

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	52
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l462rei6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L462xx microcontrollers.

This document should be read in conjunction with the STM32L43xxx/44xxx/45xxx/46xxx reference manual (RM0394). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the Arm^{®(a)} Cortex[®]-M4 core, please refer to the Cortex[®]-M4 Technical Reference Manual, available from the www.arm.com website.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

3.12 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 6: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
- Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
- Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
- Support for circular buffer management
- 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536.

Table 6. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

3.26 Inter-integrated circuit interface (I²C)

The device embeds four I2C. Refer to *Table 11: I2C implementation* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and master modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
 - Hardware PEC (Packet Error Checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 4: Clock tree.
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 11. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3	I2C4
Standard-mode (up to 100 kbit/s)	Х	Х	Х	Х
Fast-mode (up to 400 kbit/s)	Х	Х	Х	Х
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х	Х
Independent clock	Х	Х	Х	Х
Wakeup from Stop 1 mode on address match	Х	Х	Х	Х
Wakeup from Stop 2 mode on address match	-	-	Х	-

1. X: supported

3.28 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

			Tabl	e 17. Alternate	function AF8 t	o AF15 ⁽¹⁾ (conti	nuea)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	UART4/ LPUART1/ CAN1	CAN1/TSC	CAN1/USB/ QUADSPI	-	SDMMC1/ COMP1/ COMP2	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT
	PC0	LPUART1_RX	-	-	-	-	-	LPTIM2_IN1	EVENTOUT
	PC1	LPUART1_TX	-	-	-	-	-	-	EVENTOUT
	PC2	-	-	-	-	-	-	-	EVENTOUT
	PC3	-	-	-	-	-	SAI1_SD_A	LPTIM2_ETR	EVENTOUT
	PC4	-	-	-	-	-	-	-	EVENTOUT
	PC5	-	-	-	-	-	-	-	EVENTOUT
	PC6	-	TSC_G4_IO1	-	-	SDMMC1_D6	-	-	EVENTOUT
Dort (PC7	-	TSC_G4_IO2	-	-	SDMMC1_D7	-	-	EVENTOUT
FULL	PC8	-	TSC_G4_IO3	-	-	SDMMC1_D0	-	-	EVENTOUT
	PC9	-	TSC_G4_IO4	USBNOE	-	SDMMC1_D1	-	-	EVENTOUT
	PC10	UART4_TX	TSC_G3_IO2	-	-	SDMMC1_D2	-	-	EVENTOUT
	PC11	UART4_RX	TSC_G3_IO3	-	-	SDMMC1_D3	-	-	EVENTOUT
	PC12	-	TSC_G3_IO4	-	-	SDMMC1_CK	-	-	EVENTOUT
	PC13	-	-	-	-	-	-	-	EVENTOUT
	PC14	-	-	-	-	-	-	-	EVENTOUT
	PC15	-	-	-	-	-	-	-	EVENTOUT

Table 47 Alt ... **.**.. -41 (hou

	-		-	
Symbol	Ratings	Min	Мах	Unit
ΔV _{DDx}	Variations between different V _{DDX} power pins of the same domain	-	50	mV
V _{SSx} -V _{SS}	Variations between all the different ground pins ⁽⁵⁾	-	50	mV

 Table 19. Voltage characteristics⁽¹⁾ (continued)

1. All main power (V_{DD}, V_{DDA}, V_{DDUSB}, V_{BAT}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

 V_{IN} maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected current values.

3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.

4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.

5. Include VREF- pin.

Table 20. Current characteristics

Symbol	Ratings	Max	Unit
∑IV _{DD}	Total current into sum of all V_{DD} power lines (source) ⁽¹⁾	140	
ΣIV _{SS}	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	140	
IV _{DD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
IV _{SS(PIN)}	Maximum current out of each V_{SS} ground pin (sink) ⁽¹⁾	100	
	Output current sunk by any I/O and control pin except FT_f	20	
I _{IO(PIN)}	Output current sunk by any FT_f pin	20	
	Output current sourced by any I/O and control pin	20	mA
ΣI	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	100	
∠ ^I IO(PIN)	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	100	
I _{INJ(PIN)} ⁽³⁾	Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5	-5/+0 ⁽⁴⁾	-
	Injected current on PA4, PA5	-5/0	
Σ I _{INJ(PIN)}	Total injected current (sum of all I/Os and control pins) ⁽⁵⁾	25	

1. All main power (V_{DD} , V_{DDA} , V_{DDUSB} , V_{BAT}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supplies, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

3. Positive injection (when $V_{IN} > V_{DDIOx}$) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 19: Voltage characteristics* for the maximum allowed input voltage values.

When several inputs are submitted to a current injection, the maximum ∑|I_{INJ(PIN)}| is the absolute sum of the negative injected currents (instantaneous values).

Unit

μA

1150⁽²⁾

615

		Table 36. Current consumption in Stop 0												
Parameter	Paramotor	Conditions			TYP			MAX ⁽¹⁾						
	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C			
Supply current in	1.8 V	125	150	240	390	645	145	190	350	600	1150			
	2.4 V	125	150	240	390	645	150	195	355	605	1150			
	Stop 0 mode,	3 V	125	150	245	395	650	155	195	360	610	1150		
	RICuisableu	2.6.1/	405	455	045	400	OFF	455	200	205	C1E	44 = 0(2)		

245

400

655

155

200

365

Comment concomption in Oton A **T** - 1 - 1 -~~

1. Guaranteed by characterization results, unless otherwise specified.

3.6 V

125

155

2. Guaranteed by test in production.

Symbol

I_{DD_ALL} (Stop 0)

108/204

Electrical characteristics

	•	Table 36. Curre		isumpt		Silutuo	wii illou	e (cont	mueu)					
Symbol	Paramotor	Conditions			ТҮР				MAX ⁽¹⁾				Unit	
Symbol	Farameter	-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
			1.8 V	165	275	950	2600	6550	-	-	-	-	-	
	Supply current RTC clocked by LSE	2.4 V	235	370	1150	3100	7650	-	-	-	-	-		
I _{DD_ALL} in Shutdown (Shutdown (backup with RTC) registers	bypassed at 32768 Hz	3 V	325	485	1450	3750	9050	-	-	-	-	-		
	mode (backup registers retained) RTC		3.6 V	445	655	1900	4800	11500	-	-	-	-	-	۳A
		C RTC clocked by LSE	1.8 V	290	410	1050	2550	6700	-	-	-	-	-	ПА
,			2.4 V	375	515	1250	3050	7800	-	-	-	-	-	
	enabled	mode	3 V	480	645	1550	3700	8800	-	-	-	-	-	
			3.6 V	625	840	1950	4950	11500	-	-	-	-	-	
I _{DD_ALL} (wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .	3 V	1.00	-	-	_	-	-	-	-	-	-	mA

~

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 41: Low-power mode wakeup timings.

Table 39. Current consumption in VBAT mode

Symbol	Paramatar	Conditions			ТҮР				MAX ⁽¹⁾				Unit	
	Farameter	-	V _{BAT}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	onn
			1.8 V	3.00	-	-	-	-	-	-	-	-	-	
I _{DD_VBAT} Backup domain (VBAT) supply current		PTC disabled	2.4 V	4.00	-	-	-	-	-	-	-	-	-	
			3 V	5.00	-	-	-	-	-	-	-	-	-	
	Backup domain		3.6 V	11.0	-	-	-	-	-	-	-	-	-	n۸
	supply current	supply current RTC enabled and clocked by LSE bypassed at 32768 Hz	1.8 V	145	165	285	550	-	-	-	-	-	-	
			2.4 V	205	235	370	670	-	-	-	-	-	-	
			3 V	285	315	470	820	-	-	-	-	-	-	
			3.6 V	375	430	715	1350	-	-	-	-	-	-	

1. Guaranteed by characterization results, unless otherwise specified.

DS11913 Rev 4

111/204

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 46*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit	
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz	
R _F	Feedback resistor	-	-	200	-	kΩ	
		During startup ⁽³⁾	-	-	5.5		
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.44	-		
I _{DD(HSE)}		V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-		
	HSE current consumption	V _{DD} = 3 V, Rm = 30 Ω, CL = 5 pF@48 MHz	-	0.68	-	mA	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz	-	0.94	-		
		V _{DD} = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz	-	1.77	-		
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V	
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms	

	Table 46.	HSE	oscillator	characteristics ⁽¹)
--	-----------	-----	------------	-------------------------------	---

1. Guaranteed by design.

2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 20*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

- 1. Guaranteed by design.
- Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- 3. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _T jitter	Next transition jitter Accumulated jitter on 28 cycles ⁽⁴⁾	-	-	+/-0.15 ⁽²⁾	-	ns
P _T jitter	Paired transition jitter Accumulated jitter on 56 cycles ⁽⁴⁾	-	-	+/-0.25 ⁽²⁾	-	ns

Table 50. HSI48 oscillator characteristics⁽¹⁾ (continued)

1. V_{DD} = 3 V, T_A = -40 to 125°C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Jitter measurement are performed without clock source activated in parallel.

Figure 24. HSI48 frequency versus temperature

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}		V _{DD} = 3.0 V, T _A = 30 °C	31.04	-	32.96	
	LSI Frequency	V_{DD} = 1.62 to 3.6 V, T_A = -40 to 125 °C	29.5	-	34	KΠZ
t _{SU} (LSI) ⁽²⁾	LSI oscillator start- up time	-	-	80	130	μs
t _{STAB} (LSI) ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	125	180	μs
I _{DD} (LSI) ⁽²⁾	LSI oscillator power consumption	-	-	110	180	nA

_; (1)
(1)

1. Guaranteed by characterization results.

2. Guaranteed by design.

6.3.10 Flash memory characteristics

Symbol	Parameter	Conditions	Тур	Мах	Unit			
t _{prog}	64-bit programming time	-	81.69	90.76	μs			
+	one row (32 double	normal programming	2.61	2.90				
^L prog_row	word) programming time	fast programming	1.91	2.12				
+	one page (2 Kbyte)	normal programming	20.91	23.24	ms			
^t prog_page	programming time	fast programming	15.29	16.98				
t _{ERASE}	Page (2 KB) erase time	-	22.02	24.47				
+	one bank (512 Kbyte)	normal programming	5.35	5.95	6			
^t prog_bank	programming time	fast programming	3.91	4.35	5			
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms			
	Average consumption	Write mode	3.4	-				
	from V _{DD}	Erase mode	3.4	-				
'DD	Maximum current (neak)	Write mode	7 (for 2 µs)	-	111/A			
	waximum current (peak)	Erase mode	7 (for 41 µs)	-				

Table 53. Flash memory characteristics⁽¹⁾

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	15	
+		1 kcycle ⁽²⁾ at T _A = 125 °C	7	Veere
' RET		10 kcycles ⁽²⁾ at T _A = 55 °C	30	Tears
		10 kcycles ⁽²⁾ at T _A = 85 °C	15	
		10 kcycles ⁽²⁾ at T _A = 105 °C	10	

Table 54. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 60* are derived from tests performed under the conditions summarized in *Table 22: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	I/O input low level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	-	0.3xV _{DDIOx} ⁽²⁾	
$V_{IL}^{(1)}$	I/O input low level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	-	0.39xV _{DDIOx} -0.06 ⁽³⁾	v
	I/O input low level voltage	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	.08 V <v<sub>DDIOx<1.62 V -</v<sub>		0.43xV _{DDIOx} -0.1 ⁽³⁾	
	I/O input high level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.7xV _{DDIOx} ⁽²⁾	-	-	
V _{IH} ⁽¹⁾	I/O input high level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.49xV _{DDIOX} +0.26 ⁽³⁾	-	-	v
	I/O input high level voltage	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	0.61xV _{DDIOX} +0.05 ⁽³⁾	-	-	
V _{hys} ⁽³⁾	TT_xx, FT_xxx and NRST I/O input hysteresis	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	200	-	mV
		V _{IN} ≤ Max(V _{DDXXX}) ⁽⁵⁾⁽⁶⁾	-	-	±100	
	FT_xx input leakage current ⁽³⁾⁽⁴⁾	$\begin{array}{l} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(5)(6)} \end{array}$	-	-	650 ⁽³⁾⁽⁷⁾	
		$\begin{array}{l} {\sf Max}({\sf V}_{\sf DDXXX}){\rm +1~V} < \\ {\sf V}_{\sf IN} \leq 5.5~{\sf V}^{(3)(6)} \end{array}$	-	-	200 ⁽⁷⁾	
l _{ikg}		V _{IN} ≤ Max(V _{DDXXX}) (5)(6)	-	-	±150	nA
	FT_u and PC3 I/O	$\begin{array}{l} Max(V_{DDXXX}) \leq V_{IN} \leq \\ Max(V_{DDXXX}) + 1 \ V^{(5)(6)} \end{array}$	-	-	2500 ⁽³⁾	
		Max(V _{DDXXX})+1 V < V _{IN} ≤ 5.5 V ⁽⁵⁾⁽⁶⁾	-	-	250	
	TT vy input lookage	$V_{IN} \le Max(V_{DDXXX})^{(7)}$	-	-	±150	
	current	$\begin{array}{l} {\sf Max}({\sf V}_{{\sf DDXXX}}) \leq {\sf V}_{{\sf IN}} < \\ {\sf 3.6} \ {\sf V}^{(7)} \end{array}$	-	-	2000 ⁽³⁾	
R _{PU}	Weak pull-up equivalent resistor ⁽⁸⁾	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁸⁾	V _{IN} = V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table	60.	I/O	static	characteristics
TUDIC	vv .		Junio	onulationstics

Figure 26. I/O AC characteristics definition⁽¹⁾

1. Refer to Table 62: I/O AC characteristics.

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 _x V _{DDIOx}	V
V _{IH(NRST)}	NRST input high level voltage	-	0.7 _x V _{DDIOx}	-	-	Ň
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	70	ns
V _{NF(NRST)}	NRST input not filtered pulse	1.71 V ≤ V _{DD} ≤ 3.6 V	350	-	-	ns

 Table 63. NRST pin characteristics⁽¹⁾

1. Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

Figure 27. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 63: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
- 3. The external capacitor on NRST must be placed as close as possible to the device.

6.3.16 Extended interrupt and event controller input (EXTI) characteristics

The pulse on the interrupt input must have a minimal length in order to guarantee that it is detected by the event controller.

Table 64. EXTI Input Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
PLEC	Pulse length to event controller	-	20	-	-	ns

1. Guaranteed by design.

6.3.17 Analog switches booster

Table 65. Analog switches booster characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
V _{DD}	Supply voltage	1.62	-	3.6	V
t _{SU(BOOST)}	Booster startup time	-	-	240	μs
I _{DD(BOOST)}	Booster consumption for $1.62 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.0 \text{ V}$	-	-	250	
	Booster consumption for $2.0 V \le V_{DD} \le 2.7 V$	-	-	500	μA
	Booster consumption for 2.7 V \leq V _{DD} \leq 3.6 V	-	-	900	

1. Guaranteed by design.

Sym- bol	Parameter	Conditions ⁽⁴⁾					Max	Unit			
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-73				
тыр	Total	al 80 MHz, monic Sampling rate \leq 5.33 Msps, – tortion $V_{DDA} = V_{REE+} = 3 V$,	ended	Slow channel (max speed)	-	-74	-73	dD			
distortion	distortion		Differential	Fast channel (max speed)	-	-79	-76	uВ			
		TA = 25 °C	Dinerential	Slow channel (max speed)	-	-79	-76				

Table 68. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
		Normal mode	at 1 kHz, Output loaded with 4 k Ω	-	500	-	
	Voltage noise density	Low-power mode	at 1 kHz, Output loaded with 20 k Ω	-	600	-	
en		Normal mode	at 10 kHz, Output loaded with 4 k Ω	-	180	-	
		Low-power mode	at 10 kHz, Output loaded with 20 k Ω	-	290	-	
I _{DDA} (OPAMP) ⁽³⁾	OPAMP	Normal mode	no Load, guiescent	-	120	260	
	from V _{DDA}	Low-power mode	mode	-	45	100	μΑ

Table 76. OPAMP characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. The temperature range is limited to 0 °C-125 °C when V_{DDA} is below 2 V

3. Guaranteed by characterization results.

4. Mostly I/O leakage, when used in analog mode. Refer to IIkg parameter in Table 60: I/O static characteristics.

5. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

6.3.23 Temperature sensor characteristics

Table 77. TS characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
T _L ⁽¹⁾	V _{TS} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽²⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30°C (±5 °C) ⁽³⁾	0.742	0.76	0.785	V
t _{START} (TS_BUF) ⁽¹⁾	Sensor Buffer Start-up time in continuous mode ⁽⁴⁾	-	8	15	μs
t _{START} ⁽¹⁾	Start-up time when entering in continuous mode ⁽⁴⁾	-	70	120	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	5	-	-	μs
I _{DD} (TS) ⁽¹⁾	Temperature sensor consumption from $V_{DD},$ when selected by ADC	-	4.7	7	μA

1. Guaranteed by design.

2. Guaranteed by characterization results.

3. Measured at V_{DDA} = 3.0 V ±10 mV. The V₃₀ ADC conversion result is stored in the TS_CAL1 byte. Refer to *Table 7: Temperature sensor calibration values*.

4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{СК} 1/t _(СК)	Quad SPI clock frequency	$1.71 < V_{DD} < 3.6 V$, $C_{LOAD} = 20 pF$ Voltage Range 1	-	-	40	MHz
		2 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	48	
		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	48	
		1.71 < V _{DD} < 3.6 V C _{LOAD} = 20 pF Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high		t _(CK) /2-2	-	t _(CK) /2	
t _{w(CKL)}	and low time	IAHBCLK – 40 MITZ, presc–0	t _(CK) /2	-	t _(CK) /2+2	
t _{sr(IN)}	Data input setup time on rising edge	Voltage Range 1	1			ns
		Voltage Range 2	3.5	-	-	
t _{sf(IN)}	Data input setup time on falling edge	Voltage Range 1	1		-	
		Voltage Range 2	1.5	-		
t _{hr(IN)}	Data input hold time on rising edge	Voltage Range 1	6			
		Voltage Range 2	6.5	-	-	
t _{hf(IN)}	Data input hold time on falling edge	Voltage Range 1	5.5		-	
		Voltage Range 2	5.5	-		
t _{vr(OUT)}	Data output valid time on rising edge	Voltage Range 1		5	5.5	
		Voltage Range 2	-	9.5	14	
t _{vf(OUT)}	Data output valid time on falling edge	Voltage Range 1		5	8.5	
		Voltage Range 2	-	15	19	-
t _{hr(OUT)}	Data output hold time on rising edge	Voltage Range 1	3.5	-		
		Voltage Range 2	8	-		
+	Data output hold time on falling edge	Voltage Range 1	3.5	-		
t _{hf(OUT)}		Voltage Range 2	13	-		

Table 86. QUADSPI characteristics in DDR mode'	Table 86.	QUADSPI	characteristics	in	DDR	mode ⁽¹⁾
--	-----------	---------	-----------------	----	-----	---------------------

1. Guaranteed by characterization results.

Dimension	Recommended values				
Pitch	0.4 mm				
Dpad	0.225 mm				
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)				
Stencil opening	0.250 mm				
Stencil thickness	0.100 mm				

 Table 98. WLCSP64 recommended PCB design rules (0.4 mm pitch)

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 54. WLCSP64 marking (package top view)

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
A	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 99. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 56. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

