

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, QSPI, SAI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	38
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 10x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l462ceu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

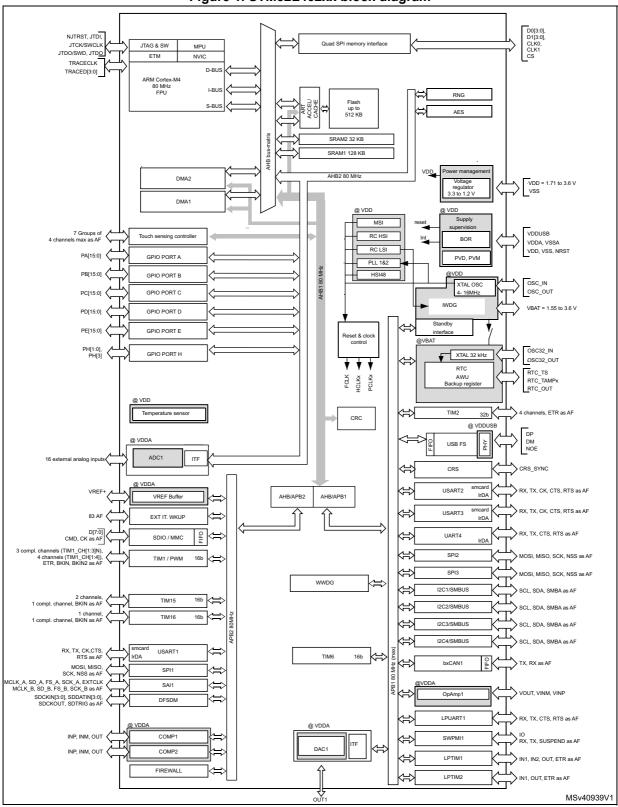



Figure 1. STM32L462xx block diagram

By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Low-power run mode

This mode is achieved with V_{CORE} supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.

• Low-power sleep mode

This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.

• Stop 0, Stop 1 and Stop 2 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the V_{CORE} domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.

Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the V_{CORE} domain is put in a lower leakage mode.

Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.

The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.

• Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the V_{CORE} domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The brown-out reset (BOR) always remains active in Standby mode.

The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention mode).

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE). The system clock after wakeup is MSI up to 8 MHz.

The system clock after wakeup is wish up to a r

					Stop	o 0/1	Sto	op 2	Star	ndby	Shut	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CRC calculation unit	0	0	0	0	-	-	-	-	-	-	-	-	-
GPIOs	0	0	0	0	0	0	0	0	(9)	5 pins (10)	(11)	5 pins (10)	-

 Table 4. Functionalities depending on the working mode⁽¹⁾ (continued)

1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.

2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.

3. The SRAM clock can be gated on or off.

4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.

 Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.

6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.

7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.

8. Voltage scaling Range 1 only.

9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.

10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.

11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.9.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.

VBAT operation is automatically activated when V_{DD} is not present.

An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation.

3.15 Analog to digital converter (ADC)

The device embeds a successive approximation analog-to-digital converter with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 18.75 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 16 external channels.
- 4 internal channels: internal reference voltage, temperature sensor, VBAT/3 and DAC1_OUT1.
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - ADC supports multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN17 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

3.29 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.

All SPI interfaces can be served by the DMA controller.

3.30 Serial audio interfaces (SAI)

The device embeds 1 SAI. Refer to *Table 13: SAI implementation* for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO.
- 8-word integrated FIFOs for each audio sub-block.
- Synchronous or asynchronous mode between the audio sub-blocks.
- Master or slave configuration independent for both audio sub-blocks.
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode.
- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
- Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out.
- Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame.
- Number of bits by frame may be configurable.
- Frame synchronization active level configurable (offset, bit length, level).
- First active bit position in the slot is configurable.
- LSB first or MSB first for data transfer.
- Mute mode.
- Stereo/Mono audio frame capability.
- Communication clock strobing edge configurable (SCK).
- Error flags with associated interrupts if enabled respectively.
 - Overrun and underrun detection.
 - Anticipated frame synchronization signal detection in slave mode.
 - Late frame synchronization signal detection in slave mode.
 - Codec not ready for the AC'97 mode in reception.
- Interruption sources when enabled:
 - Errors.
 - FIFO requests.
- DMA interface with 2 dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

The Quad SPI interface supports:

- Three functional modes: indirect, status-polling, and memory-mapped
- Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two flash memories in parallel.
- SDR and DDR support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Programmable masking for external flash flag management
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

	1	2	3	4	5	6	7	8	9	10	11	12		
A	PE3	PE1	PB8	PH3-BOOT0 (BOOT0)	(BOOT0) PD7 PD5 (NJTRST) TRAČESWO) PA15 (JIDI) SWČLK)									
в	PE4	PE2	PB9	PB7	PB6	PD6	PD1	PC12	PC10	PA11				
с	PC13	PE5	PE0	VDD	PB5			PD2	PD0	PC11	VDDUSB	PA10		
D	PC14- OSC32_IN (PC14)	PE6	VSS			•				PA9	PA8	PC9		
E	PC15- OSC32_OUT (PC15)	VBAT	vss	PC8 PC7							PC6			
F	PH0-OSC_IN (PH0)	vss			l		VSS	VSS						
G	PH1- OSC_OUT (PH1)	VDD					VDD	VDD						
н	PC0	NRST	VDD			PD15	PD14	PD13						
L	VSSA	PC1	PC2							PD12	PD11	PD10		
к	VREF-	PC3	PA2	PA5	PC4			PD9	PD8	PB15	PB14	PB13		
L	VREF+	PA0	PA3	PA6	PC5	PB2	PE8	PE10	PE12	PB10	PB11	PB12		
м	VDDA	PA1	PA4	PA7	PB0	PB1	PE7	PE9	PE11	PE13	PE14	PE15		
												MSv4		

Figure 7. STM32L462Vx UFBGA100 ballout⁽¹⁾

1. The above figure shows the package top view.

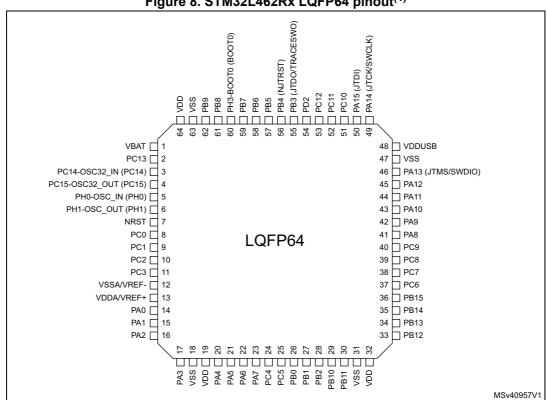


Figure 8. STM32L462Rx LQFP64 pinout⁽¹⁾

1. The above figure shows the package top view.

	1	2	3	4	5	6	7	8
A	PC14- OSC32_IN (PC14)	PC13	PB9	PB4 (NJTRST)	PB3 (JTDO/ TRACESWO)	PA15 (JTDI)	PA14 (JTCK/ SWCLK)	PA13 (JTMS/ SWDIO)
В	PC15- OSC32_OUT (PC15)	VBAT	PB8	PH3-BOOT0 (BOOT0)	PD2	PC11	PC10	PA12
c	PH0-OSC_IN (PH0)	VSS	PB7	PB5	PC12	PA10	PA9	PA11
D	PH1- OSC_OUT (PH1)	VDD	PB6	vss	VSS	vss	PA8	PC9
E	NRST	PC1	PC0	VDD	VDDUSB	VDD	PC7	PC8
F	VSSA/VREF-	PC2	PA2	PA5	PB0	PC6	PB15	PB14
G	PC3	PA0	PA3	PA6	PB1	PB2	PB10	PB13
н	VDDA/VREF+	PA1	PA4	PA7	PC4	PC5	PB11	PB12

Figure 9. STM32L462Rx UFBGA64 ballout⁽¹⁾

1. The above figure shows the package top view.

	. iguit					••••	Pinea	•
	1	2	3	4	5	6	7	8
A	VDDUSB	PA15 (JTDI)	PC12	PB4 (NJTRST)	PB7	PB8	VSS	VDD
В	VSS	VDD	PC11	PB3 (JTDO/ TRACESWO)	PB6	PH3-BOOT0 (BOOT0)	VBAT	PC13
c	PA10	PA13 (JTMS/ SWDIO)	PA14 (JTCK/ SWCLK)	PD2	PB5	PB9	PC15- OSC32_OUT (PC15)	PC14- OSC32_IN (PC14)
D	PA9	PA11	PA12	PC10	PC1	PC2	PC0	PH0-OSC_IN (PH0)
E	PC7	PC9	PA8	PC4	PA7	PA1	PC3	PH1- OSC_OUT (PH1)
F	PB15	PC6	PC8	PB1	PA5	PA3	VDDA/VREF+	NRST
G	PB14	PB13	PB12	PB2	PC5	PA4	PA2	VSSA/VREF-
н	VDD	vss	PB11	PB10	PB0	PA6	VDD	PA0

Figure 10. STM32L462Rx WLCSP64 pinout⁽¹⁾

1. The above figure shows the package top view.

Π
_
_
0
Ē.
—
ธ
۵u
=
_
Q
_
\mathbf{D}
Ξ.
n d
n d
n d
n d
n d
n descr
n descript
n descr
n descript
n description

			Tabl	le 16. Alternate	function AF0 to	o AF7 ⁽¹⁾ (conti	nued)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Po	ort	SYS_AF	TIM1/TIM2 LPTIM1	I2C4/TIM1/ TIM2/TIM3	I2C4/USART2/ CAN1/TIM1	2C1/ 2C2/ 2C3/ 2C4	SPI1/SPI2/I2C4	SPI3/DFSDM/ COMP1	USART1/ USART2/ USART3
	PD0	-	-	-	-	-	SPI2_NSS	-	-
	PD1	-	-	-	-	-	SPI2_SCK	-	-
	PD2	TRACED2	-	TIM3_ETR	-	-	-	-	USART3_RTS_ DE
	PD3	-	-	-	-	-	SPI2_MISO	DFSDM1_ DATIN0	USART2_CTS
	PD4	-	-	-	-	-	SPI2_MOSI	DFSDM1_ CKIN0	USART2_RTS_ DE
	PD5	-	-	-	-	-	-	-	USART2_TX
	PD6	-	-	-	-	-	-	DFSDM1_ DATIN1	USART2_RX
Port D	PD7	-	-	-	-	-	-	DFSDM1_ CKIN1	USART2_CK
	PD8	-	-	-	-	-	-	-	USART3_TX
	PD9	-	-	-	-	-	-	-	USART3_RX
	PD10	-	-	-	-	-	-	-	USART3_CK
	PD11	-	-	-	-	I2C4_SMBA	-	-	USART3_CTS
	PD12	-	-	-	-	I2C4_SCL	-	-	USART3_RTS_ DE
	PD13	-	-	-	-	I2C4_SDA	-	-	-
	PD14	-	-	-	-	-	-	-	-
	PD15	-	-	-	-	-	-	-	-

74/204

DS11913 Rev 4

5

·		1	labi	e 17. Alternate	function AF8	to AF15 ⁽¹⁾ (conti	nuea)	1		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15	
	Port	UART4/ LPUART1/ CAN1	CAN1/TSC	CAN1/USB/ QUADSPI	-	SDMMC1/ COMP1/ COMP2	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT	
	PC0	LPUART1_RX	-	-	-	-	-	LPTIM2_IN1	EVENTOUT	
	PC1	LPUART1_TX	-	-	-	-	-	-	EVENTOUT	
	PC2	-	-	-	-	-	-	-	EVENTOUT	
	PC3	-	-	-	-	-	SAI1_SD_A	LPTIM2_ETR	EVENTOUT	
	PC4	-	-	-	-	-	-	-	EVENTOUT	
	PC5	-	-	-	-	-	-	-	EVENTOUT	
	PC6	-	TSC_G4_IO1	-	-	SDMMC1_D6	-	-	EVENTOUT	
Port (PC7	-	TSC_G4_IO2	-	-	SDMMC1_D7	-	-	EVENTOUT	
FOIL	PC8	-	TSC_G4_IO3	-	-	SDMMC1_D0	-	-	EVENTOUT	
	PC9	-	TSC_G4_IO4	USBNOE	-	SDMMC1_D1	-	-	EVENTOUT	
	PC10	UART4_TX	TSC_G3_IO2	-	-	SDMMC1_D2	-	-	EVENTOU	
	PC11	UART4_RX	TSC_G3_IO3	-	-	SDMMC1_D3	-	-	EVENTOUT	
	PC12	-	TSC_G3_IO4	-	-	SDMMC1_CK	-	-	EVENTOU	
	PC13	-	-	-	-	-	-	-	EVENTOU	
	PC14	-	-	-	-	-	-	-	EVENTOU	
	PC15			-	-	-	-	-	EVENTOUT	

Table 47 Alt ... **.**.. -41 (hou

6.1.7 Current consumption measurement

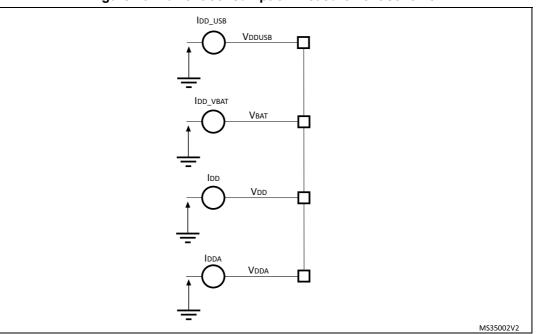


Figure 16. Current consumption measurement scheme

The I_{DD_ALL} parameters given in *Table 26* to *Table 38* represent the total MCU consumption including the current supplying V_{DD}, V_{DDA}, V_{DDUSB} and V_{BAT}.

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 19: Voltage characteristics*, *Table 20: Current characteristics* and *Table 21: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Мах	Unit
V _{DDX} - V _{SS}	External main supply voltage (including $V_{DD}, V_{DDA}, V_{DDUSB}, V_{BAT}$)	-0.3	4.0	V
(2)	Input voltage on FT_xxx pins	V _{SS} -0.3	min (V _{DD} , V _{DDA} , V _{DDUSB}) + 4.0 ⁽³⁾⁽⁴⁾	
$V_{IN}^{(2)}$	Input voltage on TT_xx pins	V _{SS} -0.3	4.0	V
	Input voltage on any other pins	V _{SS} -0.3	4.0	

	Table	19.	Voltage	characteristics ⁽¹⁾
--	-------	-----	---------	--------------------------------

Symbol	Devementer	Conditions		ТҮР					MAX ⁽¹⁾					Unit
Symbol	Parameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
			1.8 V	165	275	950	2600	6550	-	-	-	-	-	
in Shutdown I _{DD_ALL} mode (Shutdown (backup	RTC clocked by LSE	2.4 V	235	370	1150	3100	7650	-	-	-	-	-		
	bypassed at 32768 Hz	3 V	325	485	1450	3750	9050	-	-	-	-	-		
			3.6 V	445	655	1900	4800	11500	-	-	-	-	-	nA
		RTC clocked by LSE quartz ⁽²⁾ in low drive mode	1.8 V	290	410	1050	2550	6700	-	-	-	-	-	ПА
,			2.4 V	375	515	1250	3050	7800	-	-	-	-	-	
			3 V	480	645	1550	3700	8800	-	-	-	-	-	
			3.6 V	625	840	1950	4950	11500	-	-	-	-	-	
I _{DD_ALL} (wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .	3 V	1.00	-	-	-	-	-	-	-	-	-	mA

~

1. Guaranteed by characterization results, unless otherwise specified.

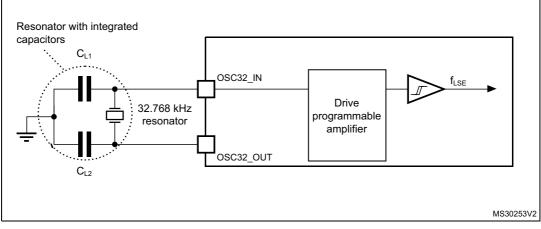
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 41: Low-power mode wakeup timings.

Table 39. Current consumption in VBAT mode

Symbol Parameter	Conditions			TYP			MAX ⁽¹⁾					Unit		
Cymbol	Falameter	-	V _{BAT}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
			1.8 V	3.00	-	-	-	-	-	-	-	-	-	
	RTC disabled	2.4 V	4.00	-	-	-	-	-	-	-	-	-		
		ain	3 V	5.00	-	-	-	-	-	-	-	-	-	
	Backup domain		3.6 V	11.0	-	-	-	-	-	-	-	-	-	nA
	supply current		1.8 V	145	165	285	550	-	-	-	-	-	-	ПА
	RTC enabled and	2.4 V	205	235	370	670	-	-	-	-	-	-		
		clocked by LSE bypassed at 32768 Hz	3 V	285	315	470	820	-	-	-	-	-	-	
		bypasse		3.6 V	375	430	715	1350	-	-	-	-	-	-

1. Guaranteed by characterization results, unless otherwise specified.


DS11913 Rev 4

111/204

- 1. Guaranteed by design.
- Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- 3. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
			Range 0	98.7	100	101.3	- kHz
			Range 1	197.4	200	202.6	
			Range 2	394.8	400	405.2	
			Range 3	789.6	800	810.4	
			Range 4	0.987	1	1.013	
		MSI mode	Range 5	1.974	2	2.026	
		INISI mode	Range 6	3.948	4	4.052	
			Range 7	7.896	8	8.104	MHz
			Range 8	15.79	16	16.21	
	MSI frequency after factory calibration, done at V_{DD} =3 V and T_A =30 °C		Range 9	23.69	24	24.31	
			Range 10	31.58	32	32.42	
f			Range 11	47.38	48	48.62	
f _{MSI}		PLL mode XTAL= 32.768 kHz	Range 0	-	98.304	-	- kHz
			Range 1	-	196.608	-	
			Range 2	-	393.216	-	
			Range 3	-	786.432	-	
			Range 4	-	1.016	-	MHz
			Range 5	-	1.999	-	
			Range 6	-	3.998	-	
			Range 7	-	7.995	-	
			Range 8	-	15.991	-	
			Range 9	-	23.986	-	
			Range 10	-	32.014	-	
			Range 11	-	48.005	-	1
(2)	MSI oscillator		T _A = -0 to 85 °C	-3.5	-	3	
$\Delta_{TEMP}(MSI)^{(2)}$	frequency drift over temperature	MSI mode	T _A = -40 to 125 °C	-8	-	6	%

Table 49. MSI oscillator characteristic	s ⁽¹⁾
---	------------------

Symbol	Parameter		Conditions		Min	Тур	Max	Unit
(100)(2)			Denne 0 to 2	V _{DD} =1.62 V to 3.6 V	-1.2	-	0.5	
			Range 0 to 3	V _{DD} =2.4 V to 3.6 V	-0.5	-	- 0.5	
	MSI oscillator frequency drift		Range 4 to 7	V _{DD} =1.62 V to 3.6 V	-2.5	-	0.7	%
$\Delta_{VDD}(MSI)^{(2)}$	over V _{DD} (reference is 3 V)	MSI mode		V _{DD} =2.4 V to 3.6 V	-0.8	-	- 0.7	70
			Range 8 to 11	V _{DD} =1.62 V to 3.6 V	-5	-	- 1	
			Range o to TT	V _{DD} =2.4 V to 3.6 V	-1.6	-		
	Frequency		T _A = -40 to 85 °	°C	-	1	2	
∆F _{SAMPLING} (MSI) ⁽²⁾⁽⁶⁾	variation in sampling mode ⁽³⁾	MSI mode	T _A = -40 to 125	0°C	-	2	4	%
P_USB	Period jitter for USB clock ⁽⁴⁾	riod jitter for PLL mode B clock ⁽⁴⁾ Range 11	for next transition	-	-	-	3.458	20
Jitter(MSI) ⁽⁶⁾			for paired transition	-	-	-	3.916	ns
MT_USB	Medium term jitter for USB clock ⁽⁵⁾	PLL mode Range 11	for next transition	-	-	-	2	
Jitter(MSI) ⁽⁶⁾			for paired transition	-	-	-	1	ns
CC jitter(MSI) ⁽⁶⁾	RMS cycle-to- cycle jitter	PLL mode R	ange 11	-	-	60	-	ps
P jitter(MSI) ⁽⁶⁾	RMS Period jitter	PLL mode R	ange 11	-	-	50	-	ps
		Range 0		-	-	10	20	
		Range 1		-	-	5	10	- us
t _{SU} (MSI) ⁽⁶⁾	MSI oscillator	Range 2		-	-	4	8	
ISU(MOI)	start-up time	Range 3		-	-	3	7	
		Range 4 to 7	7	-	-	3	6	
		Range 8 to 11		-	-	2.5	6	
t _{STAB} (MSI) ⁽⁶⁾	MSI oscillator stabilization time	PLL mode ne Range 11	10 % of final frequency	-	-	0.25	0.5	
			5 % of final frequency	-	-	0.5	1.25	ms
				-	-	-	2.5	

Table 49. MSI oscillator characteristics ⁽¹⁾ ((continued)
---	-------------

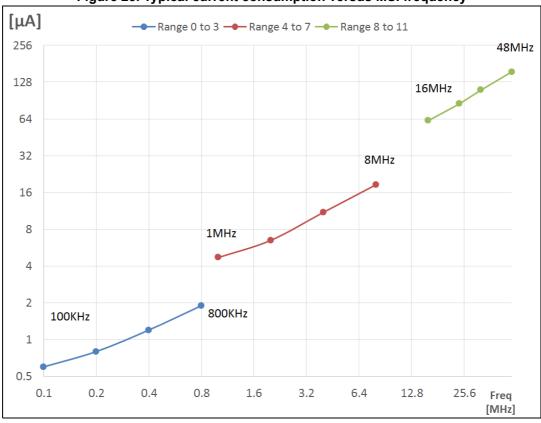


Figure 23. Typical current consumption versus MSI frequency

High-speed internal 48 MHz (HSI48) RC oscillator

Symbol	Parameter	Parameter Conditions		Тур	Max	Unit	
f _{HSI48}	HSI48 Frequency	V _{DD} =3.0V, T _A =30°C	-	48	-	MHz	
TRIM	HSI48 user trimming step	-	-	0.11 ⁽²⁾	0.18 ⁽²⁾	%	
USER TRIM COVERAGE	HSI48 user trimming coverage	±32 steps	±3 ⁽³⁾	±3.5 ⁽³⁾	-	%	
DuCy(HSI48)	Duty Cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%	
ACC _{HSI48_REL}	Accuracy of the HSI48 oscillator	V _{DD} = 3.0 V to 3.6 V, T _A = -15 to 85 °C	-	-	±3 ⁽³⁾	%	
	over temperature (factory calibrated)	V_{DD} = 1.65 V to 3.6 V, T _A = -40 to 125 °C	-	-	±4.5 ⁽³⁾		
	HSI48 oscillator frequency drift	V _{DD} = 3 V to 3.6 V	-	0.025 ⁽³⁾	0.05 ⁽³⁾	- %	
D _{VDD} (HSI48)	with V _{DD}	V _{DD} = 1.65 V to 3.6 V	-	0.05 ⁽³⁾	0.1 ⁽³⁾		
t _{su} (HSI48)	HSI48 oscillator start-up time	-	-	2.5 ⁽²⁾	6 ⁽²⁾	μs	
I _{DD} (HSI48)	HSI48 oscillator power consumption	-	-	340 ⁽²⁾	380 ⁽²⁾	μA	

- 2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when V_{DDA} \geq 2.4 V.
- 3. Fast channels are: PC0, PC1, PC2, PC3, PA0, PA1.
- 4. Slow channels are: all ADC inputs except the fast channels.

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit
CM		Normal mode		-	13	-	
GM	Gain margin	Low-power mode	Low-power mode			-	dB
•	Wake up time	$\label{eq:loss} \textit{Vake up time} \mbox{om OFF state.} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		-	5	10	
^t wakeup	from OFF state.			-	10	30	μs
I _{bias}	OPAMP input bias current	General purpose in	put	-	-	_(4)	nA
				-	2	-	
PGA gain ⁽³⁾	Non inverting gain value		-	4	-		
PGA gain**		-		-	8		-
			-	16	-		
	R2/R1 internal resistance values in PGA mode ⁽⁵⁾	PGA Gain = 2	-	80/80	-	κΩ/κΩ	
		PGA Gain = 4	-	120/ 40	-		
R _{network}		PGA Gain = 8	-	140/ 20	-		
		PGA Gain = 16	-	150/ 10	-		
Delta R	Resistance variation (R1 or R2)		-15	-	15	%	
PGA gain error	PGA gain error		-1	-	1	%	
	PGA bandwidth for different non inverting gain	Gain = 2	-	-	GBW/ 2	-	
PGA BW		Gain = 4	-	-	GBW/ 4	-	MHz
FGADW		Gain = 8 -		-	GBW/ 8	-	
		Gain = 16	-	-	GBW/ 16	-	

 Table 76. OPAMP characteristics⁽¹⁾ (continued)

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

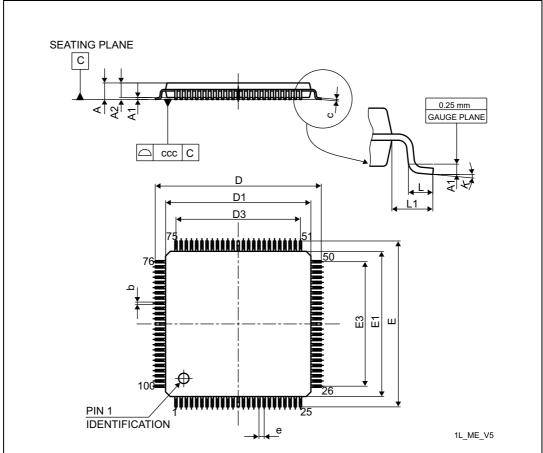
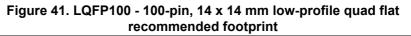
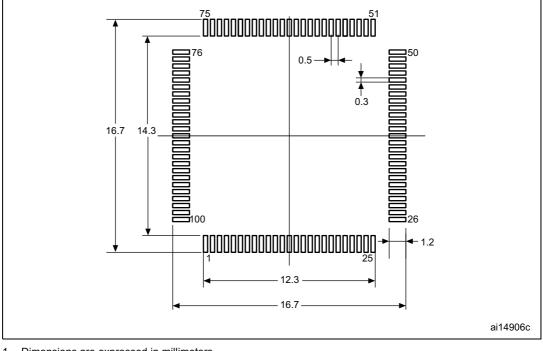


Figure 40. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 91. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data


Symbol		millimeters		inches ⁽¹⁾		
Symbol	Symbol Min Typ		Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059



Symbol	millimeters			inches ⁽¹⁾				
	Min	Тур	Max	Min	Тур	Мах		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	-	0.200	0.0035	-	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
D3	-	12.000	-	-	0.4724	-		
E	15.800	16.000	16.200	0.6220	0.6299	0.6378		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	-	12.000	-	-	0.4724	-		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°		
CCC	-	-	0.080	-	-	0.0031		

Table 91. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

