

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

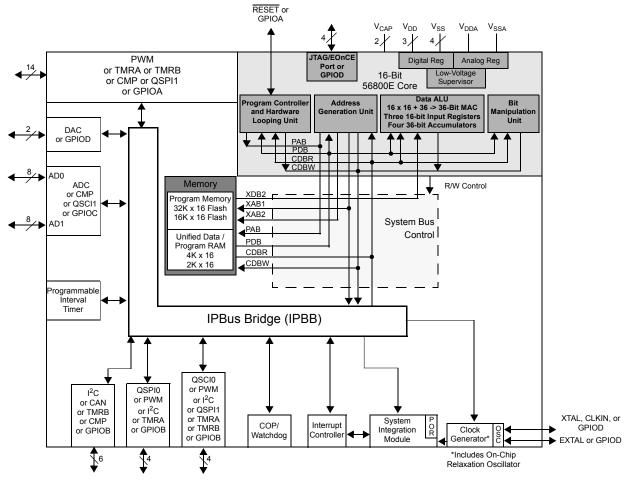
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f8037mlh

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

56F8037/56F8027 General Description

- Up to 32 MIPS at 32MHz core frequency
- DSP and MCU functionality in a unified, C-efficient architecture
- 56F8037 offers 64KB (32K x 16) Program Flash
- 56F8027 offers 32KB (16K x 16) Program Flash
- 56F8037 offers 8KB (4K x 16) Unified Data/Program RAM
- 56F8027 offers 4KB (2K x 16) Unified Data/Program RAM
- One 6-channel PWM module
- Two 8-channel 12-bit Analog-to-Digital Converters (ADCs)
- Two 12-bit Digital-to-Analog Converters (DACs)
- Two Analog Comparators

- Three Programmable Interval Timers (PITs)
- Two Queued Serial Communication Interfaces (QSCIs) with LIN slave functionality
- Two Queued Serial Peripheral Interfaces (QSPIs)
- Freescale's scalable controller area network (MSCAN) 2.0 A/B Module
- Two 16-bit Quad Timers
- One Inter-Integrated Circuit (I²C) port
- Computer Operating Properly (COP)/Watchdog
- On-Chip Relaxation Oscillator
- Integrated Power-On Reset (POR) and Low-Voltage Interrupt (LVI) module
- JTAG/Enhanced On-Chip Emulation (OnCE™) for unobtrusive, real-time debugging

56F8037/56F8027 Data Sheet, Rev. 8

connections to the PWM from the TMR and GPIO. These signals can control the PWM outputs in a similar manner as the PWM generator. See the **56F802x and 56F803x Peripheral Reference Manual** for additional information.

The PWM_reload_sync output can be connected to Timer A's (TMRA) Channel 3 input; TMRA's Channels 2 and 3 outputs are connected to the ADC sync inputs. TMRA Channel 3 output is connected to SYNC0 and TMRA Channel 2 is connected to SYNC1. SYNC0 is the master ADC sync input that is used to trigger ADCA and ADCB in sequence and parallel mode. SYNC1 is used to trigger ADCB in parallel independent mode. These are controlled by bits in the SIM Control Register; see Section 6.3.1.

Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)

Signal Name	LQFP Pin No.	Туре	State During Reset	Signal Description
GPIOA10	35	Input/ Output	Input, internal pull-up enabled	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(TB2 ⁶)		Input/ Output	enabled	TB2 — Timer B, Channel 2.
(CMPAI2)		Input		Comparator A, Input 2 — This is an analog input to Comparator A.
				After reset, the default state is GPIOA10. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .
⁶ The TB2 sign	al is also bi	rought out on th	ne GPIOA13 pin.	
GPIOA11	6	Input/ Output	Input, internal pull-up enabled	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(TB3 ⁷)		Input/ Output	enabled	TB3 — Timer B, Channel 3.
(CMPBI2)		Input		Comparator B, Input 2 — This is an analog input to Comparator B.
				After reset, the default state is GPIOA11. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .
⁷ The TB3 sign	al is also bi	rought out on th	ne GPIOA14 pin.	
GPIOA12	37	Input/ Output	Input, internal pull-up enabled	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(SCLK1)		Input/ Output	enableu	QSPI1 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input. A Schmitt trigger input is used for noise immunity.
(TB1 ⁸)		Input/ Output		TB1 — Timer B, Channel 1.
(TA1 ⁹)		Input/		TA1 — Timer A, Channel 1.
		Output		After reset, the default state is GPIOA12. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .
-		-	ne GPIOB11 pin. ne GPIOB5 pin.	

Return to Table 2-2

Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)

Signal Name	LQFP Pin No.	Туре	State During Reset	Signal Description
GPIOB0	42	Input/ Output	Input, internal pull-up enabled	Port B GPIO — This GPIO pin can be individually programmed as an input or output pin.
(SCLK0)		Input/ Output		QSPI0 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input. A Schmitt trigger input is used for noise immunity.
(SCL ¹⁴)		Input/ Output		Serial Clock — This pin serves as the I ² C serial clock. After reset, the default state is GPIOB0. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .
¹⁴ The SCL sigr	nal is also	brought out on	the GPIOB7 and	I I GPIOB8 pins.
GPIOB1	2	Input/ Output	Input, internal pull-up	Port B GPIO — This GPIO pin can be individually programmed as an input or output pin.
(<mark>SS0</mark>)		Input/ Output	enabled	QSPI0 Slave Select — \overline{SS} is used in slave mode to indicate to the QSPI0 module that the current transfer is to be received.
(SDA ¹⁵)		Input		Serial Data — This pin serves as the I ² C serial data line.
				After reset, the default state is GPIOB1. The peripheral functionality is controlled via the SIM. See Section 6.3.16 .
¹⁵ The SDA sig	nal is also	brought out on	the GPIOB6 and	I GPIOB9 pins.

Return to Table 2-2

Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)

Signal Name	LQFP Pin No.	Туре	State During Reset	Signal Description
GPIOC12	9	Input/ Output	Input	Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANB4)		Analog Input		ANB4 — Analog input to ADC B, Channel 4.
(RXD1)		Input		Receive Data 1 — SCI1 receive data input.
				After reset, the default state is GPIOC12.
GPIOC13	12	Input/ Output	Input	Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANB5)		Analog		ANB5 — Analog input to ADC B, Channel 5.
		Input		After reset, the default state is GPIOC13.
GPIOC14	62	Input/ Output	Input	Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANB6)		Analog		ANB6 — Analog input to ADC B, Channel 6.
		Input		After reset, the default state is GPIOC14.
GPIOC15	61	Input/ Output	Input	Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANB7)		Analog		ANB7 — Analog input to ADC B, Channel 7.
		Input		After reset, the default state is GPIOC15.
GPIOD4	53	Input/ Output	Input	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
(EXTAL)		Analog Input		External Crystal Oscillator Input — This input can be connected to an 8MHz external crystal. Tie this pin low if XTAL is being driven by an external clock source.
				After reset, the default state is GPIOD4.

Return to Table 2-2

		-	• •
Peripheral	Prefix	Base Address	Table Number
DAC 0	DAC0	X:\$00 F1C0	4-25
DAC 1	DAC1	X:\$00 F1D0	4-26
Comparator A	CMPA	X:\$00 F1E0	4-27
Comparator B	CMPB	X:\$00 F1F0	4-28
QSCI 0	QSCI0	X:\$00 F200	4-29
QSCI 1	QSCI1	X:\$00 F210	4-30
QSPI 0	QSPI0	X:\$00 F220	4-31
QSPI 1	QSPI1	X:\$00 F230	4-32
l ² C	I2C	X:\$00 F280	4-33
FM	FM	X:\$00 F400	4-34
MSCAN	CAN	X:\$00 F800	4-35

Table 4-8 Data Memory Peripheral Base Address Map Summary (Continued)

Table 4-10 Quad Timer B Registers Address Map (Continued) (TMRB_BASE = \$00 F040)

Register Acronym	Address Offset	Register Description
TMRB1_LOAD	\$13	Load Register
TMRB1_HOLD	\$14	Hold Register
TMRB1_CNTR	\$15	Counter Register
TMRB1_CTRL	\$16	Control Register
TMRB1_SCTRL	\$17	Status and Control Register
TMRB1_CMPLD1	\$18	Comparator Load Register 1
TMRB1_CMPLD2	\$19	Comparator Load Register 2
TMRB1_CSCTRL	\$1A	Comparator Status and Control Register
TMRB1_FILT	\$1B	Input Filter Register
		Reserved
TMRB2_COMP1	\$20	Compare Register 1
TMRB2_COMP2	\$21	Compare Register 2
TMRB2_CAPT	\$22	Capture Register
TMRB2_LOAD	\$23	Load Register
TMRB2_HOLD	\$24	Hold Register
TMRB2_CNTR	\$25	Counter Register
TMRB2_CTRL	\$26	Control Register
TMRB2_SCTRL	\$27	Status and Control Register
TMRB2_CMPLD1	\$28	Comparator Load Register 1
TMRB2_CMPLD2	\$29	Comparator Load Register 2
TMRB2_CSCTRL	\$2A	Comparator Status and Control Register
TMRB2_FILT	\$2B	Input Filter Register
		Reserved
TMRB3_COMP1	\$30	Compare Register 1
TMRB3_COMP2	\$31	Compare Register 2
TMRB3_CAPT	\$32	Capture Register
TMRB3_LOAD	\$33	Load Register
TMRB3_HOLD	\$34	Hold Register
TMRB3_CNTR	\$35	Counter Register
TMRB3_CTRL	\$36	Control Register
TMRB3_SCTRL	\$37	Status and Control Register
TMRB3_CMPLD1	\$38	Comparator Load Register 1
TMRB3_CMPLD2	\$39	Comparator Load Register 2
TMRB3_CSCTRL	\$3A	Comparator Status and Control Register
TMRB3_FILT	\$3B	Input Filter Register
		Reserved

5.6.1.5 EOnCE Transmit Register Empty Interrupt Priority Level (TX_REG IPL)— Bits 7–6

This field is used to set the interrupt priority level for the EOnCE Transmit Register Empty IRQ. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.6 EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)— Bits 5–4

This field is used to set the interrupt priority level for the EOnCE Trace Buffer IRQ. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.7 EOnCE Breakpoint Unit Interrupt Priority Level (BKPT_U IPL)— Bits 3–2

This field is used to set the interrupt priority level for the EOnCE Breakpoint Unit IRQ. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.8 EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)— Bits 1–0

This field is used to set the interrupt priority level for the EOnCE Step Counter IRQ. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.3 Interrupt Priority Register 2 (IPR2)

Base + \$2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	QSCI0		QSPI1	_XMIT	QSPI1		QSPI0	_	QSPIC		GPIO		GPIO	r ipi	GPIO	CIPI
Write	IF	Ľ	IF	Ľ	IF	Ľ	IF	Ľ	IF	Ľ	0110		0110		0110	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-5 Interrupt Priority Register 2 (IPR2)

5.6.3.1 QSCI 0 Transmitter Empty Interrupt Priority Level (QSCI0_XMIT IPL)— Bits 15–14

This field is used to set the interrupt priority level for the QSCI0 Transmitter Empty IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.2 QSPI 1 Transmitter Empty Interrupt Priority Level (QSPI1_XMIT IPL)— Bits 13–12

This field is used to set the interrupt priority level for the QSPI1 Transmitter Empty IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.3 QSPI 1 Receiver Full Interrupt Priority Level (QSPI1_RCV IPL)— Bits 11–10

This field is used to set the interrupt priority level for the QSPI1 Receiver Full IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.4 QSPI 0 Transmitter Empty Interrupt Priority Level (QSPI0_XMIT IPL)— Bits 9–8

This field is used to set the interrupt priority level for the QSPI0 Transmitter Empty IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

5.6.5 Interrupt Priority Register 4 (IPR4)

Base + \$4	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	TMRA	3 IDI	TMRA	2 IDI	TMRA	1 IDI		0 IPL	120 51	AT IPL	12C T		I2C R		I2C GI	
Write		_0 II L		_2 " L		r		_011 L	120_01		120_1		120_1		120_01	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-7 Interrupt Priority Register 4 (IPR4)

5.6.5.1 Timer A, Channel 3 Interrupt Priority Level (TMRA_3 IPL)— Bits 15–14

This field is used to set the interrupt priority level for the Timer A, Channel 3 IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.2 Timer A, Channel 2 Interrupt Priority Level (TMRA_2 IPL)— Bits 13–12

This field is used to set the interrupt priority level for the Timer A, Channel 2 IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.3 Timer A, Channel 1 Interrupt Priority Level (TMRA_1 IPL)— Bits 11–10

This field is used to set the interrupt priority level for the Timer A, Channel 1 IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

• 11 = IRQ is priority level 2

5.6.7 Interrupt Priority Register 6 (IPR6)

Base + \$6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	PWM	F IPI	PWM	ri ipi	ADC 2	7C IPI		3_CC	ADCA		PIT2	P IPI
Write									/.20	2011 2	IF	Ľ	IF	۳L		
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-9 Interrupt Priority Register 6 (IPR6)

5.6.7.1 Reserved—Bits 15–12

This bit field is reserved. Each bit must be set to 0.

5.6.7.2 PWM Fault Interrupt Priority Level (PWM_F IPL)—Bits 11–10

This field is used to set the interrupt priority level for the PWM Fault Interrupt IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.3 Reload PWM Interrupt Priority Level (PWM_RL IPL)—Bits 9–8

This field is used to set the interrupt priority level for the Reload PWM Interrupt IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

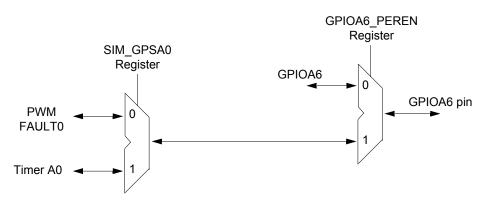
- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.4 ADC Zero Crossing Interrupt Priority Level (ADC_ZC IPL)—Bits 7–6

This field is used to set the interrupt priority level for the ADC Zero Crossing IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

• 11 = Write protection on and locked until chip reset


6.3.15.3 GPIO and Internal Peripheral Select Protection (GIPSP)—Bits 1–0

These bits enable write protection of GPS*n* and IPS*n* registers in the SIM module and write protect all GPIOx_PEREN, GPIOx_PPOUTM and GPIOx_DRIVE registers in GPIO modules.

- 00 = Write protection off (default)
- 01 = Write protection on
- 10 = Write protection off and locked until chip reset
- 11 = Write protection on and locked until chip reset
- **Note:** The PWM fields in the CLKOUT register are also write protected by GIPSP. They are reserved for in-house test only.

6.3.16 SIM GPIO Peripheral Select Register 0 for GPIOA (SIM_GPSA0)

Most I/O pins have an associated GPIO function. In addition to the GPIO function, I/O can be configured to be one of several peripheral functions. The GPIOx_PEREN register within the GPIO module controls the selection between peripheral or GPIO control of the I/O pins. The GPIO function is selected when the GPIOx_PEREN bit for the I/O is 0. When the GPIOx_PEREN bit of the GPIO is 1, the fields in the GPS*n* registers select which peripheral function has control of the I/O. **Figure 6-18** illustrates the output path to an I/O pin when an I/O has two peripheral functions. Similar muxing is required on peripheral function inputs to receive input from the properly selected I/O pin.

In some cases, the user can choose peripheral function between several I/O, each of which have the option to be programmed to control a specific peripheral function. If the user wishes to use that function, only one of these I/O must be configured to control that peripheral function. If more than one I/O is configured to control the peripheral function, the peripheral output signal will fan out to each I/O, but the peripheral input signal will be the logical OR and AND of all the I/O signals.

Complete lists of I/O muxings are provided in Table 2-3.

The GPSn setting can be altered during normal operation, but a delay must be inserted between the time when one function is disabled and another function is enabled.

6.3.19.6 Configure GPIOB9 (GPS_B9)—Bit 4

This field selects the alternate function for GPIOB9.

- $0 = SDA I^2C$ Serial Data (default)
- 1 = MSCANRX MSCAN Receive Data

6.3.19.7 Reserved—Bit 3

This bit field is reserved. It must be set to 0.

6.3.19.8 Configure GPIOB8 (GPS_B8)—Bit 2

This field selects the alternate function for GPIOB8.

- 0 = SCL I2C Serial Clock (default)
- 1 = MSCANTX MSCAN Transmit Data

6.3.19.9 Reserved—Bit 1

This bit field is reserved. It must be set to 0.

6.3.19.10 Configure GPIOB7 (GPS_B7)—Bit 0

This field selects the alternate function for GPIOB7.

- 0 = TXD0 QSCI0 Transmit Data (default)
- 1 = SCL I2C Serial Clock

6.3.20 SIM GPIO Peripheral Select Register for GPIOC and GPIOD (SIM_GPSCD)

See Section 6.3.16 for general information about GPIO Peripheral Select Registers.

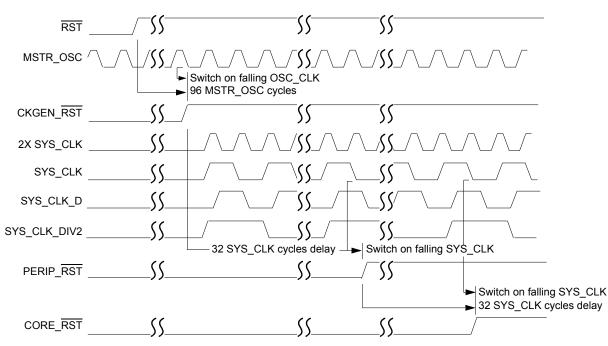

Base + \$17	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	GPS_	0	0	0	0	0	0	0	GPS_	0	GPS_	0	0
Write				D5								C12		C8		
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-23 GPIO Peripheral Select Register for GPIOC and GPIOD (SIM_GPSCD)

6.3.20.1 Reserved—Bits 15–13

This bit field is reserved. Each bit must be set to 0.

Maximum Delay = 64 OSC_CLK cycles for POR reset extension and 32 OSC_CLK cycles for Combined reset extension

Figure 6-29 Timing Relationships of Reset Signal to Clocks

6.8 Interrupts

The SIM generates no interrupts.

Part 7 Security Features

The 56F8037/56F8027 offers security features intended to prevent unauthorized users from reading the contents of the flash memory (FM) array. The 56F8037/56F8027's flash security consists of several hardware interlocks that prevent unauthorized users from gaining access to the flash array.

After flash security is set, an authorized user is still able to access on-chip memory if a user-defined software subroutine, which reads and transfers the contents of internal memory via serial communication peripherals, is included in the application software.

7.1 Operation with Security Enabled

After the user has programmed flash with the application code, the 56F8037/56F8027 can be secured by programming the security word \$0002 into program memory location \$00 7FF7. This non-volatile word will keep the device secured through reset and through power-down of the device. Refer to the flash memory chapter in the **56F802x and 56F803x Peripheral Reference Manual** for the details. When flash security mode is enabled, the 56F8037/56F8027 will disable the core EOnCE debug capabilities. Normal

The user is responsible for directing the device to invoke the flash programming subroutine to reprogram the word \$0000 into program memory location \$00 7FF7. This is done by, for example, toggling a specific pin or downloading a user-defined key through serial interfaces.

Note: Flash contents can only be programmed for 1s to 0s.

7.3 Product Analysis

The recommended method of unsecuring a secured device for product analysis of field failures is via the method described in section 7.2.4. The customer would need to supply Technical Support with the details of the protocol to access the subroutines in flash memory. An alternative method for performing analysis on a secured device would be to mass-erase and reprogram the flash with the original code, but modify the security word or not program the security word.

Part 8 General Purpose Input/Output (GPIO)

8.1 Introduction

This section is intended to supplement the GPIO information found in the **56F802x and 56F803x Peripheral Reference Manual** and contains only chip-specific information. This information supersedes the generic information in the **56F802x and 56F803x Peripheral Reference Manual**.

8.2 Configuration

There are four GPIO ports defined on the 56F8037/56F8027. The width of each port, the associated peripheral and reset functions are shown in **Table 8-1**. The specific mapping of GPIO port pins is shown in **Table 8-2**. Additional details are shown in **Tables 2-2** and **2-3**.

GPIO Port	Available Pins in 56F8037/56F 8027	Peripheral Function	Reset Function
A	15	PWM, Timer, QSPI, Comparator, Reset	GPIO, RESET
В	14	QSPI, I ² C, PWM, Clock, MSCAN, Comparator, Timer	GPIO
С	16	ADC, Comparator, QSCI	GPIO
D	8	Clock, Oscillator, DAC, JTAG	GPIO, JTAG

Table	8-1	GPIO	Ports	Configuration
-------	-----	------	-------	---------------

Part 9 Joint Test Action Group (JTAG)

9.1 56F8037/56F8027 Information

Please contact your Freescale sales representative or authorized distributor for device/package-specific BSDL information.

The $\overline{\text{TRST}}$ pin is not available in this package. The pin is tied to V_{DD} in the package.

The JTAG state machine is reset during POR and can also be reset via a soft reset by holding TMS high for five rising edges of TCK, as described in the **56F802x and 56F803x Peripheral Reference Manual**.

Part 10 Specifications

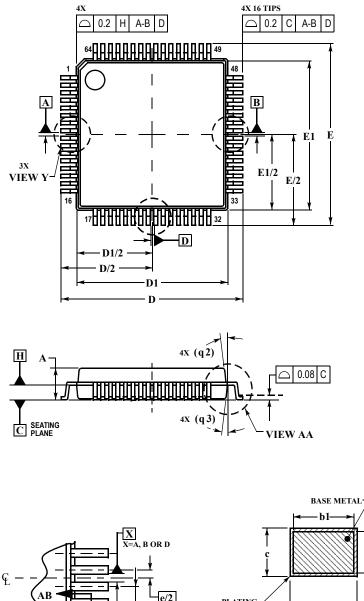
10.1 General Characteristics

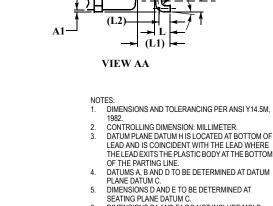
The 56F8037/56F8027 is fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs. The term "5V-tolerant" refers to the capability of an I/O pin, built on a 3.3V-compatible process technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and 5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V \pm 10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the power savings of 3.3V I/O levels, combined with the ability to receive 5V levels without damage.

Absolute maximum ratings in **Table 10-1** are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to the device.

Unless otherwise stated, all specifications within this chapter apply over the temperature range of -40°C to 125°C ambient temperature over the following supply ranges: $N_{12} = N_{12} = 0$ $N_{12} = 0$ N_{12}

 $V_{SS} = V_{SSA} = 0V, V_{DD} = V_{DDA} = 3.0-3.6V, CL \le 50pF, f_{OP} = 32MHz$


CAUTION


This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either V_{DD} or V_{SS}).

2X R R1 0.25

GAGE PLANE

0.05 (S)

(S)

- PLANE DATUM C. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE DATUM C. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER 6. SIDE
- DIMENSION b DOES NOT INCLUDE DAMBAR 7. PROTRUSION DAMBAR PROTRUSION SHALL NOT CAUSE THE & DIMENSION TO EXCEED 0.35. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07.

	MILLIMETERS			
DIM	MIN	MAX		
Α		1.60		
A1	0.05	0.15		
A2	1.35	1.45		
b	0.17	0.27		
b1	0.17	0.23		
c	0.09	0.20		
c1	0.09	0.16		
D	12.00 BSC			
D1	10.00 BSC			
е	0.50 BSC			
Е	12.00 BSC			
E1	10.00 BSC			
L	0.45	0.75		
L1	1.00 REF			
L2	0.50	0.50 REF		
R1	0.10	0.20		
S	0.20 REF			
q	0 °	7 °		
q 1	0 °			
q 2	12° REF			
q 3	12° REF			

Figure 11-2 56F8037/56F8027 64-Pin LQFP Mechanical Information

î c1

Please see www.freescale.com for the most current case outline.

60X e

VIEW Y

PLATING

 Φ

0.08 M

С A-B D

SECTION AB-AB ROTATED 90° CLOCKWISE

Register Name	Peripheral Reference Manual		Data Sheet		Processor Expert	Memory Address	
	New Acronym	Legacy Acronym	New Acronym	Legacy Acronym	Acronym	Start	End
Security Low Half Register	SECLO	FMSECL	FM_SECLO	FMSECL	FMSECL	0xF404	
Protection Register	PROT	FMPROT	FM_PROT	FMPROT	FMPROT	0xF410	
User Status Register	USTAT	FMUSTAT	FM_USTAT	FMUSTAT	FMUSTAT	0xF413	
Command Register	CMD	FMCMD	FM_CMD	FMCMD	FMCMD	0xF414	
Data Buffer Register	DATA	FMDATA	FM_DATA	FMDATA	FMDATA	0xF418	
Info Optional Data 1 Register	OPT1	FMOPT1	FM_OPT1	FMOPT1	FMOPT1	0xF41B	
Test Array Signature Register	TSTSIG	FMTST_SIG	FM_TSTSIG	FMTST_SIG	FMTST_SIG	0xF41D	
		Genera	I Purpose Input/Outp	ut (GPIO) Module			
					x =A(n =0)B(n =1	=0) B (n =1) C (n =2) D (n =3)	
Pull-Up Enable Register	PUPEN	PUR	GPIOx_PUPEN	GPIOx_PUR	GPIO_x_PUR	0xF1 <i>n</i> 0	
Data Register	DATA	DR	GPIOx_DATA	GPIOx_DR	GPIO_x_DR	0xF1 <i>n</i> 1	
Data Direction Register	DDIR	DDR	GPIOx_DDIR	GPIOx_DDR	GPIO_x_DDR	0xF1 <i>n</i> 2	
Peripheral Enable Register	PEREN	PER	GPIOx_PEREN	GPIOx_PER	GPIO_x_PER	0xF1 <i>n</i> 3	
Interrupt Assert Register	IASSRT	IAR	GPIOx_IASSRT	GPIOx_IAR	GPIO_ x _IAR	0xF1 <i>n</i> 4	
Interrupt Enable Register	IEN	IENR	GPIOx_IEN	GPIOx_IENR	GPIO_ <i>x</i> _IENR	0xF1 <i>n</i> 5	
Interrupt Polarity Register	IPOL	IPOLR	GPIOx_IPOL	GPIOx_IPOLR	GPIO_x_IPOLR	0xF1 <i>n</i> 6	
Interrupt Pending Register	IPEND	IPR	GPIOx_IPEND	GPIOx_IPR	GPIO_ x_ IPR	0xF1 <i>n</i> 7	
Interrupt Edge-Sensitive Register	IEDGE	IESR	GPIOx_IEDGE	GPIOx_IESR	GPIO_x_IESR	0xF1 <i>n</i> 8	
Push-Pull Mode Registers	PPOUTM	PPMODE	GPIOx_PPOUTM	GPIOx_PPMODE	GPIO_x_PPMODE	0xF1 n 9	
Raw Data Input Register	RDATA	RAWDATA	GPIOx_RDATA	GPIOx_RAWDATA	GPIO_x_RAWDATA	0xF1 <i>n</i> A	
Output Drive Strength Register	DRIVE	DRIVE	GPIOx_DRIVE	GPIOx_DRIVE	GPIO_x_DRIVE	0xF1 n B	

Table 14-1 Legacy and Revised Acronyms (Continued)

	Peripheral Reference Manual		Data Sheet		Processor Expert	Memory	
Register Name						Add	ress
	New Acronym	Legacy Acronym	New Acronym	Legacy Acronym	Acronym	Start	End
Transmitter Message Abort Acknowledge Register	ТААК		CAN_TAAK		CANTAAK	0XF	809
Transmitter FIFO Selection Register	TBSEL		CAN_TBSEL		CANTBSEL	0XF80A	
Identifier Acceptance Control Register	IDAC		CAN_IDAC		CANIDAC	0XF80B	
Miscellaneous Register	MISC		CAN_MISC		CANMISC	0XF80D	
Receive Error Register	RXERR		CAN_RXERR		CANRXERR	0XF80E	
Transmit Error Register	TXERR		CAN_TXERR		CANTXERR	0XF80F	
Identifier Acceptance 0-3 Registers	IDAR0-3		CAN_IDAR0-3		CANIDAR0-3	0xF810	0xF813
Identifier Mask 0-3 Registers	IDMR0-3		CAN_IDMR0-3		CANIDMR0-3	0xF814	0xF817
Identifier Acceptance 4-7 Register	IDAR4-7		CAN_IDAR4-7		CANIDAR4-7	0xF818	0xF81B
Identifier Mask 4-7 Registers	IDMR4-7		CAN_IDMR4-7		CANIDMR4-7	0xF81C	0xF81F
Foreground Receive FIFO Register	RXFG		CAN_RXFG		CANRXFG	0xF82F	0xF820
Foreground Transmit FIFO Register	TXFG		CAN_TXFG		CANTXFG	0xF830	0xF83F
			Power Supervisor (F	PS) Module		•	
Control Register	CTRL	LVICONTROL	PS_CTRL	LVICONTROL	LVICTRL	0xF140	
Status Register	STAT	LVISTATUS	PS_STAT	LVISTATUS	LVISR	0xF141	
		Queued Seria	al Communications I	Interface (QSCI) Modu	le	•	
					n =0, 1		
Baud Rate Register	RATE		QSCI_RATE		QSCI_SCIBR	0xF2 <i>n</i> 0	
Control 1 Register	CTRL1		QSCI_CTRL1		QSCI_SCICR	0xF2 <i>n</i> 1	
Control 2 Register	CTRL2		QSCI_CTRL2		QSCI_SCICR2	0xF2 n 2	
Status Register	STAT		QSCI_STAT		QSCI_SCISR	0xF2 n 3	
Data Register	DATA		QSCI_DATA		QSCI_SCIDR	0xF	2 n 4
		Queued S	erial Peripheral Inte	rface (QSPI) Module			
Status and Control Register	SCTRL		QSPI_SCTRL		QSPI_SPSCR	0xF2 <i>n</i> 0	
Data Size and Control Register	DSCTRL		QSPI_DSCTRL		QSPI_SPDSR	0xF2 n 1	
Data Receive Register	DRCV		QSPI_DRCV		QSPI_SPDRR	0xF2 n 2	
Data Transmit Register	DXMIT		QSPI_DXMIT		QSPI_SPDTR	0xF2 n 3	

Table 14-1 Legacy and Revised Acronyms (Continued)

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to <u>http://www.freescale.com/epp</u>.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty. representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. This product incorporates SuperFlash® technology licensed from SST. © Freescale Semiconductor, Inc. 2008–2012. All rights reserved.

MC56F8037 Rev. 8 04/2012