E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf52221cae66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Block Diagram

Figure 1 shows a top-level block diagram of the device. Package options for this family are described later in this document.

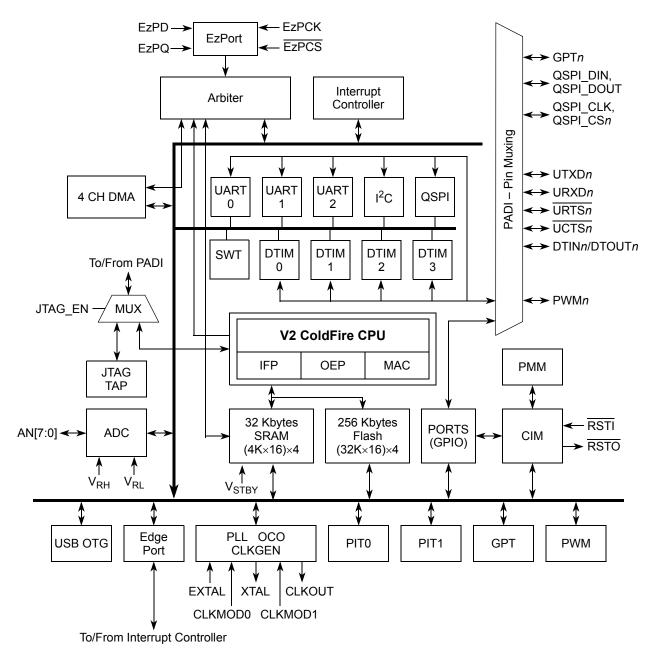


Figure 1. Block Diagram

- Selects one of six clock modes
- Configures output pad drive strength
- Unique part identification number and part revision number
- General purpose I/O interface
 - Up to 56 bits of general purpose I/O
 - Bit manipulation supported via set/clear functions
 - Programmable drive strengths
 - Unused peripheral pins may be used as extra GPIO
- JTAG support for system level board testing

1.2.2 V2 Core Overview

The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction execution and calculates operand effective addresses, if needed.

The V2 core implements the ColdFire instruction set architecture revision A+ with support for a separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the core includes the multiply-accumulate (MAC) unit for improved signal processing capabilities. The MAC implements a three-stage arithmetic pipeline, optimized for 16x16 bit operations, with support for one 32-bit accumulator. Supported operands include 16- and 32-bit signed and unsigned integers, signed fractional operands, and a complete set of instructions to process these data types. The MAC provides support for execution of DSP operations within the context of a single processor at a minimal hardware cost.

1.2.3 Integrated Debug Module

The ColdFire processor core debug interface is provided to support system debugging with low-cost debug and emulator development tools. Through a standard debug interface, access to debug information and real-time tracing capability is provided on 100-lead packages. This allows the processor and system to be debugged at full speed without the need for costly in-circuit emulators.

The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an address mask register, a data and a data mask register, four PC registers, and one PC mask register. These registers can be accessed through the dedicated debug serial communication channel or from the processor's supervisor mode programming model. The breakpoint registers can be configured to generate triggers by combining the address, data, and PC conditions in a variety of single- or dual-level definitions. The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception. This device implements revision B+ of the ColdFire Debug Architecture.

The processor's interrupt servicing options during emulator mode allow real-time critical interrupt service routines to be serviced while processing a debug interrupt event. This ensures the system continues to operate even during debugging.

To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data (DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand data, and branch target addresses defining processor activity at the CPU's clock rate. The device includes a new debug signal, ALLPST. This signal is the logical AND of the processor status (PST[3:0]) signals and is useful for detecting when the processor is in a halted state (PST[3:0] = 1111).

The full debug/trace interface is available only on the 100-pin packages. However, every product features the dedicated debug serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.

Family Configurations

	1	2	3	4	5	6	7	8	9
А	V _{SS}	UTXD1	RSTI	IRQ5	IRQ3	ALLPST	TDO	TMS	V _{SS}
В	URTS1	URXD1	RSTO	IRQ6	IRQ2	TRST	TDI	V _{DD} PLL	EXTAL
С	UCTS0	TEST	UCTS1	IRQ7	IRQ4	IRQ1	TCLK	V _{SS} PLL	XTAL
D	URXD0	UTXD0	URTS0	V _{SS}	V _{DD}	V _{SS}	PWM7	GPT3	GPT2
E	SCL	SDA	V _{DD}	PWM5	GPT1				
F	QSPI_CS3	QSPI_CS2	QSPI_DIN	V _{SS}	V _{DD}	V _{SS}	GPT0	V _{STBY}	AN4
G	QSPI_DOUT	QSPI_CLK	RCON	DTIN1	CLKMOD0	AN2	AN3	AN5	AN6
Н	QSPI_CS0	QSPI_CS1	DTIN3	DTIN0	CLKMOD1	AN1	V _{SSA}	V _{DDA}	AN7
J	V _{SS}	JTAG_EN	DTIN2	PWM3	PWM1	AN0	V _{RL}	V _{RH}	V _{SSA}

Figure 4 shows the pinout configuration for the 81 MAPBGA.

Figure 3. 81 MAPBGA Pin Assignments

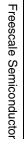

NP

Table 13 shows the pin functions by primary and alternate purpose, and illustrates which packages contain each pin.

Pin Group	Primary Function	Secondary Function	Tertiary Function	Quaternary Function	Drive Strength / Control ¹	Slew Rate / Control ¹	Pull-up / Pull-down ²	Pin on 100 LQFP	Pin on 81 MAPBGA	Pin on 64 LQFP
ADC	AN7	_		GPIO	Low	FAST	_	51	H9	33
	AN6	—	_	GPIO	Low	FAST	—	52	G9	34
	AN5	—	_	GPIO	Low	FAST	—	53	G8	35
	AN4	—	_	GPIO	Low	FAST	—	54	F9	36
	AN3	—	_	GPIO	Low	FAST	—	46	G7	28
	AN2	—	—	GPIO	Low	FAST	—	45	G6	27
	AN1	—	_	GPIO	Low	FAST	—	44	H6	26
	AN0	—		GPIO	Low	FAST	—	43	J6	25
	SYNCA ³	—	_	—	N/A	N/A	—	—	_	—
	SYNCB ³	—		—	N/A	N/A	—	—	_	—
	VDDA	—	_	—	N/A	N/A	—	50	H8	32
	VSSA	—	_	—	N/A	N/A	—	47	H7, J9	29
	VRH	—	_	—	N/A	N/A	—	49	J8	31
	VRL		_	_	N/A	N/A	—	48	J7	30
Clock	EXTAL	—	_	—	N/A	N/A	—	73	B9	47
Generation	XTAL	—	_	—	N/A	N/A	—	72	C9	46
	VDDPLL	_	_	_	N/A	N/A	—	74	B8	48
	VSSPLL	—	_	—	N/A	N/A	—	71	C8	45
Debug Data	ALLPST	_	_	_	High	FAST	_	86	A6	55
	DDATA[3:0]		_	GPIO	High	FAST	—	84,83,78,77		
	PST[3:0]		_	GPIO	High	FAST	—	70,69,66,65		
l ² C	SCL	USB_DMI	UTXD2	GPIO	PDSR[0]	PSRR[0]	pull-up ⁴	10	E1	8
	SDA	USB_DPI	URXD2	GPIO	PDSR[0]	PSRR[0]	pull-up ⁴	11	E2	9

Table 4. Pin Functions by Primary and Alternate Purpose

Freescale Semiconductor

MCF52223 ColdFire Microcontroller, Rev. 3

20

Family Configurations

1.3 Reset Signals

Table 5 describes signals used to reset the chip or as a reset indication.

Table 5. Reset Signals

Signal Name	Abbreviation	Function	I/O
Reset In		Primary reset input to the device. Asserting $\overline{\text{RSTI}}$ for at least 8 CPU clock cycles immediately resets the CPU and peripherals.	I
Reset Out	RSTO	Driven low for 1024 CPU clocks after the reset source has deasserted.	0

1.4 PLL and Clock Signals

Table 6 describes signals used to support the on-chip clock generation circuitry.

Table 6. PLL and Clock Signals

Signal Name	Abbreviation	Function	I/O
External Clock In		Crystal oscillator or external clock input except when the on-chip relaxation oscillator is used.	I
Crystal		Crystal oscillator output except when CLKMOD0=0, then sampled as part of the clock mode selection mechanism.	0
Clock Out	CLKOUT	This output signal reflects the internal system clock.	0

1.5 Mode Selection

Table 7 describes signals used in mode selection; Table 8 describes the particular clocking modes.

 Table 7. Mode Selection Signals

Signal Name	Abbreviation	Function	I/O
Clock Mode Selection	CLKMOD[1:0]	Selects the clock boot mode.	I
Reset Configuration	RCON	The Serial Flash Programming mode is entered by asserting the $\overline{\text{RCON}}$ pin (with the TEST pin negated) as the chip comes out of reset. During this mode, the EzPort has access to the flash memory which can be programmed from an external device.	
Test	TEST	Reserved for factory testing only and in normal modes of operation should be connected to VSS to prevent unintentional activation of test functions.	I

Table 8. Clocking Modes

CLKMOD[1:0]	XTAL	Configure the clock mode.
00	0	PLL disabled, clock driven by external oscillator
00	1	PLL disabled, clock driven by on-chip oscillator
01	N/A	PLL disabled, clock driven by crystal
10	0	PLL in normal mode, clock driven by external oscillator ¹
10	1	Reserved ²
11	N/A	PLL in normal mode, clock driven by crystal ¹

Signal Name	Abbreviation	Function	I/O
Development Serial Input	DSI	Development Serial Input - Internally synchronized input that provides data input for the serial communication port to the debug module, after the DSCLK has been seen as high (logic 1).	
Development Serial Output	DSO	Development Serial Output - Provides serial output communication for debug module responses. DSO is registered internally. The output is delayed from the validation of DSCLK high.	
Debug Data	DDATA[3:0]	Display captured processor data and breakpoint status. The CLKOUT signal can be used by the development system to know when to sample DDATA[3:0].	
Processor Status Clock	PSTCLK	Processor Status Clock - Delayed version of the processor clock. Its rising edge appears in the center of valid PST and DDATA output. PSTCLK indicates when the development system should sample PST and DDATA values. If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, and PST and DDATA outputs from toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing CSR[PCD], although the external development systems must resynchronize with the PST and DDATA outputs. PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs during system reset exception processing.	0
Processor Status Outputs	PST[3:0]	Indicate core status. Debug mode timing is synchronous with the processor clock; status is unrelated to the current bus transfer. The CLKOUT signal can be used by the development system to know when to sample PST[3:0].	0
All Processor Status Outputs	ALLPST	Logical AND of PST[3:0]. The CLKOUT signal can be used by the development system to know when to sample ALLPST.	0

1.16 EzPort Signal Descriptions

Table 18 contains a list of EzPort external signals.

Table 18.	EzPort	Signal	Descriptions
-----------	--------	--------	--------------

Signal Name	Abbreviation	Function	I/O
EzPort Clock	EZPCK	Shift clock for EzPort transfers.	Ι
EzPort Chip Select	EZPCS	Chip select for signalling the start and end of serial transfers.	I
EzPort Serial Data In	EZPD	EZPD is sampled on the rising edge of EZPCK.	I
EzPort Serial Data Out	EZPQ	EZPQ transitions on the falling edge of EZPCK.	0

2 Electrical Characteristics

This section contains electrical specification tables and reference timing diagrams for the microcontroller unit, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Maximum Ratings

Table 20. Absolute	Maximum	Ratings ^{1, 2}
--------------------	---------	-------------------------

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +4.0	V
Clock synthesizer supply voltage	V _{DDPLL}	-0.3 to +4.0	V
RAM standby supply voltage	V _{STBY}	-0.3 to +4.0	V
USB standby supply voltage	V _{DDUSB}	-0.3 to +4.0	V
Digital input voltage ³	V _{IN}	-0.3 to +4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{4, 5}	I _{DD}	25	mA
Operating temperature range (packaged)	Т _А (Т _L - Т _Н)	-40 to 85 ⁶	°C
Storage temperature range	T _{stg}	-65 to 150	°C

¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V_{SS} or V_{DD}).

³ Input must be current limited to the I_{DD} value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

- $^4~$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}
- ⁵ The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in the external power supply going out of regulation. Ensure that the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (e.g., no clock).

⁶ Depending on the packaging; see the orderable part number summary.

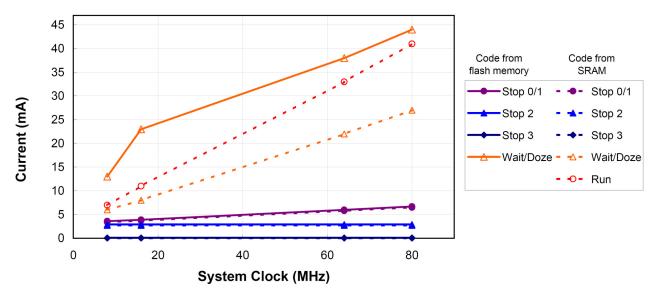


Figure 5. Plot of Current Consumption in Low-Power Modes

Characteristic	Symbol	Typical ¹ Active (SRAM)	Typical ¹ Active (Flash)	Peak ² Active (Flash)	Unit
8 MHz core & I/O	I _{DD}	8	11	18	mA
16 MHz core & I/O		11	19	33	
64 MHz core & I/O		35	44	82	
80 MHz core & I/O		43	52	98	
$\label{eq:RAM} \begin{array}{l} \text{RAM standby supply current} \\ \bullet \text{Normal operation: } V_{\text{DD}} > V_{\text{STBY}} - 0.3 \text{ V} \\ \bullet \text{Transient condition: } V_{\text{STBY}} - 0.3 \text{ V} > V_{\text{DD}} > V_{\text{SS}} + 0.5 \text{ V} \\ \bullet \text{Standby operation: } V_{\text{DD}} < V_{\text{SS}} + 0.5 \text{ V} \end{array}$	I _{STBY}			0.4 TBD 16	μA
Analog supply current • Normal operation • Standby mode • Powered down	I _{DDA}	2(see note 3) 		13 TBD 0	mA
USB supply current	I _{DDUSB}	-	_	2	mA
PLL supply current	I _{DDPLL}	_	_	6 ^(see note 4)	mA

Table 23.	Typical	Active	Current	Consum	otion S	pecifications
	ryprour	AULIVE	ounone	Consum		peomoutions

¹ Tested at room temperature with CPU polling a status register. All clocks were off except the UART and CFM (when running from flash memory).

² Peak current measured with all modules active, CPU polling a status register, and default drive strength with matching load.

³ Tested using Auto Power Down (APD), which powers down the ADC between conversions; ADC running at 4 MHz in Once Parallel mode with a sample rate of 3 kHz.

⁴ Tested with the PLL MFD set to 7 (max value). Setting the MFD to a lower value results in lower current consumption.

2.3 Thermal Characteristics

Table 24 lists thermal resistance values.

Table 24. Thermal Characteristics

	Characteristic	:	Symbol	Value	Unit
100 LQFP	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	53 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	39 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ _{JMA}	42 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ _{JMA}	33 ^{1,3}	°C/W
	Junction to board	—	θ _{JB}	25 ⁴	°C/W
	Junction to case	—	θ _{JC}	9 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Tj	105	°C
81 MAPBGA	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	61 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	35 ^{2,3}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ _{JMA}	50 ^{2,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	31 ^{2,3}	°C/W
	Junction to board	—	θ_{JB}	20 ⁴	°C/W
	Junction to case	—	θ _{JC}	12 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
64 LQFP	Junction to ambient, natural convection	Single layer board (1s)	θ _{JA}	62 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	43 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Single layer board (1s)	θ_{JMA}	50 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ _{JMA}	36 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	26 ⁴	°C/W
	Junction to case	—	θ _{JC}	9 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C

¹ θ_{JA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- ³ Per JEDEC JESD51-6 with the board JESD51-7) horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

2.5 **EzPort Electrical Specifications**

Table 27. EzPort Electrical Specifications

Name	Characteristic	Min	Max	Unit
EP1	EPCK frequency of operation (all commands except READ)		f _{sys} / 2	MHz
EP1a	EPCK frequency of operation (READ command)	_	f _{sys} / 8	MHz
EP2	EPCS_b negation to next EPCS_b assertion	$2 \times T_{cyc}$	_	ns
EP3	EPCS_B input valid to EPCK high (setup)	5	_	ns
EP4	EPCK high to EPCS_B input invalid (hold)	5	_	ns
EP5	EPD input valid to EPCK high (setup)	2	_	ns
EP6	EPCK high to EPD input invalid (hold)	5		ns
EP7	EPCK low to EPQ output valid (out setup)	_	12	ns
EP8	EPCK low to EPQ output invalid (out hold)	0	_	ns
EP9	EPCS_B negation to EPQ tri-state		12	ns

2.6 ESD Protection

Table 28. ESD Protection Characteristics^{1, 2}

Characteristics	Symbol	Value	Units
ESD target for Human Body Model	HBM	2000	V
ESD target for Machine Model	MM	200	V
HBM circuit description	R _{series}	1500	Ω
	С	100	pF
MM circuit description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) • Positive pulses • Negative pulses		1 1	—
Number of pulses per pin (MM) Positive pulses Negative pulses 		3 3	_
Interval of pulses	—	1	sec

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

2.7 DC Electrical Specifications

Table 29. DC Electrical Specifications ¹

Characteristic	Symbol	Min	Мах	Unit
Supply voltage	V _{DD}	3.0	3.6	V
Standby voltage	V _{STBY}	1.8	3.6	V
Input high voltage	V _{IH}	$0.7 imes V_{DD}$	4.0	V
Input low voltage	V _{IL}	V _{SS} – 0.3	$0.35 \times V_{DD}$	V
Input hysteresis ²	V _{HYS}	$0.06 \times V_{DD}$	_	mV
Low-voltage detect trip voltage (V _{DD} falling)	V _{LVD}	2.15	2.3	V
Low-voltage detect hysteresis (V _{DD} rising)	V _{LVDHYS}	60	120	mV
Input leakage current $V_{in} = V_{DD}$ or V_{SS} , digital pins	l _{in}	-1.0	1.0	μA
Output high voltage (all input/output and all output pins) $I_{OH} = -2.0 \text{ mA}$	V _{OH}	V _{DD} – 0.5	_	V
Output low voltage (all input/output and all output pins) $I_{OL} = 2.0 \text{mA}$	V _{OL}	_	0.5	V
Output high voltage (high drive) I _{OH} = -5 mA	V _{OH}	V _{DD} – 0.5	_	V
Output low voltage (high drive) I _{OL} = 5 mA	V _{OL}		0.5	V
Output high voltage (low drive) I _{OH} = -2 mA	V _{OH}	V _{DD} - 0.5	_	V
Output low voltage (low drive) I _{OL} = 2 mA	V _{OL}	_	0.5	V
Weak internal pull Up device current, tested at V_{IL} Max. ³	I _{APU}	-10	-130	μA
Input Capacitance ⁴ All input-only pins All input/output (three-state) pins 	C _{in}	_	7 7	pF

¹ Refer to Table 30 for additional PLL specifications.

² Only for pins: IRQ1, IRQ2. IRQ3, IRQ4, IRQ5, IRQ6. IRQ7, RSTIN_B, RCON_B, PCS0, SCK, I2C_SDA, I2C_SCL, TCLK, TRST_B

³ Refer to Table 13 for pins having internal pull-up devices.

⁴ This parameter is characterized before qualification rather than 100% tested.

- 3. Equivalent resistance for the channel select mux; $100 \Omega s$
- 4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1.4pF
- 5. Equivalent input impedance, when the input is selected = 1

(ADC Clock Rate) \times (1.4 \times 10⁻¹²)

Figure 9. Equivalent Circuit for A/D Loading

2.14 DMA Timers Timing Specifications

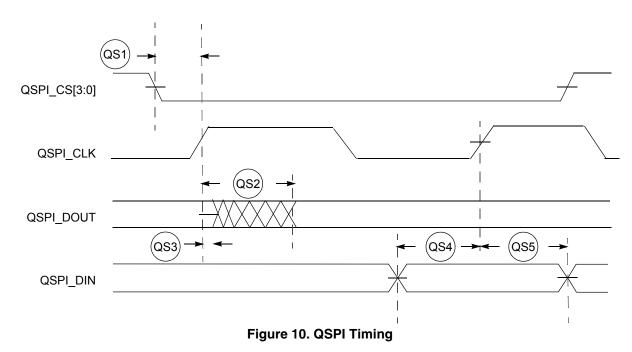
Table 36 lists timer module AC timings.

Table 36. Timer Module AC Timing Specifications

Name	Characteristic ¹	Min	Мах	Unit
T1	DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time	$3 \times t_{CYC}$	_	ns
T2	DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width	$1 \times t_{CYC}$	_	ns

All timing references to CLKOUT are given to its rising edge.

2.15 **QSPI Electrical Specifications**


Table 37 lists QSPI timings.

Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[3:0] to QSPI_CLK	1	510	t _{CYC}
QS2	QSPI_CLK high to QSPI_DOUT valid	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid (Output hold)	2	_	ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9		ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9		ns

The values in Table 37 correspond to Figure 10.

Electrical Characteristics

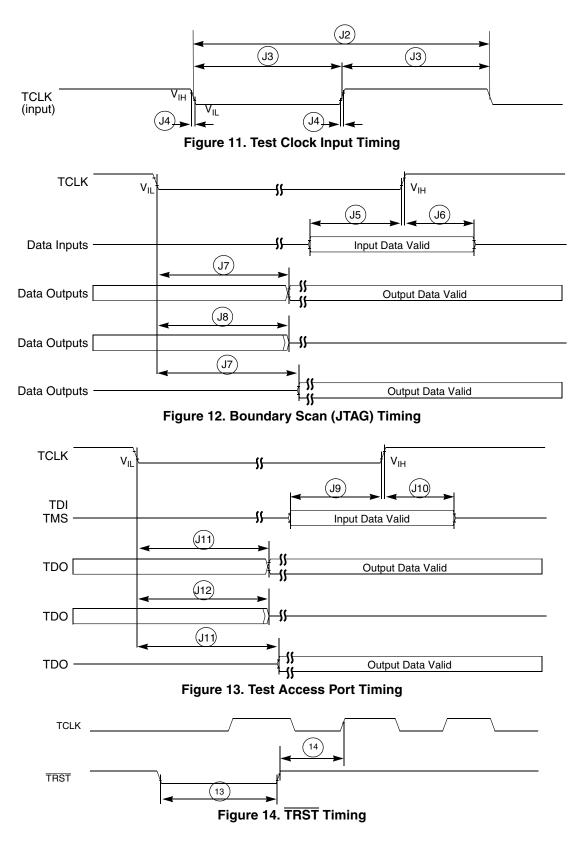

2.16 JTAG and Boundary Scan Timing

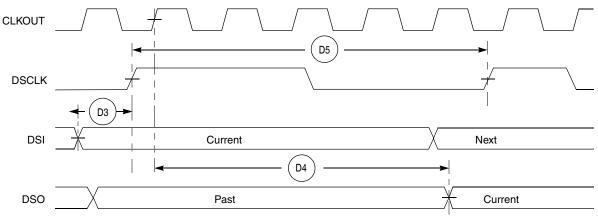
Table 38. JTAG and Boundary Scan Timing

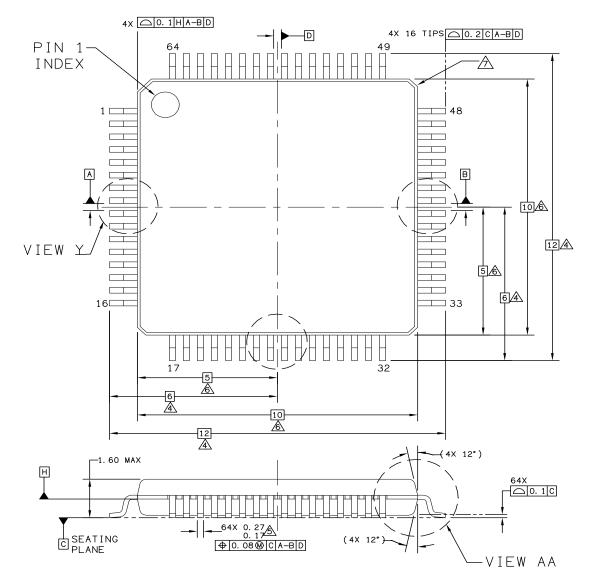
Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK frequency of operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK cycle period	t _{JCYC}	$4 \times t_{CYC}$	—	ns
J3	TCLK clock pulse width	t _{JCW}	26	—	ns
J4	TCLK rise and fall times	t _{JCRF}	0	3	ns
J5	Boundary scan input data setup time to TCLK rise	t _{BSDST}	4	—	ns
J6	Boundary scan input data hold time after TCLK rise	t _{BSDHT}	26	—	ns
J7	TCLK low to boundary scan output data valid	t _{BSDV}	0	33	ns
J8	TCLK low to boundary scan output high Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI input data setup time to TCLK rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input data hold time after TCLK rise	t _{TAPBHT}	10	—	ns
J11	TCLK low to TDO data valid	t _{TDODV}	0	26	ns
J12	TCLK low to TDO high Z	t _{TDODZ}	0	8	ns
J13	TRST assert time	t _{TRSTAT}	100	—	ns
J14	TRST setup time (negation) to TCLK high	t _{TRSTST}	10	—	ns

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

Mechanical Outline Drawings

Figure 16 shows BDM serial port AC timing for the values in Table 39.




Figure 16. BDM Serial Port AC Timing

3 Mechanical Outline Drawings

This section describes the physical properties of the device and its derivatives.

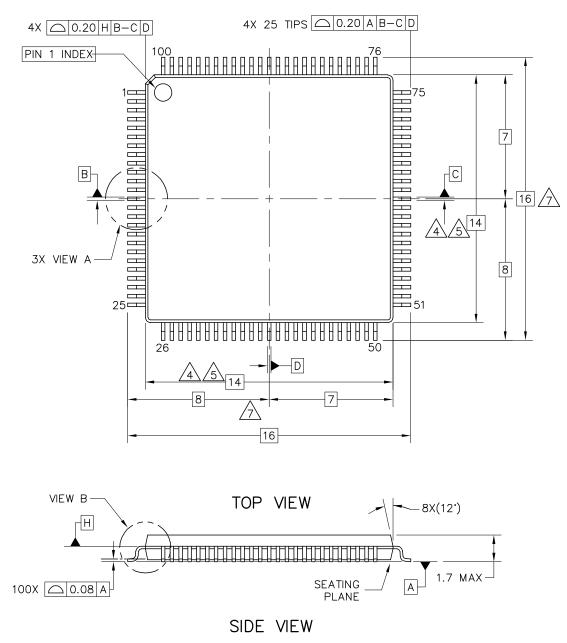
3.1 64-pin LQFP Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 64LD LQFP,		DOCUMENT NO	: 98ASS23234₩	REV: D
10 X 10 X 1.4 PKG,		CASE NUMBER: 840F-02 06 APR 2		
0.5 PITCH, CASE OU	STANDARD: JE	DEC MS-026 BCD		

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- 4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.
- 5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
- A. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- / EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- AND 0.25 mm FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanical outline		PRINT VERSION NOT TO SCAL	
		DOCUMENT NO: 98ASS23234W		REV: D
		CASE NUMBER: 840F-02		06 APR 2005
		STANDARD: JEDEC MS-026 BCD		



Mechanical Outline Drawings

	MECHANICA	OUTLINES		DOCUMENT NO: 98ASA10690D		
	DICTIONAR	NARY	PAGE:	17	40	
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED ECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS E UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	0		
NOTES.						
NOTES:						
1. ALL DIMENSIONS ARE IN MIL			1001			
2. INTERPRET DIMENSIONS AND						
3. THE COMPLETE JEDEC DESI ∧						
4. COPLANARITY APPLIES TO I	_EADS, CORNER L	EADS AND DIE A	TTACH P.	AD.		
5. MIN METAL GAP SHOULD BI	E 0.2MM.					
		CASE NUMBER:	740-01			
ITLE: THERMALLY ENHANCE FLAT NON-LEADED PACI 64 TERMINAL, 0.5 PITCH	KAGE (QFN)	CASE NUMBER: 1 STANDARD: JEDE		20 VMMD-3	3	

3.3 100-pin LQFP Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO: 98ASS23308W		REV: G	
100 LEAD LQFP 14 X 14, 0.5 PITCH, 1.4	L THICK	CASE NUMBER: 983-03		07 APR 2005	
	mon	STANDARD: NO	DN-JEDEC		