

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                    |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | M8C                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 24MHz                                                                       |
| Connectivity               | I²C, SPI, UART/USART                                                        |
| Peripherals                | POR, PWM, WDT                                                               |
| Number of I/O              | 28                                                                          |
| Program Memory Size        | 8KB (8K × 8)                                                                |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 512 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.4V ~ 5.25V                                                                |
| Data Converters            | A/D 28x8b                                                                   |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 32-XFQFN Exposed Pad                                                        |
| Supplier Device Package    | 32-QFN (5x5)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21434-24lcxi |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# **PSoC Functional Overview**

The PSoC family consists of many Mixed-Signal Array with On-Chip Controller devices. These devices are designed to replace multiple traditional MCU-based system components with one low cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture enables the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture, shown in Figure 1, consists of four main areas: the Core, the System Resources, the Digital System, and the Analog System. Configurable global bus resources allow combining all the device resources into a complete custom system. Each CY8C21x34 PSoC device includes four digital blocks and four analog blocks. Depending on the PSoC package, up to 28 general purpose IO (GPIO) are also included. The GPIO provide access to the global digital and analog interconnects.

#### The PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO (internal main oscillator) and ILO (internal low speed oscillator). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a four MIPS 8-bit Harvard architecture microprocessor.

System Resources provide the following additional capabilities:

- Digital clocks to increase the flexibility of the PSoC mixed-signal arrays.
- I2C functionality to implement an I2C master and slave.
- An internal voltage reference, MultiMaster, that provides an absolute value of 1.3V to a number of PSoC subsystems.
- A switch mode pump (SMP) that generates normal operating voltages off a single battery cell.
- Various system resets supported by the M8C.

The Digital System consists of an array of digital PSoC blocks that may be configured into any number of digital peripherals. The digital blocks are connected to the GPIO through a series of global buses that can route any signal to any pin, freeing designs from the constraints of a fixed peripheral controller.

The Analog System consists of four analog PSoC blocks, supporting comparators and analog-to-digital conversion up to 8 bits in precision.

#### The Digital System

The Digital System consists of 4 digital PSoC blocks. Each block is an 8-bit resource that is used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references. Digital peripheral configurations include the following.

- PWMs (8 to 32 bit)
- PWMs with Dead band (8 to 32 bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- UART 8 bit with selectable parity
- SPI master and slave
- I2C slave and multi-master
- Cyclical Redundancy Checker/Generator (8 to 32 bit)
- IrDA
- Pseudo Random Sequence Generators (8 to 32 bit)

The digital blocks are connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 4.

#### Figure 1. Digital System Block Diagram





### The Analog System

The Analog System consists of 4 configurable blocks that allow the creation of complex analog signal flows. Analog peripherals are very flexible and may be customized to support specific application requirements. Some of the common PSoC analog functions for this device (most available as user modules) are:

- Analog-to-digital converters (single or dual, with 8-bit or 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to 2) with absolute (1.3V) reference or 8-bit DAC reference
- 1.3V reference (as a System Resource)

In most PSoC devices, analog blocks are provided in columns of three, which includes one CT (Continuous Time) and two SC (Switched Capacitor) blocks. The CY8C21x34 devices provide limited functionality Type "E" analog blocks. Each column contains one CT Type E block and one SC Type E block. Refer to the *PSoC Programmable System-on-Chip*<sup>™</sup> *Technical Reference Manual* for detailed information on the CY8C21x34's Type E analog blocks.

#### Figure 2. Analog System Block Diagram



#### The Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin. Pins may be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and analog-to-digital converters. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

When designing capacitive sensing applications, refer to the signal-to-noise system level requirement found in Application Note AN2403 on the Cypress web site at http://www.cypress.com.

#### **Additional System Resources**

System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a switch mode pump, low voltage detection, and power on reset. Brief statements describing the merits of each system resource follow.

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- The I2C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.3 voltage reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch mode pump (SMP) generates normal operating voltages from a single 1.2V battery cell, providing a low cost boost converter.
- Versatile analog multiplexer system.



#### **PSoC Device Characteristics**

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this data sheet is highlighted in this table.

| PSoC Part<br>Number | Digital<br>I/O | Digital<br>Rows | Digital<br>Blocks | Analog<br>Inputs | Analog<br>Outputs | Analog<br>Solumn: | Analog<br>Blocks | SRAM<br>Size | Flash<br>Size |
|---------------------|----------------|-----------------|-------------------|------------------|-------------------|-------------------|------------------|--------------|---------------|
| CY8C29x66           | up to<br>64    | 4               | 16                | 12               | 4                 | 4                 | 12               | 2K           | 32K           |
| CY8C27x43           | up to<br>44    | 2               | 8                 | 12               | 4                 | 4                 | 12               | 256<br>Bytes | 16K           |
| CY8C24x94           | 56             | 1               | 4                 | 48               | 2                 | 2                 | 6                | 1K           | 16K           |
| CY8C24x23A          | up to<br>24    | 1               | 4                 | 12               | 2                 | 2                 | 6                | 256<br>Bytes | 4K            |
| CY8C21x34           | up to<br>28    | 1               | 4                 | 28               | 0                 | 2                 | 4 <sup>[1]</sup> | 512<br>Bytes | 8K            |
| CY8C21x23           | 16             | 1               | 4                 | 8                | 0                 | 2                 | 4 <sup>[1]</sup> | 256<br>Bytes | 4K            |
| CY8C20x34           | up to<br>28    | 0               | 0                 | 28               | 0                 | 0                 | 3 <sup>[2]</sup> | 512<br>Bytes | 8K            |

#### **Table 1. PSoC Device Characteristics**

# Getting Started

The quickest way to understand PSoC silicon is to read this data sheet and then use the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming information, see the PSoC Programmable System-on-Chip Technical Reference Manual for CY8C28xxx PSoC devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at www.cypress.com/psoc.

#### **Application Notes**

Application notes are an excellent introduction to the wide variety of possible PSoC designs. They are located here: www.cypress.com/psoc. Select Application Notes under the Documentation tab.

#### **Development Kits**

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

#### Training

Free PSoC technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

#### **Cypros Consultants**

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

#### Solutions Library

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

#### **Technical Support**

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, call technical support at 1-800-541-4736.

1. Limited analog functionality.

2. Two analog blocks and one CapSense.



# **Document Conventions**

#### Acronyms Used

The following table lists the acronyms that are used in this document.

#### Table 2. Acronyms Used

| Acronym | Description                                         |
|---------|-----------------------------------------------------|
| AC      | alternating current                                 |
| ADC     | analog-to-digital converter                         |
| API     | application programming interface                   |
| CPU     | central processing unit                             |
| СТ      | continuous time                                     |
| DAC     | digital-to-analog converter                         |
| DC      | direct current                                      |
| ECO     | external crystal oscillator                         |
| EEPROM  | electrically erasable programmable read-only memory |
| FSR     | full scale range                                    |
| GPIO    | general purpose IO                                  |
| GUI     | graphical user interface                            |
| HBM     | human body model                                    |
| ICE     | in-circuit emulator                                 |
| ILO     | internal low speed oscillator                       |
| IMO     | internal main oscillator                            |
| I/O     | input/output                                        |
| IPOR    | imprecise power on reset                            |
| LSb     | least-significant bit                               |
| LVD     | low voltage detect                                  |
| MSb     | most-significant bit                                |
| PC      | program counter                                     |
| PLL     | phase-locked loop                                   |
| POR     | power on reset                                      |
| PPOR    | precision power on reset                            |
| PSoC®   | Programmable System-on-Chip™                        |
| PWM     | pulse width modulator                               |
| SC      | switched capacitor                                  |
| SLIMO   | slow IMO                                            |
| SMP     | switch mode pump                                    |
| SRAM    | static random access memory                         |

#### Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 2 on page 7 lists all the abbreviations used to measure the PSoC devices.

#### **Numeric Naming**

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.



### **20-Pin Part Pinout**

#### Figure 4. CY8C21334 20-Pin PSoC Device



#### Table 4. Pin Definitions - CY8C21334 20-Pin (SSOP)

| Din No  | Туре    |        | Namo  | Description                                         |  |  |  |  |
|---------|---------|--------|-------|-----------------------------------------------------|--|--|--|--|
| FILINO. | Digital | Analog | Name  | Description                                         |  |  |  |  |
| 1       | I/O     | I, M   | P0[7] | Analog column mux input.                            |  |  |  |  |
| 2       | I/O     | I, M   | P0[5] | Analog column mux input.                            |  |  |  |  |
| 3       | I/O     | I, M   | P0[3] | Analog column mux input, integrating input.         |  |  |  |  |
| 4       | I/O     | I, M   | P0[1] | Analog column mux input, integrating input.         |  |  |  |  |
| 5       | Power   |        | Vss   | Ground connection.                                  |  |  |  |  |
| 6       | I/O     | М      | P1[7] | I2C Serial Clock (SCL).                             |  |  |  |  |
| 7       | I/O     | М      | P1[5] | I2C Serial Data (SDA).                              |  |  |  |  |
| 8       | I/O     | М      | P1[3] |                                                     |  |  |  |  |
| 9       | I/O     | М      | P1[1] | I2C Serial Clock (SCL), ISSP-SCLK <sup>[3]</sup> .  |  |  |  |  |
| 10      | Power   |        | Vss   | Ground connection.                                  |  |  |  |  |
| 11      | I/O     | М      | P1[0] | I2C Serial Data (SDA), ISSP-SDATA <sup>[3]</sup> .  |  |  |  |  |
| 12      | I/O     | М      | P1[2] |                                                     |  |  |  |  |
| 13      | I/O     | М      | P1[4] | Optional External Clock Input (EXTCLK).             |  |  |  |  |
| 14      | I/O     | М      | P1[6] |                                                     |  |  |  |  |
| 15      | Input   |        | XRES  | Active high external reset with internal pull down. |  |  |  |  |
| 16      | I/O     | I, M   | P0[0] | Analog column mux input.                            |  |  |  |  |
| 17      | I/O     | I, M   | P0[2] | Analog column mux input.                            |  |  |  |  |
| 18      | I/O     | I, M   | P0[4] | Analog column mux input.                            |  |  |  |  |
| 19      | I/O     | I, M   | P0[6] | Analog column mux input.                            |  |  |  |  |
| 20      | Power   |        | Vdd   | Supply voltage.                                     |  |  |  |  |

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.



# CY8C21634, CY8C21534 CY8C21434, CY8C21334, CY8C21234

## 32-Pin Part Pinout



Figure 10. CY8C21434 32-Pin Sawn PSoC Device





Figure 11. CY8C21634 32-Pin Sawn PSoC Device



# Table 6. Pin Definitions - CY8C21434/CY8C21634 32-Pin (QFN)<sup>[4]</sup>

| Pin | T       | уре    | Namo  | Description                                                                          |  |  |  |
|-----|---------|--------|-------|--------------------------------------------------------------------------------------|--|--|--|
| No. | Digital | Analog | Name  | Description                                                                          |  |  |  |
| 1   | I/O     | I, M   | P0[1] | Analog column mux input, integrating input.                                          |  |  |  |
| 2   | I/O     | Μ      | P2[7] |                                                                                      |  |  |  |
| 3   | I/O     | Μ      | P2[5] |                                                                                      |  |  |  |
| 4   | I/O     | Μ      | P2[3] |                                                                                      |  |  |  |
| 5   | I/O     | Μ      | P2[1] |                                                                                      |  |  |  |
| 6   | I/O     | Μ      | P3[3] | In CY8C21434 part.                                                                   |  |  |  |
| 6   | Power   |        | SMP   | Switch Mode Pump (SMP) connection to required external components in CY8C21634 part. |  |  |  |
| 7   | I/O     | Μ      | P3[1] | In CY8C21434 part.                                                                   |  |  |  |
| 7   | Power   |        | Vss   | Ground connection in CY8C21634 part.                                                 |  |  |  |
| 8   | I/O     | Μ      | P1[7] | I2C Serial Clock (SCL).                                                              |  |  |  |
| 9   | I/O     | Μ      | P1[5] | I2C Serial Data (SDA).                                                               |  |  |  |
| 10  | I/O     | Μ      | P1[3] |                                                                                      |  |  |  |
| 11  | I/O     | Μ      | P1[1] | I2C Serial Clock (SCL), ISSP-SCLK <sup>[3]</sup> .                                   |  |  |  |
| 12  | Power   |        | Vss   | Ground connection.                                                                   |  |  |  |
| 13  | I/O     | Μ      | P1[0] | I2C Serial Data (SDA), ISSP-SDATA <sup>[3]</sup>                                     |  |  |  |
| 14  | I/O     | Μ      | P1[2] |                                                                                      |  |  |  |
| 15  | I/O     | Μ      | P1[4] | Optional External Clock Input (EXTCLK).                                              |  |  |  |
| 16  | I/O     | Μ      | P1[6] |                                                                                      |  |  |  |
| 17  | Input   |        | XRES  | Active high external reset with internal pull down.                                  |  |  |  |
| 18  | I/O     | Μ      | P3[0] |                                                                                      |  |  |  |
| 19  | I/O     | Μ      | P3[2] |                                                                                      |  |  |  |
| 20  | I/O     | Μ      | P2[0] |                                                                                      |  |  |  |
| 21  | I/O     | Μ      | P2[2] |                                                                                      |  |  |  |
| 22  | I/O     | Μ      | P2[4] |                                                                                      |  |  |  |
| 23  | I/O     | Μ      | P2[6] |                                                                                      |  |  |  |
| 24  | I/O     | I, M   | P0[0] | Analog column mux input.                                                             |  |  |  |
| 25  | I/O     | I, M   | P0[2] | Analog column mux input.                                                             |  |  |  |
| 26  | I/O     | I, M   | P0[4] | Analog column mux input.                                                             |  |  |  |
| 27  | I/O     | I, M   | P0[6] | Analog column mux input.                                                             |  |  |  |
| 28  | Power   |        | Vdd   | Supply voltage.                                                                      |  |  |  |
| 29  | I/O     | I, M   | P0[7] | Analog column mux input.                                                             |  |  |  |
| 30  | I/O     | I, M   | P0[5] | Analog column mux input.                                                             |  |  |  |
| 31  | I/O     | I, M   | P0[3] | Analog column mux input, integrating input.                                          |  |  |  |
| 32  | Power   |        | Vss   | Ground connection.                                                                   |  |  |  |

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

<sup>Note
4. The center pad on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.</sup> 



### Table 7. Pin Definitions - CY8C21001 56-Pin (SSOP) (continued)

| Din No  | Тур     | e      | Din Nome | Description                                                                |  |  |  |  |
|---------|---------|--------|----------|----------------------------------------------------------------------------|--|--|--|--|
| PIN NO. | Digital | Analog | Pin Name | Description                                                                |  |  |  |  |
| 19      | I/O     |        | P3[3]    |                                                                            |  |  |  |  |
| 20      | I/O     |        | P3[1]    |                                                                            |  |  |  |  |
| 21      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 22      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 23      | I/O     |        | P1[7]    | I2C Serial Clock (SCL).                                                    |  |  |  |  |
| 24      | I/O     |        | P1[5]    | I2C Serial Data (SDA).                                                     |  |  |  |  |
| 25      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 26      | I/O     |        | P1[3]    | I <sub>FMTEST</sub> .                                                      |  |  |  |  |
| 27      | I/O     |        | P1[1]    | Crystal Input (XTALin), I2C Serial Clock (SCL), ISSP-SCLK <sup>[3]</sup>   |  |  |  |  |
| 28      | Power   |        | Vss      | Ground connection.                                                         |  |  |  |  |
| 29      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 30      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 31      | I/O     |        | P1[0]    | Crystal Output (XTALout), I2C Serial Data (SDA), ISSP-SDATA <sup>[3]</sup> |  |  |  |  |
| 32      | I/O     |        | P1[2]    | V <sub>FMTEST</sub> .                                                      |  |  |  |  |
| 33      | I/O     |        | P1[4]    | Optional External Clock Input (EXTCLK).                                    |  |  |  |  |
| 34      | I/O     |        | P1[6]    |                                                                            |  |  |  |  |
| 35      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 36      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 37      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 38      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 39      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 40      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 41      | Input   |        | XRES     | Active high external reset with internal pull down.                        |  |  |  |  |
| 42      | OCD     |        | HCLK     | OCD high-speed clock output.                                               |  |  |  |  |
| 43      | OCD     |        | CCLK     | OCD CPU clock output.                                                      |  |  |  |  |
| 44      | I/O     |        | P3[0]    |                                                                            |  |  |  |  |
| 45      | I/O     |        | P3[2]    |                                                                            |  |  |  |  |
| 46      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 47      |         |        | NC       | No connection.                                                             |  |  |  |  |
| 48      | I/O     |        | P2[0]    |                                                                            |  |  |  |  |
| 49      | I/O     |        | P2[2]    |                                                                            |  |  |  |  |
| 50      | I/O     |        | P2[4]    |                                                                            |  |  |  |  |
| 51      | I/O     |        | P2[6]    |                                                                            |  |  |  |  |
| 52      | I/O     | 1      | P0[0]    | Analog column mux input.                                                   |  |  |  |  |
| 53      | I/O     | I      | P0[2]    | Analog column mux input and column output.                                 |  |  |  |  |
| 54      | I/O     | I      | P0[4]    | Analog column mux input and column output.                                 |  |  |  |  |
| 55      | I/O     | l      | P0[6]    | Analog column mux input.                                                   |  |  |  |  |
| 56      | Power   |        | Vdd      | Supply voltage.                                                            |  |  |  |  |

**LEGEND**: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.



# **Register Reference**

This chapter lists the registers of the CY8C21x34 PSoC device. For detailed register information, refer the PSoC Programmable System-on-Chip Technical Reference Manual.

#### **Register Conventions**

The register conventions specific to this section are listed in Table 8.

#### Table 8. Register Conventions

| Convention | Description                  |
|------------|------------------------------|
| R          | Read register or bit(s)      |
| W          | Write register or bit(s)     |
| L          | Logical register or bit(s)   |
| С          | Clearable register or bit(s) |
| #          | Access is bit specific       |

### **Register Mapping Tables**

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XOI bit in the Flag register (CPU\_F) determines which bank the user is currently in. When the XOI bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and must not be accessed.

#### Table 9. Register Map 0 Table: User Space

| lame    | Addr<br>),Hex) | ccess | lame | Addr<br>),Hex) | ccess | lame     | Addr<br>),Hex) | ccess | lame     | Addr<br>),Hex) | ccess |
|---------|----------------|-------|------|----------------|-------|----------|----------------|-------|----------|----------------|-------|
| 2       | 9              | <     | 2    | , <u>e</u>     | <     | 2        | - <u>U</u>     | ◄     | 2        | ·9             | ∢     |
| PRIODR  | 00             | RW    |      | 40             |       | ASE10CR0 | 80             | RW    |          | C0             |       |
| PRTOIE  | 01             | RW    |      | 41             |       |          | 81             |       |          | C1             |       |
| PRT0GS  | 02             | RW    |      | 42             |       |          | 82             |       |          | C2             |       |
| PRT0DM2 | 03             | RW    |      | 43             |       |          | 83             |       |          | C3             |       |
| PRT1DR  | 04             | RW    |      | 44             |       | ASE11CR0 | 84             | RW    |          | C4             |       |
| PRT1IE  | 05             | RW    |      | 45             |       |          | 85             |       |          | C5             |       |
| PRT1GS  | 06             | RW    |      | 46             |       |          | 86             |       |          | C6             |       |
| PRT1DM2 | 07             | RW    |      | 47             |       |          | 87             |       |          | C7             |       |
| PRT2DR  | 08             | RW    |      | 48             |       |          | 88             |       |          | C8             |       |
| PRT2IE  | 09             | RW    |      | 49             |       |          | 89             |       |          | C9             |       |
| PRT2GS  | 0A             | RW    |      | 4A             |       |          | 8A             |       |          | CA             |       |
| PRT2DM2 | 0B             | RW    |      | 4B             |       |          | 8B             |       |          | CB             |       |
| PRT3DR  | 0C             | RW    |      | 4C             |       |          | 8C             |       |          | CC             |       |
| PRT3IE  | 0D             | RW    |      | 4D             |       |          | 8D             |       |          | CD             |       |
| PRT3GS  | 0E             | RW    |      | 4E             |       |          | 8E             |       |          | CE             | 1     |
| PRT3DM2 | 0F             | RW    |      | 4F             |       |          | 8F             |       |          | CF             |       |
|         | 10             |       |      | 50             |       |          | 90             |       | CUR_PP   | D0             | RW    |
|         | 11             |       |      | 51             |       |          | 91             |       | STK_PP   | D1             | RW    |
|         | 12             |       |      | 52             |       |          | 92             |       |          | D2             |       |
|         | 13             |       |      | 53             |       |          | 93             |       | IDX_PP   | D3             | RW    |
|         | 14             |       |      | 54             |       |          | 94             |       | MVR_PP   | D4             | RW    |
|         | 15             |       |      | 55             |       |          | 95             |       | MVW_PP   | D5             | RW    |
|         | 16             |       |      | 56             |       |          | 96             |       | I2C_CFG  | D6             | RW    |
|         | 17             |       |      | 57             |       |          | 97             |       | I2C_SCR  | D7             | #     |
|         | 18             |       |      | 58             |       |          | 98             |       | I2C_DR   | D8             | RW    |
|         | 19             |       |      | 59             |       |          | 99             |       | I2C_MSCR | D9             | #     |
|         | 1A             |       |      | 5A             |       |          | 9A             |       | INT_CLR0 | DA             | RW    |
|         | 1B             |       |      | 5B             |       |          | 9B             |       | INT_CLR1 | DB             | RW    |
|         | 1C             |       |      | 5C             |       |          | 9C             |       |          | DC             |       |
|         | 1D             |       |      | 5D             |       |          | 9D             |       | INT_CLR3 | DD             | RW    |
|         | 1E             |       |      | 5E             |       |          | 9E             |       | INT_MSK3 | DE             | RW    |
|         | 1F             |       |      | 5F             |       |          | 9F             |       |          | DF             |       |

Blank fields are Reserved and must not be accessed.

# Access is bit specific.



#### Table 10. Register Map 1 Table: Configuration Space (continued)

| Name    | Addr<br>(1,Hex) | Access | Name      | Addr<br>(1,Hex) | Access | Name    | Addr<br>(1,Hex) | Access | Name      | Addr<br>(1,Hex) | Access |
|---------|-----------------|--------|-----------|-----------------|--------|---------|-----------------|--------|-----------|-----------------|--------|
|         | 15              |        |           | 55              |        |         | 95              |        |           | D5              |        |
|         | 16              |        |           | 56              |        |         | 96              |        |           | D6              |        |
|         | 17              |        |           | 57              |        |         | 97              |        |           | D7              |        |
|         | 18              |        |           | 58              |        |         | 98              |        | MUX_CR0   | D8              | RW     |
|         | 19              |        |           | 59              |        |         | 99              |        | MUX_CR1   | D9              | RW     |
|         | 1A              |        |           | 5A              |        |         | 9A              |        | MUX_CR2   | DA              | RW     |
|         | 1B              |        |           | 5B              |        |         | 9B              |        | MUX_CR3   | DB              | RW     |
|         | 1C              |        |           | 5C              |        |         | 9C              |        |           | DC              |        |
|         | 1D              |        |           | 5D              |        |         | 9D              |        | OSC_GO_EN | DD              | RW     |
|         | 1E              |        |           | 5E              |        |         | 9E              |        | OSC_CR4   | DE              | RW     |
|         | 1F              |        |           | 5F              |        |         | 9F              |        | OSC_CR3   | DF              | RW     |
| DBB00FN | 20              | RW     | CLK_CR0   | 60              | RW     |         | A0              |        | OSC_CR0   | E0              | RW     |
| DBB00IN | 21              | RW     | CLK_CR1   | 61              | RW     |         | A1              |        | OSC_CR1   | E1              | RW     |
| DBB00OU | 22              | RW     | ABF_CR0   | 62              | RW     |         | A2              |        | OSC_CR2   | E2              | RW     |
|         | 23              |        | AMD_CR0   | 63              | RW     |         | A3              |        | VLT_CR    | E3              | RW     |
| DBB01FN | 24              | RW     | CMP_GO_EN | 64              | RW     |         | A4              |        | VLT_CMP   | E4              | R      |
| DBB01IN | 25              | RW     |           | 65              |        |         | A5              |        | ADC0_TR   | E5              | RW     |
| DBB01OU | 26              | RW     | AMD_CR1   | 66              | RW     |         | A6              |        | ADC1_TR   | E6              | RW     |
|         | 27              |        | ALT_CR0   | 67              | RW     |         | A7              |        |           | E7              |        |
| DCB02FN | 28              | RW     |           | 68              |        |         | A8              |        | IMO_TR    | E8              | W      |
| DCB02IN | 29              | RW     |           | 69              |        |         | A9              |        | ILO_TR    | E9              | W      |
| DCB02OU | 2A              | RW     |           | 6A              |        |         | AA              |        | BDG_TR    | EA              | RW     |
|         | 2B              |        | CLK_CR3   | 6B              | RW     |         | AB              |        | ECO_TR    | EB              | W      |
| DCB03FN | 2C              | RW     | TMP_DR0   | 6C              | RW     |         | AC              |        |           | EC              |        |
| DCB03IN | 2D              | RW     | TMP_DR1   | 6D              | RW     |         | AD              |        |           | ED              |        |
| DCB03OU | 2E              | RW     | TMP_DR2   | 6E              | RW     |         | AE              |        |           | EE              |        |
|         | 2F              |        | TMP_DR3   | 6F              | RW     |         | AF              |        |           | EF              |        |
|         | 30              |        |           | 70              |        | RDIORI  | B0              | RW     |           | F0              |        |
|         | 31              |        |           | 71              |        | RDIOSYN | B1              | RW     |           | F1              |        |
|         | 32              |        | ACE00CR1  | 72              | RW     | RDI0IS  | B2              | RW     |           | F2              |        |
|         | 33              |        | ACE00CR2  | 73              | RW     | RDI0LT0 | B3              | RW     |           | F3              |        |
|         | 34              |        |           | 74              |        | RDI0LT1 | B4              | RW     |           | F4              |        |
|         | 35              |        |           | 75              |        | RDI0RO0 | B5              | RW     |           | F5              |        |
|         | 36              |        | ACE01CR1  | 76              | RW     | RDI0RO1 | B6              | RW     |           | F6              |        |
|         | 37              |        | ACE01CR2  | 77              | RW     |         | B7              |        | CPU_F     | F7              | RL     |
|         | 38              |        |           | 78              |        |         | B8              |        |           | F8              |        |
|         | 39              |        |           | 79              |        |         | B9              |        |           | F9              |        |
|         | 3A              |        |           | 7A              |        |         | BA              |        | FLS_PR1   | FA              | RW     |
|         | 3B              |        |           | 7B              |        |         | BB              |        |           | FB              |        |
|         | 3C              |        |           | 7C              |        |         | BC              |        |           | FC              |        |
|         | 3D              |        |           | 7D              |        |         | BD              |        | DAC_CR    | FD              | RW     |
|         | 3E              |        |           | 7E              |        |         | BE              |        | CPU_SCR1  | FE              | #      |
|         | 3F              |        |           | 7F              |        |         | BF              |        | CPU_SCR0  | FF              | #      |

Blank fields are Reserved and must not be accessed.

# Access is bit specific.



#### Table 16. 2.7V DC GPIO Specifications (continued)

| Symbol           | Description                       | Min | Тур | Max | Units | Notes                                      |
|------------------|-----------------------------------|-----|-----|-----|-------|--------------------------------------------|
| V <sub>IH</sub>  | Input High Level                  | 2.0 | -   | -   | V     | Vdd = 2.4 to 3.0.                          |
| V <sub>H</sub>   | Input Hysteresis                  | 1   | 90  | 1   | mV    |                                            |
| IIL              | Input Leakage (Absolute Value)    | -   | 1   | -   | nA    | Gross tested to 1 $\mu$ A.                 |
| C <sub>IN</sub>  | Capacitive Load on Pins as Input  | -   | 3.5 | 10  | pF    | Package and pin dependent.<br>Temp = 25ºC. |
| C <sub>OUT</sub> | Capacitive Load on Pins as Output | -   | 3.5 | 10  | pF    | Package and pin dependent.<br>Temp = 25°C. |

DC Operational Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, 3.0V to 3.6V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, or 2.4V to 3.0V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.

#### Table 17. 5V DC Operational Amplifier Specifications

| Symbol                           | Description                                | Min | Тур | Мах     | Units | Notes                                      |
|----------------------------------|--------------------------------------------|-----|-----|---------|-------|--------------------------------------------|
| V <sub>OSOA</sub>                | Input Offset Voltage (absolute value)      | -   | 2.5 | 15      | mV    |                                            |
| TCV <sub>OSOA</sub>              | Average Input Offset Voltage Drift         | -   | 10  | -       | μV/ºC |                                            |
| I <sub>EBOA</sub> <sup>[5]</sup> | Input Leakage Current (Port 0 Analog Pins) | -   | 200 | -       | pА    | Gross tested to 1 $\mu$ A.                 |
| C <sub>INOA</sub>                | Input Capacitance (Port 0 Analog Pins)     | -   | 4.5 | 9.5     | pF    | Package and pin dependent.<br>Temp = 25°C. |
| V <sub>CMOA</sub>                | Common Mode Voltage Range                  | 0.0 | -   | Vdd - 1 | V     |                                            |
| G <sub>OLOA</sub>                | Open Loop Gain                             | -   | 80  | -       | dB    |                                            |
| I <sub>SOA</sub>                 | Amplifier Supply Current                   | _   | 10  | 30      | μA    |                                            |

#### Table 18. 3.3V DC Operational Amplifier Specifications

| Symbol                           | Description                                | Min | Тур | Мах     | Units | Notes                                      |
|----------------------------------|--------------------------------------------|-----|-----|---------|-------|--------------------------------------------|
| V <sub>OSOA</sub>                | Input Offset Voltage (absolute value)      | -   | 2.5 | 15      | mV    |                                            |
| TCV <sub>OSOA</sub>              | Average Input Offset Voltage Drift         | -   | 10  | -       | μV/ºC |                                            |
| I <sub>EBOA</sub> <sup>[5]</sup> | Input Leakage Current (Port 0 Analog Pins) | -   | 200 | -       | pА    | Gross tested to 1 µA.                      |
| C <sub>INOA</sub>                | Input Capacitance (Port 0 Analog Pins)     | -   | 4.5 | 9.5     | pF    | Package and pin dependent.<br>Temp = 25ºC. |
| V <sub>CMOA</sub>                | Common Mode Voltage Range                  | 0   | -   | Vdd - 1 | V     |                                            |
| G <sub>OLOA</sub>                | Open Loop Gain                             | -   | 80  | -       | dB    |                                            |
| I <sub>SOA</sub>                 | Amplifier Supply Current                   | -   | 10  | 30      | μA    |                                            |

#### Note

5. Atypical behavior: I<sub>EBOA</sub> of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.



### Table 19. 2.7V DC Operational Amplifier Specifications

| Symbol                           | Description                                | Min | Тур | Мах     | Units | Notes                                      |
|----------------------------------|--------------------------------------------|-----|-----|---------|-------|--------------------------------------------|
| V <sub>OSOA</sub>                | Input Offset Voltage (absolute value)      | _   | 2.5 | 15      | mV    |                                            |
| TCV <sub>OSOA</sub>              | Average Input Offset Voltage Drift         | _   | 10  | _       | μV/ºC |                                            |
| I <sub>EBOA</sub> <sup>[5]</sup> | Input Leakage Current (Port 0 Analog Pins) | -   | 200 | -       | pА    | Gross tested to 1 µA.                      |
| C <sub>INOA</sub>                | Input Capacitance (Port 0 Analog Pins)     | _   | 4.5 | 9.5     | pF    | Package and pin dependent.<br>Temp = 25ºC. |
| V <sub>CMOA</sub>                | Common Mode Voltage Range                  | 0   | -   | Vdd - 1 | V     |                                            |
| G <sub>OLOA</sub>                | Open Loop Gain                             | _   | 80  | _       | dB    |                                            |
| I <sub>SOA</sub>                 | Amplifier Supply Current                   | -   | 10  | 30      | μA    |                                            |

#### DC Low Power Comparator Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq T_A \leq 85^{\circ}$ C, 3.0V to 3.6V and -40°C  $\leq T_A \leq 85^{\circ}$ C, or 2.4V to 3.0V and -40°C  $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only.

#### Table 20. DC Low Power Comparator Specifications

| Symbol              | Description                                        | Min | Тур | Max     | Units | Notes |
|---------------------|----------------------------------------------------|-----|-----|---------|-------|-------|
| V <sub>REFLPC</sub> | Low power comparator (LPC) reference voltage range | 0.2 | _   | Vdd - 1 | V     |       |
| I <sub>SLPC</sub>   | LPC supply current                                 | -   | 10  | 40      | μΑ    |       |
| V <sub>OSLPC</sub>  | LPC voltage offset                                 | -   | 2.5 | 30      | mV    |       |

#### DC Switch Mode Pump Specifications

Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq T_A \leq 85^{\circ}$ C, 3.0V to 3.6V and -40°C  $\leq T_A \leq 85^{\circ}$ C, or 2.4V to 3.0V and -40°C  $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.

#### Table 21. DC Switch Mode Pump (SMP) Specifications

| Symbol                    | Description                                                                                                                               | Min         | Тур  | Max  | Units          | Notes                                                                                                                                                   |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>PUMP5V</sub>       | 5V Output Voltage from Pump                                                                                                               | 4.75        | 5.0  | 5.25 | V              | Configuration of footnote. <sup>[6]</sup><br>Average, neglecting ripple.<br>SMP trip voltage is set to 5.0V.                                            |
| V <sub>PUMP3V</sub>       | 3.3V Output Voltage from Pump                                                                                                             | 3.00        | 3.25 | 3.60 | V              | Configuration of footnote. <sup>[6]</sup><br>Average, neglecting ripple.<br>SMP trip voltage is set to 3.25V.                                           |
| V <sub>PUMP2V</sub>       | 2.6V Output Voltage from Pump                                                                                                             | 2.45        | 2.55 | 2.80 | $\vee$         | Configuration of footnote. <sup>[6]</sup><br>Average, neglecting ripple.<br>SMP trip voltage is set to 2.55V.                                           |
| I <sub>PUMP</sub>         | Available Output Current<br>$V_{BAT} = 1.8V, V_{PUMP} = 5.0V$<br>$V_{BAT} = 1.5V, V_{PUMP} = 3.25V$<br>$V_{BAT} = 1.3V, V_{PUMP} = 2.55V$ | 5<br>8<br>8 |      |      | mA<br>mA<br>mA | Configuration of footnote. <sup>[6]</sup><br>SMP trip voltage is set to 5.0V.<br>SMP trip voltage is set to 3.25V.<br>SMP trip voltage is set to 2.55V. |
| V <sub>BAT5V</sub>        | Input Voltage Range from Battery                                                                                                          | 1.8         | -    | 5.0  | V              | Configuration of footnote. <sup>[6]</sup><br>SMP trip voltage is set to 5.0V.                                                                           |
| V <sub>BAT3V</sub>        | Input Voltage Range from Battery                                                                                                          | 1.0         | -    | 3.3  | V              | Configuration of footnote. <sup>[6]</sup><br>SMP trip voltage is set to 3.25V.                                                                          |
| V <sub>BAT2V</sub>        | Input Voltage Range from Battery                                                                                                          | 1.0         | -    | 2.8  | V              | Configuration of footnote. <sup>[6]</sup><br>SMP trip voltage is set to 2.55V.                                                                          |
| V <sub>BATSTA</sub><br>RT | Minimum Input Voltage from Battery to Start<br>Pump                                                                                       | 1.2         | _    | _    | V              | Configuration of footnote. <sup>[6]</sup><br>$0^{o}C \le T_{A} \le 100. 1.25V$ at $T_{A} = -40^{o}C$ .                                                  |



#### DC Analog Mux Bus Specifications

Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, 3.0V to 3.6V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, or 2.4V to 3.0V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.

#### Table 22. DC Analog Mux Bus Specifications

| Symbol           | Description                                | Min | Тур | Max        | Units  | Notes                                                                       |
|------------------|--------------------------------------------|-----|-----|------------|--------|-----------------------------------------------------------------------------|
| R <sub>SW</sub>  | Switch Resistance to Common Analog Bus     | -   | -   | 400<br>800 | W<br>W | $\begin{array}{l} Vdd \geq \ 2.7V \\ 2.4V \leq Vdd \leq \ 2.7V \end{array}$ |
| R <sub>VDD</sub> | Resistance of Initialization Switch to Vdd | -   | -   | 800        | W      |                                                                             |

#### DC POR and LVD Specifications

Table 23 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, 3.0V to 3.6V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, or 2.4V to 3.0V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.

#### Table 23. DC POR and LVD Specifications

| Symbol                                                                       | Description                                                                                                                                                             | Min                                                          | Тур                                                          | Max                                                                                              | Units                                     | Notes                                                                                                               |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| V <sub>PPOR0</sub><br>V <sub>PPOR1</sub><br>V <sub>PPOR2</sub>               | Vdd Value for PPOR Trip<br>PORLEV[1:0] = 00b<br>PORLEV[1:0] = 01b<br>PORLEV[1:0] = 10b                                                                                  | -                                                            | 2.36<br>2.82<br>4.55                                         | 2.40<br>2.95<br>4.70                                                                             | V<br>V<br>V                               | Vdd must be greater than or equal<br>to 2.5V during startup, reset from<br>the XRES pin, or reset from<br>Watchdog. |
| VLVD0<br>VLVD1<br>VLVD2<br>VLVD3<br>VLVD4<br>VLVD5<br>VLVD6<br>VLVD7         | Vdd Value for LVD Trip<br>VM[2:0] = 000b<br>VM[2:0] = 001b<br>VM[2:0] = 010b<br>VM[2:0] = 011b<br>VM[2:0] = 100b<br>VM[2:0] = 101b<br>VM[2:0] = 110b<br>VM[2:0] = 111b  | 2.40<br>2.85<br>2.95<br>3.06<br>4.37<br>4.50<br>4.62<br>4.71 | 2.45<br>2.92<br>3.02<br>3.13<br>4.48<br>4.64<br>4.73<br>4.81 | 2.51 <sup>[7]</sup><br>2.99 <sup>[8]</sup><br>3.09<br>3.20<br>4.55<br>4.75<br>4.83<br>4.95       | V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V |                                                                                                                     |
| Vpump0<br>Vpump1<br>Vpump2<br>Vpump3<br>Vpump4<br>Vpump5<br>Vpump6<br>Vpump7 | Vdd Value for PUMP Trip<br>VM[2:0] = 000b<br>VM[2:0] = 001b<br>VM[2:0] = 010b<br>VM[2:0] = 011b<br>VM[2:0] = 100b<br>VM[2:0] = 101b<br>VM[2:0] = 110b<br>VM[2:0] = 111b | 2.45<br>2.96<br>3.03<br>3.18<br>4.54<br>4.62<br>4.71<br>4.89 | 2.55<br>3.02<br>3.10<br>3.25<br>4.64<br>4.73<br>4.82<br>5.00 | $\begin{array}{c} 2.62^{[9]}\\ 3.09\\ 3.16\\ 3.32^{[10]}\\ 4.74\\ 4.83\\ 4.92\\ 5.12\end{array}$ | V V V V V V V                             |                                                                                                                     |

Notes

- Always greater than 50 mV above V<sub>PPOR</sub> (PORLEV = 00) for falling supply.
- 8. Always greater than 50 mV above  $V_{PPOR}$  (PORLEV = 01) for falling supply. 9. Always greater than 50 mV above  $V_{LVD0}$ .
- 10. Always greater than 50 mV above V<sub>LVD3</sub>.



#### AC General Purpose IO Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, 3.0V to 3.6V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, or 2.4V to 3.0V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.

#### Table 27. 5V and 3.3V AC GPIO Specifications

| Symbol            | Description                                  | Min | Тур | Max | Units | Notes                         |
|-------------------|----------------------------------------------|-----|-----|-----|-------|-------------------------------|
| F <sub>GPIO</sub> | GPIO Operating Frequency                     | 0   | -   | 12  | MHz   | Normal Strong Mode            |
| TRiseF            | Rise Time, Normal Strong Mode, Cload = 50 pF | 3   | -   | 18  | ns    | Vdd = 4.5 to 5.25V, 10% - 90% |
| TFallF            | Fall Time, Normal Strong Mode, Cload = 50 pF | 2   | -   | 18  | ns    | Vdd = 4.5 to 5.25V, 10% - 90% |
| TRiseS            | Rise Time, Slow Strong Mode, Cload = 50 pF   | 7   | 27  | -   | ns    | Vdd = 3 to 5.25V, 10% - 90%   |
| TFallS            | Fall Time, Slow Strong Mode, Cload = 50 pF   | 7   | 22  | _   | ns    | Vdd = 3 to 5.25V, 10% - 90%   |

#### Table 28. 2.7V AC GPIO Specifications

| Symbol            | Description                                  | Min | Тур | Max | Units | Notes                        |
|-------------------|----------------------------------------------|-----|-----|-----|-------|------------------------------|
| F <sub>GPIO</sub> | GPIO Operating Frequency                     | 0   | -   | 3   | MHz   | Normal Strong Mode           |
| TRiseF            | Rise Time, Normal Strong Mode, Cload = 50 pF | 6   | -   | 50  | ns    | Vdd = 2.4 to 3.0V, 10% - 90% |
| TFallF            | Fall Time, Normal Strong Mode, Cload = 50 pF | 6   | -   | 50  | ns    | Vdd = 2.4 to 3.0V, 10% - 90% |
| TRiseS            | Rise Time, Slow Strong Mode, Cload = 50 pF   | 18  | 40  | 120 | ns    | Vdd = 2.4 to 3.0V, 10% - 90% |
| TFallS            | Fall Time, Slow Strong Mode, Cload = 50 pF   | 18  | 40  | 120 | ns    | Vdd = 2.4 to 3.0V, 10% - 90% |

#### Figure 18. GPIO Timing Diagram



#### AC Operational Amplifier Specifications

Table 29 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq T_A \leq 85^{\circ}$ C, 3.0V to 3.6V and -40°C  $\leq T_A \leq 85^{\circ}$ C, or 2.4V to 3.0V and -40°C  $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.

#### Table 29. AC Operational Amplifier Specifications

| Symbol            | Description                                       | Min | Тур | Max        | Units    | Notes                             |
|-------------------|---------------------------------------------------|-----|-----|------------|----------|-----------------------------------|
| T <sub>COMP</sub> | Comparator Mode Response Time, 50 mV<br>Overdrive |     |     | 100<br>200 | ns<br>ns | Vdd ≥ 3.0V.<br>2.4V < Vcc < 3.0V. |

#### AC Low Power Comparator Specifications

Table 30 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq T_A \leq 85^{\circ}$ C, 3.0V to 3.6V and -40°C  $\leq T_A \leq 85^{\circ}$ C, or 2.4V to 3.0V and -40°C  $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 30. AC Low Power Comparator Specifications

| Symbol            | Description       | Min | Тур | Мах | Units | Notes                                                                        |
|-------------------|-------------------|-----|-----|-----|-------|------------------------------------------------------------------------------|
| T <sub>RLPC</sub> | LPC response time | -   | -   | 50  | μS    | $\geq$ 50 mV overdrive comparator reference set within V <sub>REFLPC</sub> . |



# CY8C21634, CY8C21534 CY8C21434, CY8C21334, CY8C21234

#### Table 33. 2.7V AC Digital Block Specifications

| Function                | Description                                | Min                 | Тур | Max  | Units | Notes                                                   |
|-------------------------|--------------------------------------------|---------------------|-----|------|-------|---------------------------------------------------------|
| All<br>Functions        | Maximum Block Clocking Frequency           |                     |     | 12.7 | MHz   | 2.4V < Vdd < 3.0V.                                      |
| Timer                   | Capture Pulse Width                        | 100 <sup>[20]</sup> | _   | _    | ns    |                                                         |
|                         | Maximum Frequency, With or Without Capture | -                   | _   | 12.7 | MHz   |                                                         |
| Counter                 | Enable Pulse Width                         | 100                 | -   | -    | ns    |                                                         |
|                         | Maximum Frequency, No Enable Input         | -                   | -   | 12.7 | MHz   |                                                         |
|                         | Maximum Frequency, Enable Input            | -                   | -   | 12.7 | MHz   |                                                         |
| Dead Band               | Kill Pulse Width:                          |                     |     |      |       |                                                         |
|                         | Asynchronous Restart Mode                  | 20                  | -   | -    | ns    |                                                         |
|                         | Synchronous Restart Mode                   | 100                 | -   | -    | ns    |                                                         |
|                         | Disable Mode                               | 100                 | -   | -    | ns    |                                                         |
|                         | Maximum Frequency                          | -                   | -   | 12.7 | MHz   |                                                         |
| CRCPRS<br>(PRS<br>Mode) | Maximum Input Clock Frequency              | -                   | _   | 12.7 | MHz   |                                                         |
| CRCPRS<br>(CRC<br>Mode) | Maximum Input Clock Frequency              | -                   | -   | 12.7 | MHz   |                                                         |
| SPIM                    | Maximum Input Clock Frequency              | -                   | _   | 6.35 | MHz   | Maximum data rate at 3.17 MHz due to 2 x over clocking. |
| SPIS                    | Maximum Input Clock Frequency              | -                   | -   | 4.1  | MHz   |                                                         |
|                         | Width of SS_Negated Between Transmissions  | 100                 | -   | -    | ns    |                                                         |
| Transmitter             | Maximum Input Clock Frequency              | -                   | _   | 12.7 | MHz   | Maximum data rate at 1.59 MHz due to 8 x over clocking. |
| Receiver                | Maximum Input Clock Frequency              | -                   | _   | 12.7 | MHz   | Maximum data rate at 1.59 MHz due to 8 x over clocking. |

#### AC External Clock Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, or 3.0V to 3.6V and -40°C  $\leq$  T<sub>A</sub>  $\leq$  85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.

#### Table 34. 5V AC External Clock Specifications

| Symbol  | Description            | Min   | Тур | Мах  | Units |
|---------|------------------------|-------|-----|------|-------|
| FOSCEXT | Frequency              | 0.093 | -   | 24.6 | MHz   |
| -       | High Period            | 20.6  | -   | 5300 | ns    |
| -       | Low Period             | 20.6  | -   | -    | ns    |
| -       | Power Up IMO to Switch | 150   | -   | -    | μS    |

Note 20. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).



### Table 35. 3.3V AC External Clock Specifications

| Symbol              | Description                                     | Min   | Тур | Max  | Units | Notes                                                                                                                                                                                                                              |
|---------------------|-------------------------------------------------|-------|-----|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>OSCEXT</sub> | Frequency with CPU Clock divide by 1            | 0.093 | _   | 12.3 | MHz   | Maximum CPU frequency is 12<br>MHz at 3.3V. With the CPU clock<br>divider set to 1, the external clock<br>must adhere to the maximum<br>frequency and duty cycle<br>requirements.                                                  |
| F <sub>OSCEXT</sub> | Frequency with CPU Clock divide by 2 or greater | 0.186 | _   | 24.6 | MHz   | If the frequency of the external clock<br>is greater than 12 MHz, the CPU<br>clock divider must be set to 2 or<br>greater. In this case, the CPU clock<br>divider ensures that the fifty percent<br>duty cycle requirement is met. |
| _                   | High Period with CPU Clock divide by 1          | 41.7  | _   | 5300 | ns    |                                                                                                                                                                                                                                    |
| -                   | Low Period with CPU Clock divide by 1           | 41.7  | -   | -    | ns    |                                                                                                                                                                                                                                    |
| -                   | Power Up IMO to Switch                          | 150   | -   | -    | μS    |                                                                                                                                                                                                                                    |

#### Table 36. 2.7V AC External Clock Specifications

| Symbol              | Description                                     | Min   | Тур | Мах  | Units | Notes                                                                                                                                                                                                                             |
|---------------------|-------------------------------------------------|-------|-----|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>OSCEXT</sub> | Frequency with CPU Clock divide by 1            | 0.093 | -   | 3.08 | MHz   | Maximum CPU frequency is 3 MHz<br>at 2.7V. With the CPU clock divider<br>set to 1, the external clock must<br>adhere to the maximum frequency<br>and duty cycle requirements.                                                     |
| F <sub>OSCEXT</sub> | Frequency with CPU Clock divide by 2 or greater | 0.186 | _   | 6.35 | MHz   | If the frequency of the external clock<br>is greater than 3 MHz, the CPU<br>clock divider must be set to 2 or<br>greater. In this case, the CPU clock<br>divider ensures that the fifty percent<br>duty cycle requirement is met. |
| -                   | High Period with CPU Clock divide by 1          | 160   | _   | 5300 | ns    |                                                                                                                                                                                                                                   |
| -                   | Low Period with CPU Clock divide by 1           | 160   | -   | -    | ns    |                                                                                                                                                                                                                                   |
| -                   | Power Up IMO to Switch                          | 150   | _   | _    | μS    |                                                                                                                                                                                                                                   |

#### AC Programming Specifications

Table 37 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  $\leq T_A \leq 85^{\circ}$ C, or 3.0V to 3.6V and -40°C  $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.

#### Table 37. AC Programming Specifications

| Symbol              | Description                              | Min | Тур | Max | Units | Notes |
|---------------------|------------------------------------------|-----|-----|-----|-------|-------|
| T <sub>RSCLK</sub>  | Rise Time of SCLK                        | 1   | -   | 20  | ns    |       |
| T <sub>FSCLK</sub>  | Fall Time of SCLK                        | 1   | —   | 20  | ns    |       |
| T <sub>SSCLK</sub>  | Data Set up Time to Falling Edge of SCLK | 40  | -   | -   | ns    |       |
| T <sub>HSCLK</sub>  | Data Hold Time from Falling Edge of SCLK | 40  | -   | -   | ns    |       |
| F <sub>SCLK</sub>   | Frequency of SCLK                        | 0   | —   | 8   | MHz   |       |
| T <sub>ERASEB</sub> | Flash Erase Time (Block)                 | -   | 15  | -   | ms    |       |



| Symbol                | Description                                                                                        | Standa | rd Mode | Fast Mode |     | Unito |
|-----------------------|----------------------------------------------------------------------------------------------------|--------|---------|-----------|-----|-------|
| Symbol                | Description                                                                                        | Min    | Max     | Min       | Max | Units |
| F <sub>SCLI2C</sub>   | SCL Clock Frequency                                                                                | 0      | 100     | -         | -   | kHz   |
| T <sub>HDSTAI2C</sub> | Hold Time (repeated) START Condition.<br>After this period, the first clock pulse is<br>generated. | 4.0    | _       | -         | _   | μS    |
| T <sub>LOWI2C</sub>   | LOW Period of the SCL Clock                                                                        | 4.7    | -       | -         | -   | μS    |
| T <sub>HIGHI2C</sub>  | HIGH Period of the SCL Clock                                                                       | 4.0    | -       | -         | -   | μS    |
| T <sub>SUSTAI2C</sub> | Set up Time for a Repeated START<br>Condition                                                      | 4.7    | -       | -         | -   | μS    |
| T <sub>HDDATI2C</sub> | Data Hold Time                                                                                     | 0      | -       | -         | -   | μS    |
| T <sub>SUDATI2C</sub> | Data Set-up Time                                                                                   | 250    | -       | -         | -   | ns    |
| T <sub>SUSTOI2C</sub> | Set up Time for STOP Condition                                                                     | 4.0    | -       | -         | -   | μS    |
| T <sub>BUFI2C</sub>   | Bus Free Time Between a STOP and START Condition                                                   | 4.7    | -       | -         | -   | μS    |
| T <sub>SPI2C</sub>    | Pulse Width of spikes are suppressed by the input filter.                                          | _      | -       | -         | -   | ns    |

# Table 39. 2.7V AC Characteristics of the I<sup>2</sup>C SDA and SCL Pins (Fast Mode not Supported)







# **Packaging Information**

This section shows the packaging specifications for the CY8C21x34 PSoC device with the thermal impedances for each package.

**Important Note** Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at <a href="http://www.cypress.com/design/MR10161">http://www.cypress.com/design/MR10161</a>.

### **Packaging Dimensions**



Page 34 of 45



#### CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

#### CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. Special features of the board include both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of bread boarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB Board
- LCD Module
- MIniProg Programming Unit
- Mini USB Cable
- PSoC Designer and Example Projects CD
- Getting Started Guide
- Wire Pack

#### Accessories (Emulation and Programming)

#### Table 42. Emulation and Programming Accessories

#### Flex-Pod Kit<sup>[25]</sup> Foot Kit<sup>[26]</sup> Part # Pin Package Adapter CY8C21234-24S 16 SOIC CY3250-21X34 CY3250-16SOIC-FK Programming adapter converts non-DIP package to DIP CY8C21334-24PVXI 20 SSOP CY3250-21X34 CY3250-20SSOP-FK footprint Specific details and CY8C2 of CY8C2 CY8C2

#### Third-Party Tools

Several tools have been specially designed by the following 3rd-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under DESIGN RESOURCES >> Evaluation Boards.

#### **Device Programmers**

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- 3 Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

#### CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment. Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

| Party Tools Build a PSoC Emulator into Your Board |         |                 |                  |                                  |  |  |  |
|---------------------------------------------------|---------|-----------------|------------------|----------------------------------|--|--|--|
| 1634-24LFXI                                       | 32 QFN  | CY3250-21X34QFN | CY3250-32QFN-FK  | าแp.//www.emulation.com.         |  |  |  |
| 1534-24PVXI                                       | 28 SSOP | CY3250-21X34    | CY3250-28SSOP-FK | the adapters can be found at     |  |  |  |
| 1434-24LFXI                                       | 32 QFN  | CY3250-21X34QFN | CY3250-32QFN-FK  | ordering information for each of |  |  |  |

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, see Application Note AN2323 "Debugging - Build a PSoC Emulator into Your Board".

#### Notes

25. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods. 26. Foot kit includes surface mount feet that can be soldered to the target PCB.



# Sales, Solutions, and Legal Information

#### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

| Products         |                      | PSoc Solutions        |                                   |
|------------------|----------------------|-----------------------|-----------------------------------|
| PSoC             | psoc.cypress.com     | General               | psoc.cypress.com/solutions        |
| Clocks & Buffers | clocks.cypress.com   | Low Power/Low Voltage | psoc.cypress.com/low-power        |
| Wireless         | wireless.cypress.com | Precision Analog      | psoc.cypress.com/precision-analog |
| Memories         | memory.cypress.com   | LCD Drive             | psoc.cypress.com/lcd-drive        |
| Image Sensors    | image.cypress.com    | CAN 2.0b              | psoc.cypress.com/can              |
|                  |                      | USB                   | psoc.cypress.com/usb              |

© Cypress Semiconductor Corporation, 2004-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

#### Document Number: 38-12025 Rev. \*P

#### Revised April 15, 2009

Page 45 of 45

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.