

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1516-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Pin Utilization

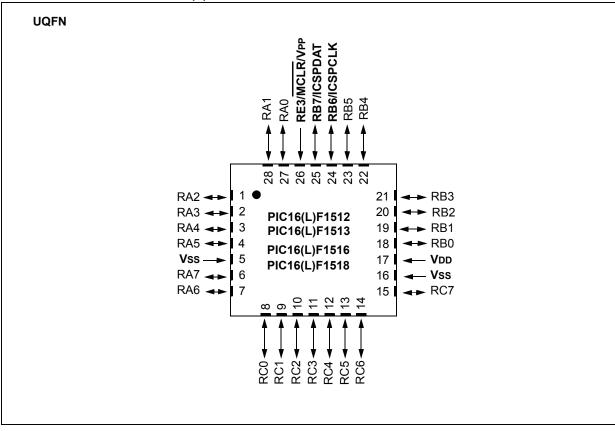
Five pins are needed for ICSP[™] programming. The pins are listed in Table 1-1 and Table 1-2.

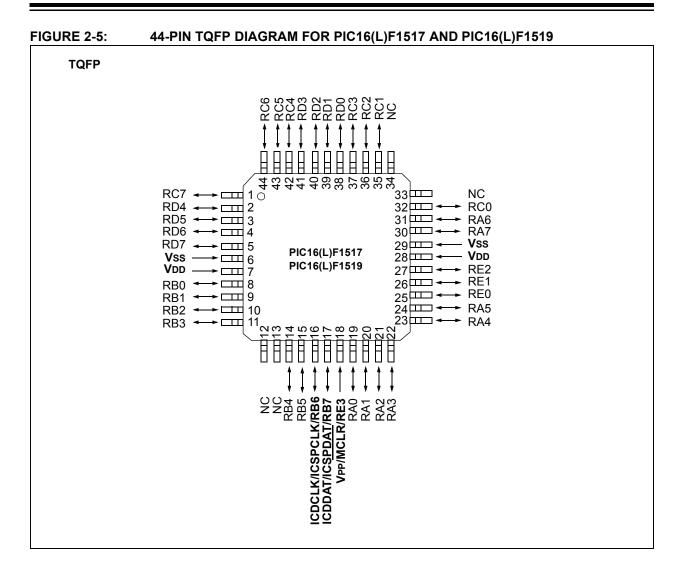
Pin Name	During Programming			
	Function	Pin Type	Pin Description	
RB6	ICSPCLK	l	Clock Input – Schmitt Trigger Input	
RB7	ICSPDAT	I/O	Data Input/Output – Schmitt Trigger Input	
RG5/MCLR/VPP	Program/Verify mode	P ⁽¹⁾	Program Mode Select/Programming Power Supply	
Vdd	Vdd	Р	Power Supply	
Vss	Vss	Р	Ground	

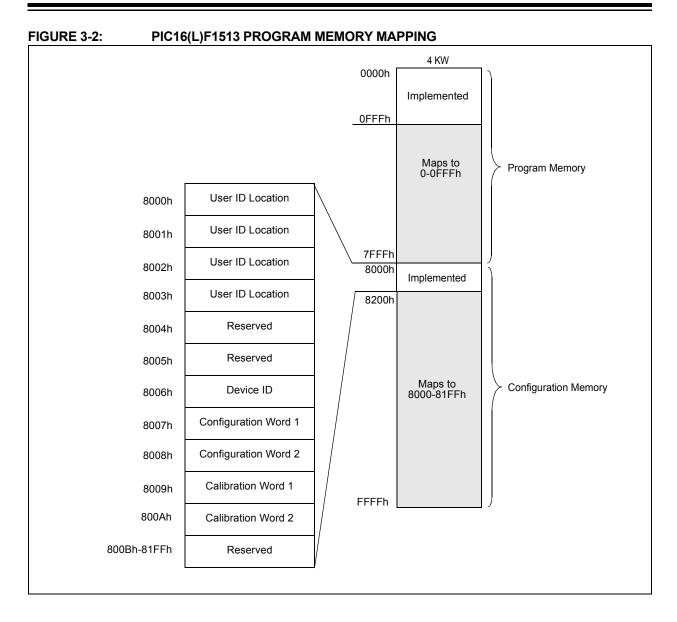
TABLE 1-1: PIN DESCRIPTIONS DURING PROGRAMMING – PIC16(L)F1526 AND PIC16(L)F1527

Legend: I = Input, O = Output, P = Power

Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.


TABLE 1-2:PIN DESCRIPTIONS DURING PROGRAMMING – PIC16(L)F1512, PIC16(L)F1513,
PIC16(L)F1516, PIC16(L)F1517, PIC16(L)F1518 and PIC16(L)F1519


Pin Name	During Programming			
	Function	Pin Type	Pin Description	
RB6	ICSPCLK	I	Clock Input – Schmitt Trigger Input	
RB7	ICSPDAT	I/O	Data Input/Output – Schmitt Trigger Input	
RE3/MCLR/VPP	Program/Verify mode	P ⁽¹⁾	Program Mode Select/Programming Power Supply	
Vdd	Vdd	Р	Power Supply	
Vss	Vss	Р	Ground	


Legend: I = Input, O = Output, P = Power

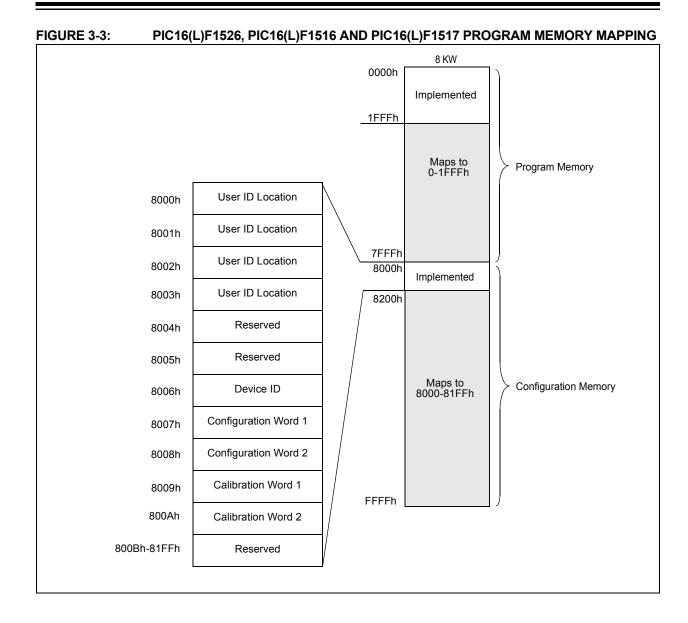

Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.

FIGURE 2-2: 28-PIN UQFN DIAGRAM FOR PIC16(L)F1512, PIC16(L)F1513, PIC16(L)F1516 AND PIC16(L)F1518

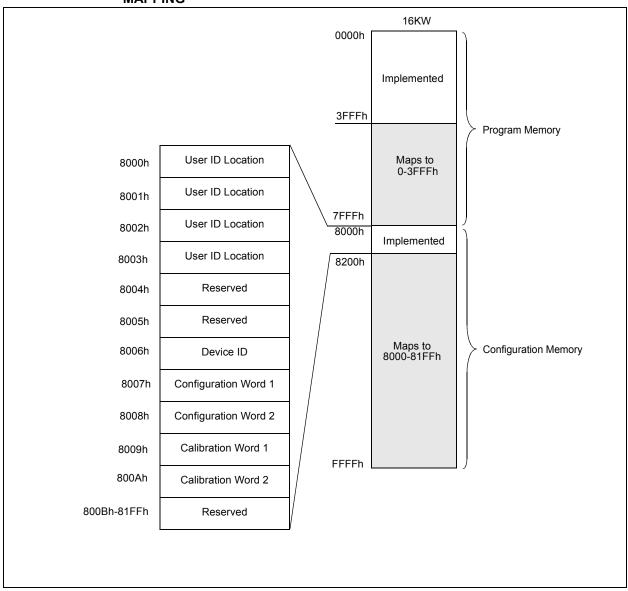
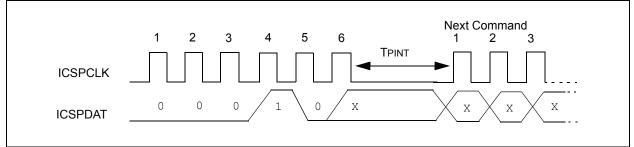


FIGURE 3-4: PIC16(L)F1527, PIC16(L)F1518 AND PIC16(L)F1519 PROGRAM MEMORY MAPPING

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	
		LVP	DEBUG	LPBOR	BORV	STVREN	_	
		bit 13					bit	
U-1	U-1	U-1	R/P-1	U-1	U-1	R/P-1	R/P-1	
_	_	_	VCAPEN ⁽²⁾	_	_	WRT<	1:0>	
bit 7					I	I	bit	
Legend:								
R = Readable bit	t	P = Programma	ble bit	U = Unimpleme	nted bit, read as '1			
0' = Bit is cleared	t	'1' = Bit is set		-n = Value whe	n blank or after B	ulk Erase		
bit 13	LVP: Low-Volta	age Programming	Enable bit ⁽¹⁾					
		e programming e						
		LR/VPP must be u	1 0	ning				
bit 12		rcuit Debugger Mo						
)ebugger disabled)ebugger enabled		•		•		
bit 11	LPBOR: Low-F		,			-990		
2.1		r BOR is disabled						
	0 = Low-Power	r BOR is enabled						
bit 10		out Reset Voltage						
		Reset voltage (Vi	· · ·					
h# 0		Reset voltage (Vi	<i>/</i> 0 11					
bit 9		k Overflow/Under flow or Underflow						
	 1 = Stack Overflow or Underflow will cause a Reset 0 = Stack Overflow or Underflow will not cause a Reset 							
bit 8-5	Unimplemented: Read as '1'							
bit 4	VCAPEN: Volta	age Regulator Ca	pacitor Enable bi	ts ⁽¹⁾				
	0 = VCAP funct	ionality is enabled	d on VCAP pin					
	1 = All VCAP pi	n functions are di	sabled					
bit 3-2	Unimplemente	ed: Read as '1'						
bit 1-0		ash Memory Self-		bits				
		emory (PIC16(L)F ite protection off	<u>1512)</u> :					
		0h to 1FFh write-p	protected, 200h to	o 7FFh may be m	nodified by PMCC	N control		
	01 = 000	0h to FFFh write-	protected, 400h to	o 7FFh may be m	nodified by PMCC	N control		
		Oh to 7FFh write-		resses may be n	nodified by PMCC	ON control		
		emory (PIC16(L)F ite protection off	<u>1513)</u> .					
		0h to 1FFh write-p	protected, 200h to	o FFFh may be m	nodified by PMCC	N control		
		0h to 7FFh write-p	,	,	,			
		Dh to FFFh write-p mory (PIC16F/LF		•	nodified by PMCO	N control		
		ite protection off	1310/1317/1320	1.				
	10 = 000	0h to 1FFh write-p						
		Oh to FFFh write-						
		0h to 1FFFh write emory (PIC16F/L	•		modified by PINC	ON control		
		ite protection off		<u></u> .				
	10 = 000	0h to 1FFh write-p						
	01 - 000				a madified by DN	ICON control		
		0h to 1FFFh write 0h to 3FFFh write						

REGISTER 3-3: CONFIGURATION WORD 2

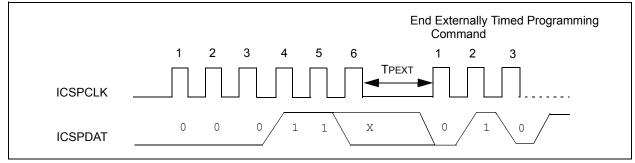
2: Applies to PIC16F151X/152X devices only. On PIC16LF151X/152X, the VCAPEN bit is unimplemented.


4.3.6 BEGIN INTERNALLY TIMED PROGRAMMING

A Load Configuration or Load Data for Program Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. An internal timing mechanism executes the write. The user must allow for the program cycle time, TPINT, for the programming to complete.

The End Externally Timed Programming command is not needed when the Begin Internally Timed Programming is used to start the programming.

The program memory address that is being programmed is not erased prior to being programmed.

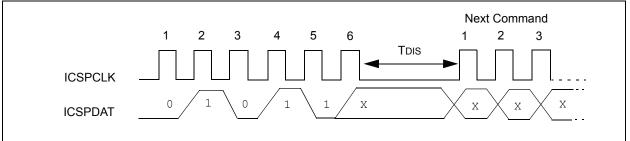


4.3.7 BEGIN EXTERNALLY TIMED PROGRAMMING

A Load Configuration or Load Data for Program Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. To complete the programming the End Externally Timed Programming command must be sent in the specified time window defined by TPEXT (see Figure 4-7).

Externally timed writes are not supported for Configuration and Calibration bits. Any externally timed write to the Configuration or Calibration Word will have no effect on the targeted word.

FIGURE 4-7: BEGIN EXTERNALLY TIMED PROGRAMMING



4.3.8 END EXTERNALLY TIMED PROGRAMMING

This command is required after a Begin Externally Timed Programming command is given. This command must be sent within the time window specified by TPEXT after the Begin Externally Timed Programming command is sent.

After sending the End Externally Timed Programming command, an additional delay (TDIS) is required before sending the next command. This delay is longer than the delay ordinarily required between other commands (see Figure 4-8).

FIGURE 4-8: END EXTERNALLY TIMED PROGRAMMING

4.3.9 BULK ERASE PROGRAM MEMORY

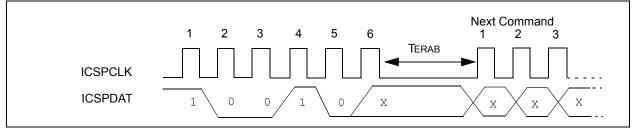
The Bulk Erase Program Memory command performs two different functions dependent on the current state of the address.

Address 0000h-7FFFh:

Program Memory is erased

Configuration Words are erased

Address 8000h-8008h:


Program Memory is erased

Configuration Words are erased

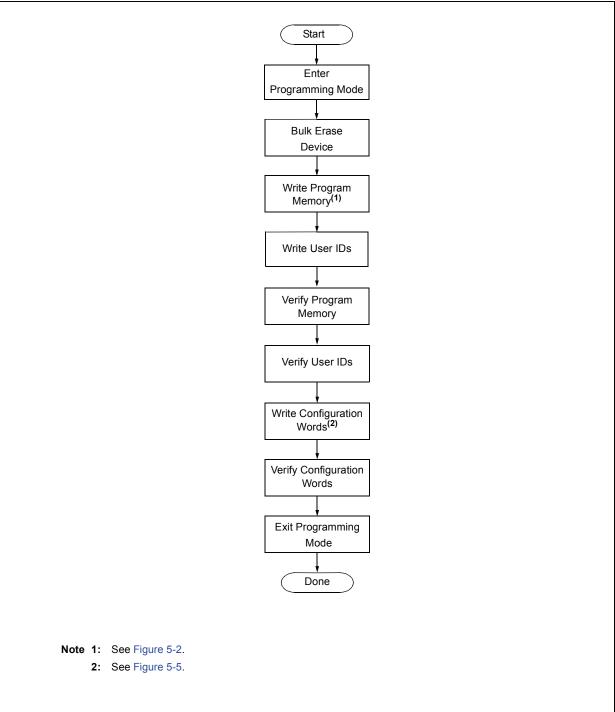
User ID Locations are erased

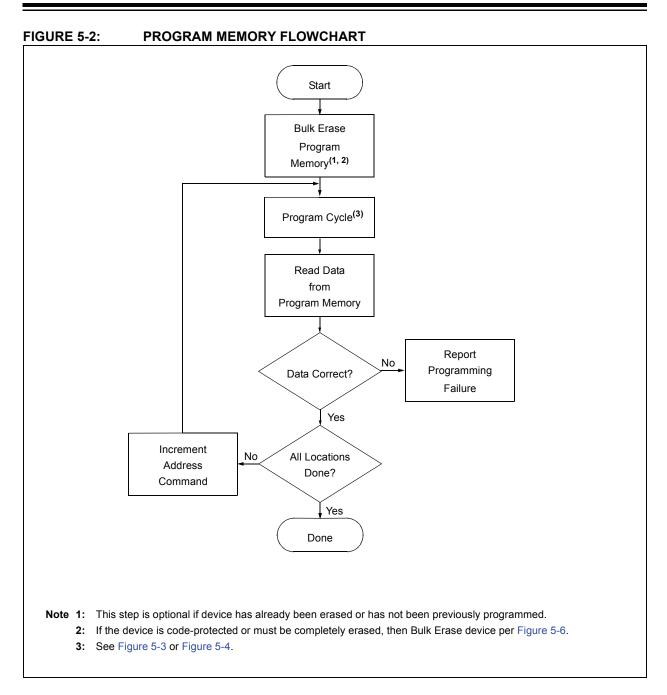
A Bulk Erase Program Memory command should not be issued when the address is greater than 8008h.

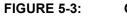
FIGURE 4-9: BULK ERASE PROGRAM MEMORY

After receiving the Bulk Erase Program Memory command the erase will not complete until the time interval, TERAB, has expired.

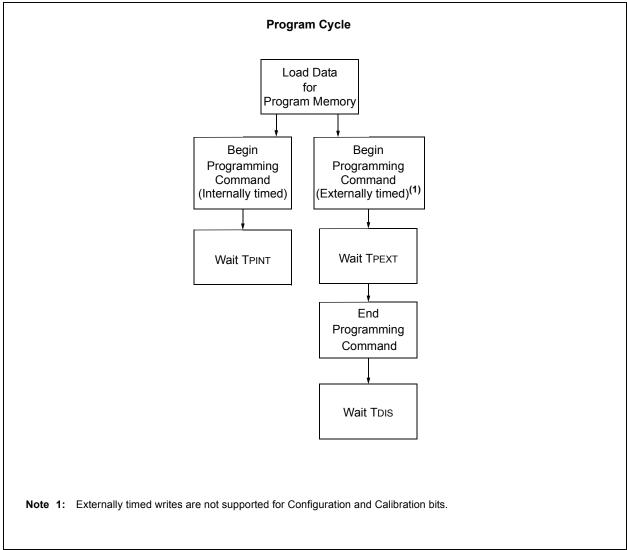
Note: The code protection Configuration bit (CP) has no effect on the Bulk Erase Program Memory command.


5.0 PROGRAMMING ALGORITHMS


The devices use internal latches to temporarily store the 14-bit words used for programming. Refer to Table 4-2 for specific latch information. The data latches allow the user to write the program words with a single Begin Externally Timed Programming or Begin Internally Timed Programming command. The Load Program Data or the Load Configuration command is used to load a single data latch. The data latch will hold the data until the Begin Externally Timed Programming or Begin Internally Timed Programming or Begin Internally Timed Programming command is given.


The data latches are aligned with the LSbs of the address. The PC's address at the time the Begin Externally Timed Programming or Begin Internally Timed Programming command is given will determine which location(s) in memory are written. Writes cannot cross the physical boundary. For example, with the PIC16F1527, attempting to write from address 0002h-0009h will result in data being written to 0008h-000Fh.

If more than the maximum number of data latches are written without a Begin Externally Timed Programming or Begin Internally Timed Programming command, the data in the data latches will be overwritten. The following figures show the recommended flowcharts for programming.



ONE-WORD PROGRAM CYCLE

7.3 Checksum Computation

The checksum is calculated by two different methods dependent on the setting of the CP Configuration bit.

MASK VALUES							
Device	Config. Word 1 Mask	Config. Word 2 Mask					
PIC16F1512	3EFFh	3E13h					
PIC16F1513	3EFFh	3E13h					
PIC16F1516	3EFFh	3E13h					
PIC16F1517	3EFFh	3E13h					
PIC16F1518	3EFFh	3E13h					
PIC16F1519	3EFFh	3E13h					
PIC16LF1512	3EFFh	3E03h					
PIC16LF1513	3EFFh	3E03h					
PIC16LF1516	3EFFh	3E03h					
PIC16LF1517	3EFFh	3E03h					
PIC16LF1518	3EFFh	3E03h					
PIC16LF1519	3EFFh	3E03h					
PIC16F1526	3EFFh	3E13h					
PIC16F1527	3EFFh	3E13h					
PIC16LF1526	3EFFh	3E03h					
PIC16LF1527	3EFFh	3E03h					

TABLE 7-1: CONFIGURATION WORD MASK VALUES

7.3.1 PROGRAM CODE PROTECTION DISABLED

With the program code protection disabled, the checksum is computed by reading the contents of the PIC16(L)F151X/152X program memory locations and adding up the program memory data starting at address 0000h, up to the maximum user addressable location. Any Carry bit exceeding 16 bits are ignored. Additionally, the relevant bits of the Configuration Words are added to the checksum. All unimplemented Configuration bits are masked to '0'.

unimplemented bits are '0'.

EXAMPLE 7-1: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED PIC16F1527, BLANK DEVICE

PIC16F15	527 Sum of Memory add	resses 0000h-3FFFh ⁽¹⁾	C000h	
	Configuration Word	1 ⁽²⁾	3FFFh	
	Configuration Word	1 mask ⁽³⁾	3EFFh	
	Configuration Word	2 ⁽²⁾	3FFFh	
	Configuration Word	2 mask ⁽³⁾	3E13h	
	Checksum	= C000h + (3FFFh and 3EFF	h) + (3FFFh and 3E13h)	
		= C000h + 3EFFh + 3E13h		
		= 3D12h		
Note 1:	Sum of memory addresse truncated to 16 bits.	s = (Total number of program m	emory address locations) x (3FFFh) = C000h,	

- 2: Configuration Word 1 and 2 = all bits are '1'; thus, code-protect is disabled.
- 3: Configuration Word 1 and 2 Mask = all bits are set to '1', except for unimplemented bits that are '0'.

EXAMPLE 7-2: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED PIC16LF1527, 00AAh AT FIRST AND LAST ADDRESS

PIC16LF1	527 Sum of Memory ad	ldresses 0000h-3FFFh ⁽¹⁾	4156h		
	Configuration Word	1 1 ⁽²⁾	3FFFh		
	Configuration Word	1 mask ⁽³⁾	3EFFh		
	Configuration Word	1 2 ⁽²⁾	3FFFh		
	Configuration Word	l 2 mask ⁽⁴⁾	3E03h		
	Checksum	= 4156h + (3FFFh and 3EFF) + (3FFFh and 3E03h)		
		= 4156h + 3EFFh + 3E03h			
		= BE58h			
Note 1:	0	otal number of Program memory address locations: 3FFFh + 1 = 4000h. Then, 4000h - 2 = 3FFEh. hus, [(3FFEh x 3FFFh) + (2 x 00AAh)] = 4156h, truncated to 16 bits.			
2:	Configuration Word 1 an	onfiguration Word 1 and 2 = all bits are '1'; thus, code-protect is disabled.			
3:	Configuration Word 1 Ma that are '0'.	Configuration Word 1 Mask = all Configuration Word bits are set to '1', except for unimplemented bits that are '0'.			
4:	On the PIC16LF1527 de	vice, the VCAPEN bit is not imple	emented in Configuration Word 2; Thus, all		

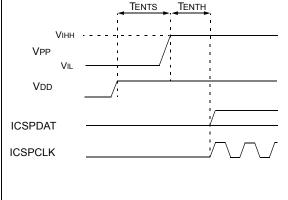
7.3.2 PROGRAM CODE PROTECTION ENABLED

With the program code protection enabled, the checksum is computed in the following manner: The Least Significant nibble of each user ID is used to create a 16-bit value. The masked value of user ID location 8000h is the Most Significant nibble. This sum of user IDs is summed with the Configuration Words (all unimplemented Configuration bits are masked to '0').

EXAMPLE 7-3: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED PIC16F1527, BLANK DEVICE

PIC16F1	527 Configuration Word	(2) 3F7Fh			
	Configuration Word	mask ⁽³⁾ 3EFFh			
	Configuration Word 2	(2) 3FFFh			
	Configuration Word 2	mask ⁽³⁾ 3E13h			
	User ID (8000h) ⁽¹⁾	0006h			
	User ID (8001h) ⁽¹⁾	0007h			
	User ID (8002h) ⁽¹⁾	0001h			
	User ID (8003h) ⁽¹⁾	0002h			
	Sum of User IDs ⁽⁴⁾	= (0006h and 000Fh) << 12 + (0007h and 000Fh) << 8 +			
		(0001h and 000Fh) << 4 + (0002h and 000Fh)			
		= 6000h + 0700h + 0010h + 0002h			
	= 6712h				
	Checksum	= (3F7Fh and 3EFFh) + (3FFFh and 3E13h) + Sum of User IDs			
		= 3E7Fh +3713h + 6712h			
		= DCA4h			
Note 1:	User ID values in this example are random values.				
2:	Configuration Word 1 and 2 = all bits are '1' except the code-protect enable bit.				
3:	Configuration Word 1 and 2 Mask = all Configuration Word bits are set to '1', except for unimplemented bits which read '0'.				
4:					

 <= shift left, thus the LSb of the first user ID value is the MSb of the sum of user IDs and so on, unti the LSb of the last user ID value becomes the LSb of the sum of user IDs.


TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY

AC/DC CHARACTERISTICS		Standard Operating Conditions Production tested at 25°C				
Sym. Characteristics		Min.	Тур.	Max.	Units	Conditions/Comments
TPINT	Internally timed programming operation time			2.5 5	ms ms	Program memory Configuration Words
TPEXT	Externally timed programming pulse	1.0	—	2.1	ms	Note 1
TDIS	Time delay from program to compare (HV discharge time)	300	—	—	μs	
TEXIT	Time delay when exiting Program/Verify mode	1	—		μS	

Note 1: Externally timed writes are not supported for Configuration and Calibration bits.

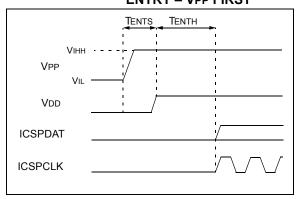

8.1 AC Timing Diagrams

FIGURE 8-2:

PROGRAMMING MODE ENTRY – VPP FIRST

FIGURE 8-3:

PROGRAMMING MODE EXIT – VPP LAST

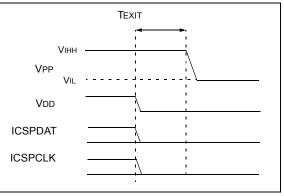
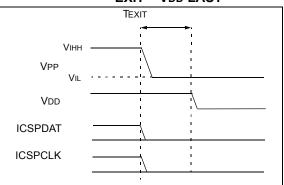
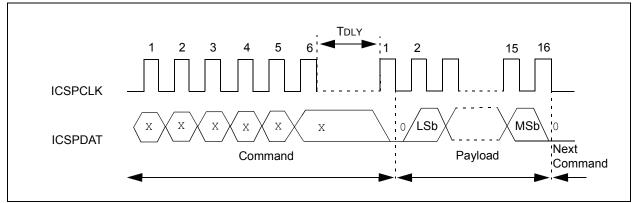


FIGURE 8-4:

PROGRAMMING MODE EXIT – VDD LAST

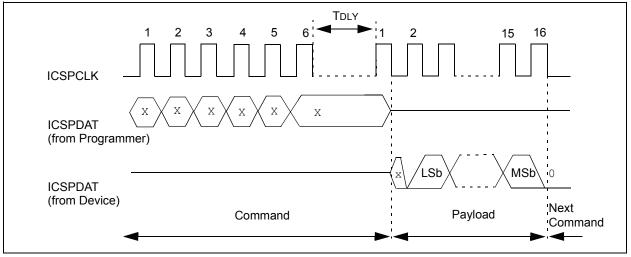
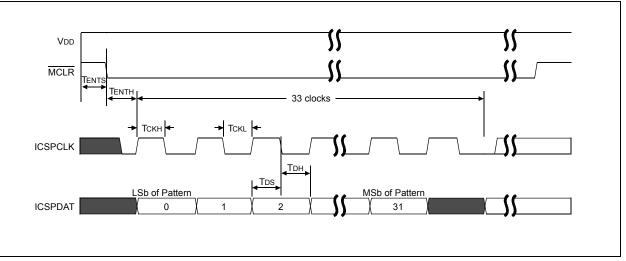
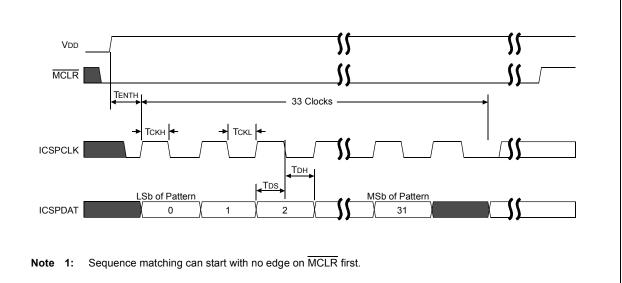


FIGURE 8-6:


WRITE COMMAND-PAYLOAD TIMING



Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820