Flag bit								
	1 = DMA4STE 0 = DMA4STA	B register selec A register selec	ted ted									
bit 3	PPST3: Char	nel 3 Ping-Por	ig Mode Statu	is Flag bit								
	1 = DMA3STE 0 = DMA3STA	B register selec A register selec	ted ted									
bit 2	PPST2: Char	nel 2 Ping-Por	ng Mode Statu	is Flag bit								
	1 = DMA2STI 0 = DMA2STA	B register selec A register selec	ted ted									
bit 1	PPST1: Char	nel 1 Ping-Por	ng Mode Statu	is Flag bit								
	1 = DMA1STI 0 = DMA1STA	B register selec A register selec	ted ted									
bit 0	PPST0: Char	nnel 0 Ping-Por	ig Mode Statu	is Flag bit								
	1 = DMA0STI 0 = DMA0STA	B register selec A register selec	ted ted									

9.1.4 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M,' by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2.' This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN \bullet \left(\frac{M}{N1 \bullet N2}\right)$$

For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL.

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 9-3: XT WITH PLL MODE EXAMPLE

$$FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \bullet 32}{2 \bullet 2} \right) = 40MIPS$$

FIGURE 9-2: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 PLL BLOCK DIAGRAM

10.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

17.2 I²C Resources

Many useful resources related to I^2C are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

17.2.1 KEY RESOURCES

- Section 11. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

17.3 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

22.5 DAC Resources

Many useful resources related to DAC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532311

22.5.1 KEY RESOURCES

- Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 2	2-2: DAC1	STAT: DAC S	IAIUS REG	JISTER			
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
LOEN	_	LMVOEN		_	LITYPE	LFULL	LEMPTY
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
ROEN	—	RMVOEN	—	—	RITYPE	RFULL	REMPTY
bit 7							bit 0
Legend:	L :4		L 14			-1 (0)	
R = Readable		vv = vvritable	DIT		mented bit, rea		
-n = Value at P	VOR	'1' = Bit is set		0° = Bit is cle	eared	x = Bit is unk	nown
bit 15	LOEN: Left C 1 = Positive 0 = DAC out	Channel DAC O and negative D puts are disable	utput Enable AC outputs a ed	bit re enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	LMVOEN: Le	eft Channel Mid	point DAC Ou	utput Voltage E	Enable bit		
	1 = Midpoint 0 = Midpoint	DAC output is output is disab	enabled led				
bit 12-11	Unimplemen	ted: Read as '	0'				
bit 10	LITYPE: Left 1 = Interrupt 0 = Interrupt	Channel Type if FIFO is Emp if FIFO is not F	of Interrupt b ty [:] ull	it			
bit 9	LFULL: Statu 1 = FIFO is F 0 = FIFO is r	us, Left Channe ⁻ ull not full	l Data Input F	FIFO is Full bit			
bit 8	LEMPTY: Sta 1 = FIFO is E 0 = FIFO is r	atus, Left Chanı Empty not Empty	nel Data Inpu	t FIFO is Empt	y bit		
bit 7	ROEN: Right 1 = Positive 0 = DAC out	Channel DAC and negative D puts are disable	Output Enabl AC outputs a ed	le bit re enabled			
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	RMVOEN: Ri 1 = Midpoint 0 = Midpoint	ight Channel M DAC output is output is disab	idpoint DAC (enabled led	Output Voltage	Enable bit		
bit 4-3	Unimplemen	ted: Read as '	0'				
bit 2	RITYPE: Rig	ht Channel Typ	e of Interrupt	bit			
	1 = Interrupt 0 = Interrupt	if FIFO is Emp if FIFO is not F	ty Full				
bit 1	RFULL: Statu 1 = FIFO is	us, Right Chanı Full	nel Data Inpu	t FIFO is Full b	bit		
h it 0			nnal Data Isa				
DILU	1 = FIFO is E 0 = FIFO is r	aius, Right Cha Empty not Empty	nnei Data Inp	DUL FIFU IS EM	אין אונ		

~ ~~

REGISTER 26-3: PMAD	DR: PARALLEL PORT	ADDRESS REGISTER
---------------------	-------------------	-------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADDR15	CS1			ADDF	R<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15	ADDR15: Parallel Port Destination Address bits
bit 14	CS1: Chip Select 1 bit
	1 = Chip select 1 is active
	0 = Chip select 1 is inactive
bit 13-0	ADDR13:ADDR0: Parallel Port Destination Address bits

REGISTER 26-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	PTEN14	—	—	—		PTEN<10:8> ⁽¹⁾)
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN<7:2> ⁽¹⁾					PTEN	<1:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Unimplemented: Read as '0'
PTEN14: PMCS1 Strobe Enable bit
 1 = PMA14 functions as either PMA<14> bit or PMCS1 0 = PMA14 pin functions as port I/O
Unimplemented: Read as '0'
PTEN<10:2>: PMP Address Port Enable bits ⁽¹⁾
1 = PMA<10:2> function as PMP address lines0 = PMA<10:2> function as port I/O
PTEN<1:0>: PMALH/PMALL Strobe Enable bits
 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O

Note 1: Devices with 28 pins do not have PMA<10:2>.

АС СН	ARACTER	RISTICS	Standard O (unless oth Operating te	peratir erwise empera	ture -40°C -40°C	I S: 3.0V ≤Ta≤+ ≤Ta≤+	to 3.6V 85°C for Industrial 125°C for Extended	
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device	Supply	/			
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	—	
AD02	AVss	Module Vss Supply	Vss – 0.3	—	Vss + 0.3	V	_	
	-		Reference	ce Inpu	ts			
AD05	VREFH	Reference Voltage High	AVss + 2.5	—	AVDD	V		
AD05a			3.0	—	3.6	V	VREFH = AVDD VREFL = AVSS = 0	
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 2.5	V		
AD06a			0	_	0	V	VREFH = AVDD VREFL = AVSS = 0	
AD07	VREF	Absolute Reference Voltage	2.5	—	3.6	V	VREF = VREFH - VREFL	
AD08	IREF	Current Drain	_	—	10	μA	ADC off	
AD09	IAD	Operating Current	_	7.0	9.0	mA	ADC operating in 10-bit mode, see Note 1	
			—	2.7	3.2	mA	ADC operating in 12-bit mode, see Note 1	
			Analo	g Input				
AD12	VINH	Input Voltage Range Vinн	VINL	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range Vin∟	VREFL		AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Imped- ance of Analog Voltage Source	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC	

TABLE 30-41: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. Typ ⁽²⁾ Max. Units Conditions					
		Clock	Paramete	ers ⁽¹⁾				
AD50	TAD	ADC Clock Period	117.6	_		ns	—	
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	_	
	Conversion Rate							
AD55	tCONV	Conversion Time	—	14 Tad		ns	—	
AD56	FCNV	Throughput Rate		—	500	ksps	—	
AD57	TSAMP	Sample Time	3 Tad	_			—	
	Timing Parameters							
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	_	3 Tad	—	Auto convert trigger not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	_	3 Tad		_	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5 TAD			_	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		_	20	μs	—	

TABLE 30-44: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on ADON bit (AD1CON1<15>) = '1'. During this time, the ADC result is indeterminate.

FIGURE 30-28: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 30-52: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
PM1	PMALL/PMALH Pulse-Width	—	0.5 TCY	_	ns	_
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	_	0.75 TCY	—	ns	
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.25 TCY	—	ns	_
PM5	PMRD Pulse-Width	—	0.5 TCY	_	ns	_
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	150	_	_	ns	_
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	_	—	5	ns	_

128:1

40

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 30-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 30-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 30-7).
	Updated Characteristics for I/O Pin Input Specifications and added parameter DI21 (see Table 30-9).
	Updated Program Memory values for parameters 136, 137, and 138 (renamed to 136a, 137a, and 138a), added parameters 136b, 137b, and 138b, and added Note 2 (see Table 30-12).
	Added parameter OS42 (GM) to the External Clock Timing Requirements (see Table 30-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 30-21).
	Updated the IREF Current Drain parameter AD08 (see Table 30-37).
	Updated parameters AD30a, AD31a, AD32a, AD33a, and AD34a (see Table 30-38)
	Updated parameters AD30b, AD31b, AD32b, AD33b, and AD34b (see Table 30-39)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)