

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	27
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21334hkfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/33G Group. Tables 1.3 and 1.4 outline the Specifications for R8C/33H Group.

Item	Function	Specification		
CPU	Central processing	R8C CPU core		
	unit	 Number of fundamental instructions: 89 		
		Minimum instruction execution time:		
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)		
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits		
		• Multiply-accumulate instruction: 16 bits \times 16 bits + 32 bits \rightarrow 32 bits		
		 Operation mode: Single-chip mode (address space: 1 Mbyte) 		
Memory	ROM, RAM, Data	Refer to Table 1.5 Product List for R8C/33G Group.		
	flash			
Power Supply	Voltage detection	Power-on reset		
Voltage	circuit	 Voltage detection 3 (detection level of voltage detection 1 selectable) 		
Detection				
I/O Ports	Programmable I/O	Input-only: 1 pin		
	ports	 CMOS I/O ports: 27, selectable pull-up resistor 		
Clock	Clock generation	3 circuits: XIN clock oscillation circuit,		
	circuits	High-speed on-chip oscillator (with frequency adjustment function),		
		Low-speed on-chip oscillator		
		 Oscillation stop detection: XIN clock oscillation stop detection function 		
		 Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16 		
		 Low power consumption modes: 		
		Standard operating mode (high-speed clock, high-speed on-chip oscillator,		
		low-speed on-chip oscillator), wait mode, stop mode		
Interrupts	•	Number of interrupt vectors: 69		
		 External Interrupt: 7 (INT × 3, Key input × 4) 		
		Priority levels: 7 levels		
Watchdog Time	er	 14 bits x 1 (with prescaler) 		
		Reset start selectable		
		 Low-speed on-chip oscillator for watchdog timer selectable 		
DTC (Data Tra	nsfer Controller)	1 channel		
		Activation sources: 28		
		 Transfer modes: 2 (normal mode, repeat mode) 		
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)		
		limer mode (period timer), pulse output mode (output level inverted every		
		period), event counter mode, pulse width measurement mode, pulse period		
		measurement mode		
	Limer RB	8 bits x 1 (with 8-bit prescaler)		
		niner mode (period timer), programmable waverorm generation mode (PWW		
		output), programmable one-shot generation mode, programmable wait one-		
	Timer DC	Shot generation mode		
	Timer RC	Timer mode (input capture/compare registers)		
		(output 3 pins) PWM2 mode (PWM output nin)		
	Timor PD (1)	16 hits x 2 (with 4 canture/compare registers)		
		Timer mode (input capture function, output compare function), PWM mode		
		(output 6 pins), reset synchronous PWM mode (output three-phase		
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode		
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3		
		mode (PWM output 2 pins with fixed period)		

Table 1.1	Specifications for R8C/33G Group (1)

Note:

1. Timer RD in these products does not support full-spec emulators. Use the on-chip debugging emulator for debugging.

Item	Function	Specification
Serial Interface	UART0	1 channel Clock synchronous serial I/O/UART
	UART2	1 channel
		Clock synchronous serial I/O/UART, I ² C mode (I ² C-bus), IE mode (IEBus), multiprocessor communication function
Synchronous S	Serial	1 channel
Communication	n Unit (SSU)	
LIN Module		Hardware LIN: 1 (timer RA, UART0)
A/D Converter		10-bit resolution \times 12 channels, includes sample and hold function, with sweep mode
D/A Converter		8-bit resolution x 2 circuits
Comparator B		2 circuits
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V
		 Programming and erasure endurance: 100 times (program ROM)
		 Program security: ROM code protect, ID code check
		 Debug functions: On-chip debug, on-board flash rewrite function
Operating Free	uency/Supply	f(XIN) = 20 MHz (VCC = 2.7 to 5.5 V)
Voltage		
Current consur	nption	Typ. 7 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
Operating Amb	ient Temperature	-40 to 85°C (J version)
		-80 to 125°C (K version) ⁽¹⁾
Package		32-pin LQFP
		Package code: PLQP0032GB-A (previous code: 32P6U-A)

 Table 1.4
 Specifications for R8C/33H Group (2)

Note:

1. Specify the K version if K version functions are to be used.

1.3 Block Diagram

Figure 1.2 shows a Block Diagram.

Figure 1.3 Block Diagram

1.4 Pin Assignment

Figure 1.4 shows the Pin Assignment (Top View). Table 1.7 outline the Pin Name Information by Pin Number.

			I/O Pin Functions for Peripheral Modules				
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	A/D Converter, D/A Converter, Comparator B
1		P3_5		(TRCIOD/ TRDIOA0/ TRDCLK)	(CLK2)	SSCK	
2		P3_7		(TRAO/TRDIOC0)	(RXD2/SCL2/ TXD2/SDA2)	SSO	
3	RESET						
4	XOUT	P4_7					
5	VSS/AVSS						
6	XIN	P4_6					
7	VCC/AVCC						
8	MODE						
9		P4_5	INT 0		(RXD2/SCL2)		ADTRG
10		P1_7	INT1	(TRAIO)			IVCMP1
11		P3_6	(INT1)		(RXD2/SCL2/ TXD2/SDA2)		
12		P3_1		(TRBO)			
13		P5_4		(TRCIOD)			
14		P5_3		(TRCIOC)			
15		P1_6			CLK0	(SSI)	IVREF1
16		P1_5	(INT1)	(TRAIO)	RXD0		
17		P1_4			TXD0		
18		P1_3	KI3	TRBO(/TRDIOD1)			AN11
19		P1_2	KI2	(TRCIOB/ TRDIOC1)			AN10
20		P4_2					VREF
21		P1_1	KI1	(TRCIOA/ TRCTRG/ TRDIOB1)			AN9
22		P1_0	KI0	(TRDIOA1)			AN8
23		P3_3	INT3	(TRCCLK/ TRDIOD0)	CTS2/RTS2	(SSI)	IVCMP3
24		P3_4		(TRCIOC/ TRDIOB0)		SCS	IVREF3
25		P0_7					AN0/DA1
26		P0_6					AN1/DA0
27		P0_5			(CLK2)		AN2
28		P0_4					AN3
29		P0_3					AN4
30		P0_2					AN5
31		P0_1					AN6
32		P0_0			(TXD2/SDA2)		AN7

 Table 1.7
 Pin Name Information by Pin Number

Note:

1. Can be assigned to the pin in parentheses by a program.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

3. Memory

3. Memory

3.1 R8C/33G Group

Figure 3.1 is a Memory Map of R8C/33G Group. The R8C/33G Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Figure 3.1 Memory Map of R8C/33G Group

Address	Register	Symbol	After Reset
0140h	Timer RD Control Register 0	TRDCR0	00h
0141h	Timer RD I/O Control Register A0	TRDIORA0	10001000b
0142h	Timer RD I/O Control Register CO	TRDIORCO	10001000b
01/12h	Timer RD Status Register 0	TRDSP0	1110000b
01430	Timer ND Status Register 0		11100000b
014411	Timer RD Interrupt Enable Register 0		111000000
01450		TRDPOCRU	11111000b
0146h	Timer RD Counter 0	IRDO	00h
0147h			00h
0148h	Timer RD General Register A0	TRDGRA0	FFh
0149h			FFh
014Ah	Timer RD General Register B0	TRDGRB0	FFh
014Bh			FFh
014Ch	Timer RD General Register C0	TRDGRC0	FFh
014Dh	5		FFh
014Fh	Timer RD General Register D0	TRDGRD0	EEh
01/Eh		IND GINDO	FEb
0150h	Timor PD Control Pagistor 1		00b
015011	Timer ND Control Register 1		100010005
01510	Timer RD I/O Control Register A1	TRDIORAT	100010000
0152h			100010000
0153h	Timer RD Status Register 1	TRDSR1	11000000b
0154h	Timer RD Interrupt Enable Register 1	TRDIER1	11100000b
0155h	Timer RD PWM Mode Output Level Control Register 1	TRDPOCR1	11111000b
0156h	Timer RD Counter 1	TRD1	00h
0157h			00h
0158h	Timer RD General Register A1	TRDGRA1	FFh
0159h	······		FFh
0154h	Timer RD General Register B1		EEb
015Rh		IN BONDI	FEb
015Ch	Timer RD General Register C1		FFb
0150h	Timer ND General Negister OT	INDONET	FFb
015Dh	Times BD Orecessel Deviator D4		
015En	Timer RD General Register D1	TRUGRUT	FFN
015Fh			FFN
0160h			
0161h			
0162h			
0163h			
0164h			
0165h			
0166h			
0167h			
0168h			
0169h			
0164h			
016Bh			
010Dh			
01001			
016Dh			
016EN			
016Fh			
0170h			
0171h			
0172h			
0173h			
0174h			
0175h			
0176h		1	
0177h		1	
0178h			
01706			
01746			
			l
017Ch			<u> </u>
017Dh			
017Eh			
017Fh			

SFR Information (6)⁽¹⁾ Table 4.6

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2050b	DTC Control Data 2	DTCD2	Yth
203011		DICD2	
2C51h			XXh
2C52h			XXh
2C53h			XXh
2C54h			XXh
2C55h			XXh
2000h			XXL
20560			7.VU
2C57h			XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h			XXh
2C5Ah			XXh
2C5Bh			XXh
200Dh			XVh
20301			
205Dh			XXh
2C5Eh			XXh
2C5Fh			XXh
2C60h	DTC Control Data 4	DTCD4	XXh
2C61h			XXh
2C62h			XXh
200211			
2063h			XXn
2064h			XXN
2C65h			XXh
2C66h			XXh
2C67h	1		XXh
2C68h	DTC Control Data 5	DTCD5	XXh
20001		2.000	XXb
200911			
200A11			
2C6Bh			XXh
2C6Ch			XXh
2C6Dh			XXh
2C6Eh			XXh
2C6Fh			XXh
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2072h			XXh
20731			
2074h			XXn
2C75h			XXh
2C76h			XXh
2C77h			XXh
2C78h	DTC Control Data 7	DTCD7	XXh
2C79h			XXh
2C74h			XXh
2077Ph			XXh
20701			
2070h			XXn
2C7Dh			XXh
2C7Eh			XXh
2C7Fh			XXh
2C80h	DTC Control Data 8	DTCD8	XXh
2C81h			XXh
20011			XXb
200211	4		
200311			
2084h			
2C85h			XXh
2C86h		1	XXh
2C87h			XXh
2C88h	DTC Control Data 9	DTCD9	XXh
2C89h			XXh
2C8Ah	1	1	XXh
2C8Bh			XXh
20001			XXh
20001			XXh
200DN		1	
208Eh			XXN
2C8Fh			XXh
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h			XXh
2C93h			XXh
2C0/h			XXh
20041			XXh
20301			VVb
20960			
2C97h			XXh

Table 4.10SFR Information (10) (1)

X: Undefined

Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2C98h	DTC Control Data 11	DTCD11	XXh
2C99h		-	XXh
2000h			YVh
209A11			
20900			
2090h			XXh
2C9Dh			XXh
2C9Eh			XXh
2C9Fh			XXh
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h			XXh
2CA2h			XXh
2CA3h			XXh
20/10h			YVh
20741			XXh
ZCASH			
2CA6n			XXn
2CA7h			XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
2CAAh			XXh
2CABh			XXh
2CACh			XXh
2CADh			XXh
2CAFh			XXh
2CAFh			XXh
2CB0b	DTC Control Data 14	DTCD14	XXh
20001			XXb
20010			
2CB2n			XXn
2CB3h			XXh
2CB4h			XXh
2CB5h			XXh
2CB6h			XXh
2CB7h			XXh
2CB8h	DTC Control Data 15	DTCD15	XXh
2CB9h			XXh
2CBAh			XXh
2CBBh			XXh
200001			XXh
2CBDh			XXn
2CBEh			XXh
2CBFh			XXh
2CC0h	DTC Control Data 16	DTCD16	XXh
2CC1h			XXh
2CC2h			XXh
2CC3h			XXh
2CC4h			XXh
2CC5h			XXh
2CC6h			XXh
2007h			XXh
2007h	DTC Control Data 17	DTCD17	XXh
20001		2.00.1	XXb
200311			XXb
200BN			
2000h			XXN
2CCDh		1	XXh
2CCEh		1	XXh
2CCFh			XXh
2CD0h	DTC Control Data 18	DTCD18	XXh
2CD1h			XXh
2CD2h			XXh
2CD3h			XXh
2CD4h		1	XXh
2CD5h			XXh
20D6h			XXh
20001			XXh
200711	DTC Central Data 10		
20080	DTC Control Data 19	010019	
2009h			XXN
2CDAh			XXh
2CDBh			XXh
2CDCh			XXh
2CDDh			XXh
2CDEh		1	XXh
2CDFh			XXh
		1	

Table 4.11SFR Information (11) (1)

X: Undefined

Note: 1. The blank areas are reserved and cannot be accessed by users.

5. **Electrical Characteristics**

Table 5.1	Absolute	Maximum	Ratings
-----------	----------	---------	---------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vi	Input voltage ⁽¹⁾		-0.3 to Vcc + 0.3	V
IIN	Input current ⁽¹⁾	(2, 3, 4)	-4 to 4	mA
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-40^{\circ}C \leq T_{opr} \leq 85^{\circ}C$	300	mW
		$85^\circ C < T_{opr} \leq 125^\circ C$	125	mW
Topr	Operating ambient temperature		-40 to 85 (J version) / -40 to 125 (K version)	°C
Tstg	Storage temperature		-65 to 150	°C

Notes:

1. Meet the specified range for the input voltage or the input current.

Applicable ports: P0, P1, P3_1, P3_3 to P3_7, P4_5, P5_3, P5_4
 The total input current must be 12 mA or less.

4. Even if no voltage is supplied to Vcc, the input current may cause the MCU to be powered on and operate. When a voltage is supplied to Vcc, the input current may cause the supply voltage to rise. Since operations in any cases other than above are not guaranteed, use the power supply circuit in the system to ensure the supply voltage for the MCU is stable within the specified range.

Table 5.3	Recommended	Operating	Conditions	(2)
-----------	-------------	-----------	------------	-----

Symbol	Por	Paramotor		Standard			Linit
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Onit
IIC(H)	High input injection current	P0, P1, P3_1, P3_3 to P3_7,	$V_{I} > V_{CC}$	-	-	2	mA
		P4_5, P5_3, P5_4					
IIC(L)	Low input injection current	P0, P1, P3_1, P3_3 to P3_7,	$V_{I} < V_{SS}$	-	-	-2	mA
		P4_5, P5_3, P5_4					
Σ IIC	Total injection current			-	-	8	mA

Note:

1. Vcc = 4.5 to 5.5 V and T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

Figure 5.1 Ports P0 to P1, P3_1, P3_3 to P3_7, P4_2, P4_5 to P4_7, P5_3, and P5_4 Timing Measurement Circuit

Symbol	Parameter		Conditions		Standard			Linit
Symbol	Faiametei		Conu	1110115	Min.	Тур.	Max.	Unit
-	Resolution		Vref = AVCC		-	-	10	Bit
-	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±3	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	_	±5	LSB
		8-bit mode	$V_{ref} = AV_{CC} = 5.0 V$	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	_	±2	LSB
φAD	A/D conversion clock		4.0 V \leq Vref = AVcc \leq 5.5 V $^{(2)}$		2	-	20	MHz
			$2.7~V \leq Vref$ = AVcc $\leq 5.5~V$ $^{(2)}$		2	-	10	MHz
_	Tolerance level impedance				-	3	-	kΩ
t CONV	Conversion time	10-bit mode	$V_{ref} = AV_{CC} = 5.0 V, \phi$	AD = 20 MHz	2.2	-	-	μs
		8-bit mode	$V_{ref} = AV_{CC} = 5.0 V, \phi$	AD = 20 MHz	2.2	-	-	μS
t SAMP	Sampling time		φAD = 20 MHz		0.80	-	-	μS
IVref	Vref current (4)		Vcc = 5 V, XIN = f1 =	φAD = 20 MHz	-	45	-	μΑ
Vref	Reference voltage				2.7	-	AVcc	V
Via	Analog input voltage (3)				0	-	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \leq \phi \text{AD} \leq 4 \text{MHz}$	<u>.</u>	1.14	1.34	1.54	V

Table 5.4 A/D Converter Characteristics

Notes:

1. Vcc/AVcc = Vref = 2.7 to 5.5 V, Vss = 0 V and Topr = -40 to 85° C (J version) / -40 to 125° C (K version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

4. When the D/A converter unused.

Table 5.5 D/A Converter Characteristics	Table 5.5	D/A Converter Characteristics
---	-----------	-------------------------------

Symbol	Baramatar	Condition		Linit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
-	Resolution		-	-	8	Bit
-	Absolute accuracy		-	-	2.5	LSB
tsu	Setup time		-	-	3	μS
Ro	Output resistor		-	6	-	kΩ
l∨ref	Reference power input current	(Note 2)	-	-	1.5	mA

Notes:

- 1. Vcc/AVcc = Vref = 2.7 to 5.5 V and $T_{opr} = -40$ to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.
- 2. This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h. The resistor ladder of the A/D converter is not included.

Table 5.6 Comparator B Electrical Characteristics

Symbol	Baramator	Condition		Linit		
Symbol	Falametei	Condition	Min.	Тур.	Max.	Unit
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V
VI	IVCMP1, IVCMP3 input voltage		-0.3	-	Vcc + 0.3	V
—	Offset		-	5	100	mV
td	Comparator output delay time (2)	VI = Vref ± 100 mV	-	0.1	-	μS
ICMP	Comparator operating current	Vcc = 5.0 V	-	17.5	-	μΑ

Notes:

1. Vcc = 2.7 to 5.5 V, Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. When the digital filter is disabled.

Symbol	Parameter		Conditions		Linit		
Symbol			Conditions	Min.	Тур.	Max.	Unit
tsucyc	SSCK clock cycle tim	е		4	-	-	tCYC ⁽²⁾
tнı	SSCK clock "H" width	1		0.4	-	0.6	tsucyc
tLO	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising	Master		-	-	1	tCYC (2)
	time	Slave		-	-	1	μs
t FALL	SSCK clock falling	Master		-	-	1	tCYC (2)
	time	Slave		-	-	1	μs
ts∪	SSO, SSI data input s	setup time		100	-	-	ns
tн	SSO, SSI data input h	nold time		1	-	-	tCYC (2)
tlead	SCS setup time	Slave		1tcyc + 50	-	_	ns
tlag	SCS hold time	Slave		1tcyc + 50	-	-	ns
tod	SSO, SSI data output	delay time		-	-	1	tCYC ⁽²⁾
tSA	SSI slave access time	e	$2.7~V \leq Vcc \leq 5.5~V$	-	-	1.5tcyc + 100	ns
tOR	SSI slave out open tir	ne	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	_	1.5tcyc + 100	ns

Table 5.16 Timing Requirements of Synchronous Serial Communication Unit (SSU) ⁽¹⁾

Notes:

1. Vcc = 2.7 to 5.5 V, Vss = 0 V and $T_{opr} = -40$ to $85^{\circ}C$ (J version) / -40 to $125^{\circ}C$ (K version), unless otherwise specified.

2. 1tCYC = 1/f1(s)

Symbol	Parameter		Condition		Standard	1	Llnit
Symbol	Falameter		Condition	Min.	Тур.	Max.	Onit
Icc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode ⁽¹⁾	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
	Single-chip mode, output pins are open, other pins		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.6	12.5	mA
	are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.2	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
		(1)	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0		mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	180	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	110	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	5.0	100	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	2.0	5.0	μΑ
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		15.0	-	μA

Table 5.18Electrical Characteristics (2) $[3.3 V \le Vcc \le 5.5 V]$
(Topr = -40 to 85°C (J version), unless otherwise specified.)

Note:

1. The typical value (Typ.) indicates the current value when the CPU and the memory operate.

The maximum value (Max.) indicates the current when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

Currente e l	Devenueter	I	Condition		Standar	b	Linit
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
lcc	Power supply current (2.7 V \leq Vcc < 3.3 V) Single-chip mode,	High-speed clock mode (1)	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	14.5	mA
	other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.6	12	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	_	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.0	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	2.2	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	1.5	-	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	14.5	mA
		mode ⁽¹⁾	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	85	390	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	320	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	5.0	310	μA
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μА
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	55	_	μA

Table 5.26Electrical Characteristics (6) $[2.7 V \le Vcc < 3.3 V]$
(Topr = -40 to 125°C (K version), unless otherwise specified.)

Note:

1. The typical value (Typ.) indicates the current value when the CPU and the memory operate.

The maximum value (Max.) indicates the current when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

Table 5.29 Serial Interface

Symbol	Parameter	Condition	Stan	Lloit	
Symbol	Falameter	Condition	Min.	Max.	Unit
tc(CK)	CLKi input cycle time		300	-	ns
tw(скн)	CLKi input "H" width		150	-	ns
tW(CKL)	CLKi Input "L" width		150	-	ns
td(C-Q)	TXDi output delay time	When external clock selected	-	120	ns
th(C-Q)	TXDi hold time	When external clock selected	0	-	ns
tsu(D-C)	RXDi input setup time		30	-	ns
th(C-D)	RXDi input hold time		90	-	ns
td(C-Q)	TXDi output delay time		-	30	ns
tsu(D-C)	RXDi input setup time	When internal clock selected	120	-	ns
th(C-D)	RXDi input hold time		90	-	ns

i = 0, 2

Table 5.30 External Interrupt INTi (i = 0 to 1, 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Offic	
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	380 (2)	-	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.14 Input Timing Diagram for External Interrupt \overline{INTi} and Key Input Interrupt \overline{KIi} when Vcc = 3 V

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- *Specific*: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-898-5441, Fax: +1-905-898-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1628-585-100, Fax: +44-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Düsseldorf, Germany

 Tel: +49-211-65030, Fax: +44-1628-585-900

 Renesas Electronics (China) Co., Ltd.

 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +49-211-65030, Fax: +480-21-6857-7639

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 204, 205, A21A Center, No. 1233 Lujiazul Ring Rd., Pudong District, Shanghai 200120, China

 Tel: +480-10-867-7858 / -7899

 Renesas Electronics Hong Kong Limited

 Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +480-2-867-7859

 Renesas Electronics Taiwan Co., Ltd.

 15F, No. 363, Fu Shing North Road, Taipei, Taiwan

 15F, No. 363, Fu Shing North Road, Taipei, Taiwan

 15F, No. 363, Fu Shing