

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DCI, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 13x10b/12b; D/A 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gp804t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLE 1-1.	FINOU		I/O DESCRIPTIONS			
Pin Name	Pin Type	Buffer Type	PPS	Description		
AN0-AN12	I	Analog		Analog input channels.		
CLKI	I	ST/CMOS	No	External clock source input. Always associated with OSC1 pin		
CLKO	0	_	No	function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.		
OSC1	Ι	ST/CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode;		
OSC2	I/O	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.		
SOSCI SOSCO	 0	ST/CMOS	No No	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.		
CN0-CN30	Ι	ST	No No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.		
IC1-IC2 IC7-IC8		ST ST	Yes Yes	Capture inputs 1/2. Capture inputs 7/8.		
OCFA OC1-OC4	Г О	ST —	Yes Yes	Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare outputs 1 through 4.		
INT0	Ι	ST	No	External interrupt 0.		
INT1	I	ST	Yes	External interrupt 1.		
INT2	I	ST	Yes	External interrupt 2.		
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.		
RA7-RA10	I/O	ST	No	PORTA is a bidirectional I/O port.		
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.		
RC0-RC9	I/O	ST	No	PORTC is a bidirectional I/O port.		
T1CK	I	ST	No	Timer1 external clock input.		
T2CK	I	ST	Yes	Timer2 external clock input.		
T3CK	I	ST	Yes	Timer3 external clock input.		
14CK		SI	Yes	Timer4 external clock input.		
15CK	I	51	Yes			
U1CTS		SI	Yes	UARI1 clear to send.		
U1RTS	0	— ст	Yes	UART1 ready to send.		
U1RX	0		Yes	UART1 transmit.		
		07				
U2CTS		SI	Yes	UARI2 clear to send.		
U2RTS		— ст	Yos	UART2 receive		
U2RX	0		Yes	UART2 transmit		
U21X	0		100			
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1.		
SD01		51	res	SPI1 data III.		
SS1	1/0	ST ST	Yes	ISPI1 vala out.		
SCK2		ST	Yee	Synchronous serial clock input/output for SPI2		
SDI2	"U	ST	Yes	ISPI2 data in		
SDO2	Ō	_	Yes	SPI2 data out.		
SS2	1/0	ST	Yes	SPI2 slave synchronization or frame pulse I/O.		
Legend: CMOS	= CMOS	S compatible	e input c	proutput Analog = Analog input P = Power		

TABLE 1-1: PINOUT I/O DESCRIPTIONS	TABLE 1-1:	PINOUT I/O DESCRIPTIONS
------------------------------------	------------	--------------------------------

JS compatible input or output gena:

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

= Analog Input O = Output I = Input PPS = Peripheral Pin Select

REGISTER 3 -	-2: CORC	ON: CORE C	ONTROL R	EGISTER							
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0				
_	—	_	US	EDT ⁽¹⁾		DL<2:0>					
bit 15							bit 8				
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0				
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF				
bit 7							bit 0				
Legend:		C = Clear onl	v bit								
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set					
0' = Bit is clear	ed	'x = Bit is unk	nown	U = Unimpler	mented bit, rea	d as '0'					
bit 15-13	Unimplemen	ted: Read as '	0'								
bit 12	US: DSP Mul	tiply Unsigned	- /Signed Contr	ol bit							
	1 = DSP engi	ne multiplies a	re unsigned								
	0 = DSP engine multiplies are signed										
bit 11	EDT: Early DO	Loop Termina	ation Control b	oit ⁽¹⁾							
	1 = Terminate 0 = No effect	e executing DO	loop at end of	f current loop it	eration						
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	oits							
	111 = 7 DO lo	ops active									
	•										
	• 001 = 1 DO loop active										
	000 = 0 DO lo	ops active									
bit 7	SATA: ACCA	Saturation En	able bit								
	1 = Accumula 0 = Accumula	ator A saturatio ator A saturatio	n enabled n disabled								
bit 6	SATB: ACCB	ATB: ACCB Saturation Enable bit									
	1 = Accumulator B saturation enabled										
	0 = Accumula	ator B saturatio	n disabled								
bit 5	SATDW: Data Space Write from DSP Engine Saturation Enable bit										
	\perp = Data space write saturation enabled 0 = Data space write saturation disabled										
bit 4	ACCSAT: Accumulator Saturation Mode Select bit										
	1 = 9.31 saturation (super saturation)										
	0 = 1.31 saturation (normal saturation)										
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾										
	1 = CPU inter	rupt priority lev	vel is greater t	han 7							
hit 0		rupt priority lev	/el is / or less	; nan Enable bit							
DIL Z	1 = Program	n Space visible ir	ny in Dala Spa n data space								
	0 = Program s	space not visib	le in data space	се							
bit 1	RND: Roundi	ng Mode Seleo	t bit								
	1 = Biased (c	onventional) ro	ounding enable	ed							
	0 = Unbiased	(convergent) r	ounding enab	oled							
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit							
	1 = Integer m	ode enabled fo	or DSP multipl	ly ops							
				inhià ohe							

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.8.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit two's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands direct a 16-bit result, and word operands direct a 32-bit result to the specified registers in the W array.

3.8.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.8.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- · OB: ACCB overflowed into guard bits

or

• SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: ACCB saturated (bit 31 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- · SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller**"). This allows the user application to take immediate action, for example, to correct the system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and is saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, the SA and SB bits generate an arithmetic warning trap when saturation is disabled.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 5-2:	NVM	(EY: NONVOL	ATILE ME	MORY KEY R	REGISTER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	(EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

FIGURE 7-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/ X04 INTERRUPT VECTOR TABLE

I	Poact come Instruction		
	Reset - GOTO Instruction		
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		-
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
~	Interrupt Vector 53	0x00007E	
ority	Interrupt Vector 54	0x000080	
Pric	~		
er F	~	_	
Drde	~		
	Interrupt Vector 116	0x0000FC	1
nre	Interrupt Vector 117	0x0000FE	
Vat	Reserved	0x000100	
l Di	Reserved	0x000102	
Isir	Reserved	_	
rea	Oscillator Fail Trap Vector	_	
)ec	Address Error Trap Vector	_	
	Stack Error Trap Vector	_	
	Math Error Trap Vector	_	
	DMA Error Trap vector		7
	Reserved	_	
	Reserved	0.000444	
	Interrupt Vector U	0x000114	
	Interrupt vector 1	_	
	~	_	
	~	_	Alternate intermed V_{0} star Table (AIV/T)(1)
		0.000170	Alternate interrupt vector Table (AIVI)
	Interrupt Vector 52		
	Interrupt Vector 53	0x00017E	
	Interrupt vector 54	0000180	
	~	_	
	~	-	
	Interrupt Vector 116		1
	Interrupt Vector 116		
★	Start of Code		
Ť	Stall OF CODE	0x000200	
Note 1	Soo Table 7.1 for the list of implement	ontod intorrunt	vectors
NOTE 1	See Table (-1 for the list of impleme	enteu interrupt	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF				
bit 15							bit 8				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
IC8IF	IC7IF		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF				
bit 7							bit 0				
<u> </u>											
Legend:	L 14		L :4			(0)					
R = Readable		vv = vvritable	DIT	U = Unimple	mented bit, read	a = Ditio upkr					
	OR	I = DILIS SEL			aleu	X = DILIS UNKI	IOWI				
bit 15	U2TXIF: UAR	RT2 Transmitter	Interrupt Fla	a Status bit							
	1 = Interrupt r	request has occ	curred	g clatac bit							
	0 = Interrupt r	equest has not	occurred								
bit 14	U2RXIF: UAF	RT2 Receiver Ir	nterrupt Flag	Status bit							
	1 = Interrupt r	equest has occ	curred								
bit 13	INT2IF: Exter	External Interrupt 2 Flag Status bit									
	1 = Interrupt request has occurred										
	0 = Interrupt r	equest has not	occurred								
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit								
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit								
2	1 = Interrupt r	request has occ	curred								
	0 = Interrupt r	equest has not	occurred								
bit 10	OC4IF: Outpu	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit						
	1 = Interrupt r 0 = Interrupt r	equest has occ request has not	curred								
bit 9	OC3IF: Outpu	: Output Compare Channel 3 Interrupt Flag Status bit									
	1 = Interrupt request has occurred										
	0 = Interrupt r	0 = Interrupt request has not occurred									
bit 8	DMA2IF: DM	A2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit									
	1 = Interrupt request has occurred										
bit 7	IC8IF: Input Capture Channel 8 Interrupt Flag Status bit										
	1 = Interrupt r	equest has occ	curred .	0							
	0 = Interrupt r	request has not	occurred								
bit 6	IC7IF: Input C	Capture Channe	el 7 Interrupt	Flag Status bit							
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	curred								
bit 5	Unimplemen	ted: Read as ')'								
hit 4	INT1IF: Exter	nal Interrupt 1	Flag Status b	it							
	1 = Interrupt r	equest has occ	curred								
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	curred t occurred								
bit 3	1 = Interrupt r 0 = Interrupt r CNIF: Input C	request has occ request has not change Notifica	curred toccurred tion Interrupt	Flag Status bit	:						

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

					<u> </u>	<u> </u>			
	DMA4IF	PMPIF		—	<u> </u>				
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
			- 1						
DIT 15	Unimplement	ted: Read as "				.,			
bit 14		A Channel 4 D	ata Transfer C	complete Interi	rupt Flag Status t	Dit			
	\perp = Interrupt n	equest has oc equest has no	currea t occurred						
bit 13	PMPIF: Paral	lel Master Port	Interrupt Flac	ı Status bit					
	1 = Interrupt r	equest has oc	curred						
	0 = Interrupt r	equest has no	t occurred						
bit 12-5	Unimplement	ted: Read as '	0'						
bit 4	DMA3IF: DMA	A Channel 3 D	ata Transfer C	Complete Interr	rupt Flag Status b	pit			
	1 = Interrupt r	equest has oc	curred						
	0 = Interrupt r	equest has no	toccurred	(1)					
bit 3	C1IF: ECAN1	Event Interrup	ot Flag Status	bit(")					
	1 = Interrupt request has occurred								
hit 2	C1RXIE: ECA	N1 Receive D	ata Ready Inte	errunt Flag Sta	itus bit(1)				
SIL Z	1 = Interrupt r	equest has oc	curred	shupt hug old					
	0 = Interrupt r	equest has no	toccurred						
bit 1	SPI2IF: SPI2	Event Interrup	t Flag Status b	bit					
	1 = Interrupt r	equest has oc	curred						
	0 = Interrupt r	equest has no	t occurred						
bit 0	SPI2EIF: SPI2	2 Error Interrup	ot Flag Status	bit					
	1 = Interrupt n	equest has oc	curred						

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

11.0	11.0						
		1\/ VV-1	10/00-1		>	10.00-1	
				000111-4.0	~	bit 8	
						bit 0	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—			CSDIR<4:0	>		
						bit 0	
le bit	W = Writable b	bit	U = Unimpler	nented bit, rea	id as '0'		
-n = Value at POR '1'			'0' = Bit is cleared		x = Bit is unknown		
CSCKR<4:0> 11111 = Inpu 11001 = Inpu	ted: Read as to Assign DCI S t tied to Vss t tied to RP25	erial Clock Ir	nput (CSCK) to	the correspon	ding RPn pin		
00001 = Inpu 00000 = Inpu	t tied to RP1 t tied to RP0						
CSDIR<4:0>: 11111 = Inpu 11001 = Inpu • • • • • • •	Assign DCI Se t tied to Vss t tied to RP25 t tied to RP1	rial Data Inp	ut (CSDI) to the	correspondin	g RPn pin		
	U-0 U-0 U-0 U-0 Unimplemen CSCKR<4:0> 11111 = Inpu 11001 = Inpu 00000 = Inpu CSDIR<4:0>: 11111 = Inpu 00000 = Inpu 11001 = Inpu	U-0 U-0 U-0 U-0 Image: U-0 U-0 U-0 U-0 Image: U-0 Image: U-0 Image: U-0	U-0 U-0 R/W-1 U-0 R/W-1 Instance Unimplemented: Read as '0' CSCKR Staign DCI Serial Clock In 1111 = Input tied to Vss 11001 = Input tied to RP25 Intervention Input tied to RP0 CSDIR A:000 = Input tied to RP0 CSDIR Input tied to RP25 Intervention Input tied to RP1 Intervention Input tied to RP25	U-0 U-0 R/W-1 R/W-1 - - - - U-0 U-0 R/W-1 R/W-1 - - - -	0-0 0-0 R/W-1 R/W-1 R/W-1 - - CSCKR<4:0	U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 - - CSCKR<4:0>	

REGISTER 11-14: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

13.3 Timer Resources

Many useful resources related to Timers are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532311

13.3.1 KEY RESOURCES

- Section 11. "Timers" (DS70205)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

15.0 OUTPUT COMPARE

- This data sheet summarizes the features Note 1: of the dsPIC33FJ32GP302/304. dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault protection
- PWM mode with Fault protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

19.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

19.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
 acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER	19-4: CiFC1	RL: ECAN™	FIFO CON	TROL REGIS	TER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>		_	_	_	_	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—			FSA<4:0>		
bit 7							bit 0
Legend:		C = Writable I	oit, but only 'C)' can be writter	n to clear the b	it	
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is se				'0' = Bit is cle	ared	x = Bit is unknown	
bit 15-13 bit 12-5	DMABS<2:0 111 = Reser 110 = 32 buf 101 = 24 buf 100 = 16 buf 011 = 12 buf 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	>: DMA Buffer : ved fers in DMA RA fers in DMA RA fers in DMA RA fers in DMA RAN ers in DMA RAN ers in DMA RAN ers in DMA RAN	Size bits M M M M M A A A D				
bit 4-0	FSA<4:0>: F 11111 = Rea 11110 = Rea • • • • • • •	IFO Area Starts ad buffer RB31 ad buffer RB30 RX buffer TRB ⁷	s with Buffer t	pits			

00000 = TX/RX buffer TRB0

REGISTER	19-6: CINTF	F: ECAN ™ IN	ITERRUPT	FLAG REGIS	STER							
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN					
bit 15				-			bit 8					
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0					
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF					
bit 7							bit 0					
Legend:		C = Writable	bit, but only '0	' can be writte	n to clear the bit							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown					
bit 15-14	Unimplemen	ted: Read as '	0'									
bit 13	TXBO: Transi	mitter in Error	State Bus Off	bit								
	1 = Transmitte	1 = Transmitter is in Bus Off state										
		ter is not in Bu	s Off state									
DIT 12	1 = Transmitte	mitter in Error : er is in Rus Pa	State Bus Pas	SIVE DIT								
	\perp = transmitter is in Bus Passive state 0 = Transmitter is not in Bus Passive state											
bit 11	RXBP: Recei	ver in Error Sta	ate Bus Passi	ve bit								
	1 = Receiver is in Bus Passive state											
	0 = Receiver is not in Bus Passive state											
bit 10	TXWAR: Transmitter in Error State Warning bit											
	 I = Iransmitter is in Error Warning state = Transmitter is not in Error Warning state 											
h # 0	0 = Transmitter is not in Error Warning state											
DIT 9	EXAMPLE : Receiver in Error State Warning bit											
	0 = Receiver is not in Error Warning state											
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit											
	1 = Transmitter or Receiver is in Error State Warning state											
	0 = Transmitte	er or Receiver	is not in Error	State Warning	g state							
bit 7	IVRIF: Invalid Message Received Interrupt Flag bit											
	1 = Interrupt Request has occurred											
hit C	WAKIE: Bus Wake-up Activity Interrupt Flag bit											
DILO	vvanir: Bus wake-up Activity Interrupt Flag bit 1 = Interrupt Request has occurred											
	0 = Interrupt Request has not occurred											
bit 5	ERRIF: Error	Interrupt Flag	bit (multiple s	ources in CilN	TF<13:8> regist	er)						
	1 = Interrupt F	Request has o	ccurred		C C							
	0 = Interrupt F	Request has n	ot occurred									
bit 4	Unimplemen	ted: Read as '	0'									
bit 3	FIFOIF: FIFO	Almost Full In	terrupt Flag b	it								
	1 = Interrupt F	Request has o	ccurred									
h # 0		Request has no	ot occurred	I- :4								
DIT 2	1 = Interrunt E	Buffer Overflo	w Interrupt Fia	ag bit								
	0 = Interrupt F	Request has n	ot occurred									
bit 1	RBIF: RX But	ffer Interrupt Fl	ag bit									
-	1 = Interrupt F	Request has o	ccurred									
	0 = Interrupt F	Request has n	ot occurred									
bit 0	TBIF: TX Buff	fer Interrupt Fla	ag bit									
	1 = Interrupt F	Request has o	ccurred									
	0 = Interrupt H	kequest has h	or occurred									

	REGISTER 20	-5: RSCO	N: DCI RECE	EIVE SLOT C	ONTROL RE	EGISTER	
Γ	R/W_0	R/\/_0	R/\/_0	R/W_0	R/W_0	R/\/_0	R/W_0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	0' = Bit is cleared x = Bit is unknown		

bit 15-0

RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8		
bit 15	·	-					bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit				'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

22.0 AUDIO DIGITAL-TO-ANALOG CONVERTER (DAC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Audio Digital-to-Analog Converter (DAC) module is a 16-bit Delta-Sigma signal converter designed for audio applications. It has two output channels, left and right to support stereo applications. Each DAC output channel provides three voltage outputs, positive DAC output, negative DAC output, and the midpoint voltage output for the dsPIC33FJ64GP804 and dsPIC33FJ128GP804 The devices. dsPIC33FJ128GP802 dsPIC33FJ64GP802 and devices provide positive DAC output and negative DAC output voltages.

22.1 Key Features

- 16-bit resolution (14-bit accuracy)
- Second-Order Digital Delta-Sigma Modulator
- 256 X Over-Sampling Ratio
- 128-Tap FIR Current-Steering Analog Reconstruction Filter
- 100 ksps Maximum Sampling Rate
- User controllable Sample Clock
- Input Frequency 45 kHz max
- · Differential Analog Outputs
- Signal-To-Noise: 90 dB
- · 4-deep input Buffer
- 16-bit Processor I/O, and DMA interfaces

22.2 DAC Module Operation

The functional block diagram of the Audio DAC module is shown in Figure 22-1. The Audio DAC module provides a 4-deep data input FIFO buffer for each output channel. If the DMA module and/or the processor cannot provide output data in a timely manner, and the FIFO becomes empty, the DAC accepts data from the DAC Default Data register (DACDFLT). This safety feature is useful for industrial control applications where the DAC output controls an important processor or machinery. The DACDFLT register should be initialized with a "safe" output value. Often the safe output value is either the midpoint value (0x8000) or a zero value (0x0000).

The digital interpolator up-samples the input signals, where the over-sampling ratio is 256x which creates data points between the user supplied data points. The interpolator also includes processing by digital filters to provide "noise shaping" to move the converter noise above 20 kHz (upper limit of the pass band). The output of the interpolator drives the Sigma-Delta modulator. The serial data bit stream from the Sigma-Delta modulator is processed by the reconstruction filter. The differential outputs of the reconstruction filter are amplified by Op Amps to provide the required peak-to-peak voltage swing.

Note: The DAC module is designed specifically for audio applications and is not recommended for control type applications.

22.3 DAC Output Format

The DAC output data stream can be in a two's complement signed number format or as an unsigned number format.

The Audio DAC module features the ability to accept the 16-bit input data in a two's complement signed number format or as an unsigned number format. The data formatting is controlled by the Data Format Control bit (FORM<8>) in the DAC1CON register. The supported formats are:

- 1 = Signed (two's complement)
- 0 = Unsigned

If the FORM bit is configured for "Unsigned data" then the user input data yields the following behavior:

- 0xFFFF = most positive output voltage
- 0x8000 = mid point output voltage
- 0x7FFF = a value just below the midpoint
- 0x0000 = minimum output voltage

If the FORM bit is configured for "signed data" then the user input data yields the following behavior:

- 0x7FFF = most positive output voltage
- 0x0000 = mid point output voltage
- 0xFFFF = value just below the midpoint
- 0x8000 = minimum output voltage

The Audio DAC provides an analog output proportional to the digital input value. The maximum 100,000 samples per second (100 ksps) update rate provides good quality audio reproduction.

FIGURE 25-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

25.2 User Interface

25.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD<4:0> bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO. To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 25.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

25.2.2 INTERRUPT OPERATION

When the VWORD<4:0> bits make a transition from a value of '1' to '0', an interrupt will be generated.

25.3 Operation in Power-Saving Modes

25.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

25.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

TABLE 30-32:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol Characteristic ⁽¹⁾		Min	Typ ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	—	—	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time		_		ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	—	—	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	—	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	-	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow $ to SCKx \uparrow or SCKx Input	120	-	—	ns	_	
SP51	TssH2doZ	SSx	10	—	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	—	50	ns	_	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				
Param No.	Symbol	Characteristic ^(1,2)	Min	Typ ⁽³⁾	Мах	Units	Conditions
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	—
CS61	TBCLKH	BIT_CLK High Time	36	40.7	45	ns	—
CS62	TBCLK	BIT_CLK Period	—	81.4	-	ns	Bit clock is input
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK	—	_	10	ns	_
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	—	_	10	ns	_
CS70	TSYNCLO	SYNC Data Output Low Time	_	19.5	_	μs	See Note 1
CS71	TSYNCHI	SYNC Data Output High Time	—	1.3	_	μs	See Note 1
CS72	TSYNC	SYNC Data Output Period	—	20.8	_	μs	See Note 1
CS75	TRACL	Rise Time, SYNC, SDATA_OUT		_	30	ns	CLOAD = 50 pF, VDD = 3V
CS76	TFACL	Fall Time, SYNC, SDATA_OUT	—	—	30	ns	CLOAD = 50 pF, VDD = 3V
CS80	TOVDACL	Output Valid Delay from Rising Edge of BIT_CLK	_		15	ns	_

TABLE 30-39: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values assume BIT_CLK frequency is 12.288 MHz.

3: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	n Limits	MIN	NOM	MAX		
Number of Pins	N 28					
Pitch	е	0.65 BSC				
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness		0.20 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.70		
Overall Length		6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.70		
Contact Width	b	0.23	0.38	0.43		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	К	0.20	_	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B