

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

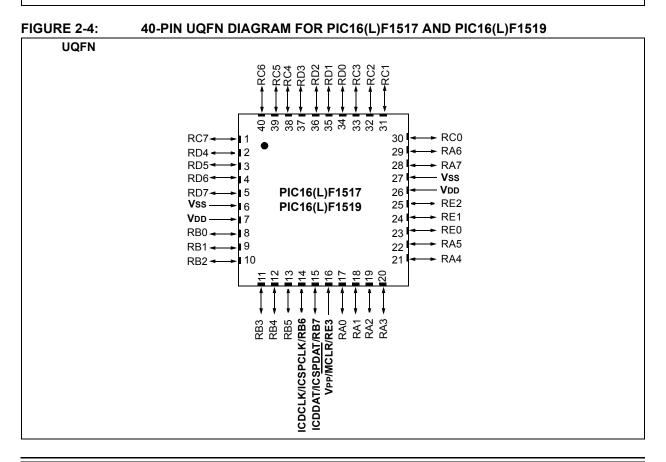
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

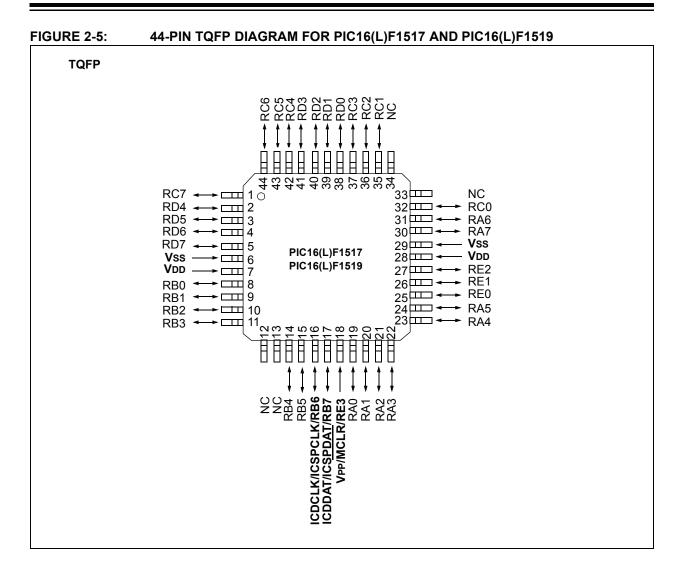
Details

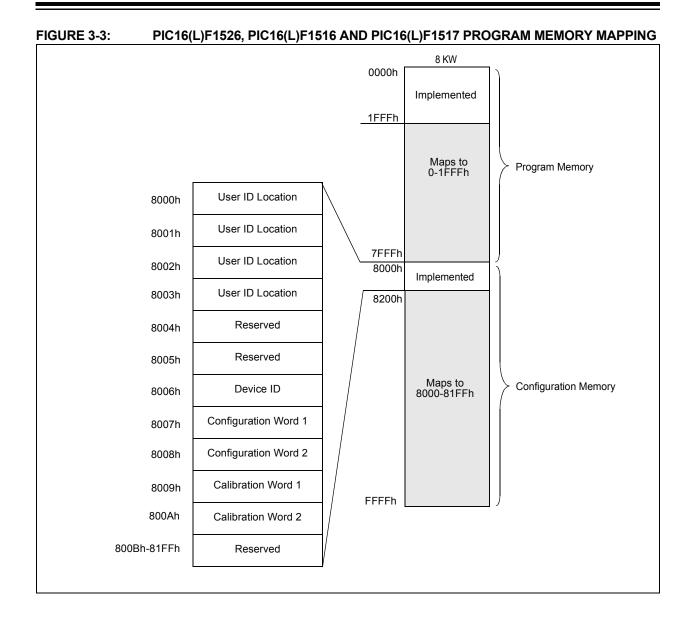
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1516-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


2.0 DEVICE PINOUTS


The pin diagrams for the PIC16(L)F151X/152X family are shown in Figure 2-1 through Figure 2-7. The pins that are required for programming are listed in Table 1-1 and shown in bold lettering in the pin diagrams.


FIGURE 2-1: 28-PIN SPDIP, SOIC, SSOP DIAGRAM FOR PIC16(L)F1512, PIC16(L)F1513, PIC16(L)F1516 AND PIC16(L)F1518

SPDIP, SOIC, SSOP		
	\bigcirc	28 _ ← ► RB7/ICSPDAT
RA0 🛶 🗖 🛛		
RA1 🛶 🗖 🕄	}	26 - → RB5
RA2 🛶	ļ	25 _ ←► RB4
RA3 🛶 🔤		24 → RB3
RA4 🛶	512 513 516 518 518	23 → RB2
RA5 🔸 🗌 7	ĔĔĔĔ	22 - → RB1
Vss →		, 21 _ ← → RB0
RA7 🔫 🗕	ូ ភូភូភូភូ	
RA6		19 −−− V ss
RC0 -	1	18 - RC7
RC1 -	2	17 ← ► RC6
RC2 → 1	3	16 → RC5
RC3 ◄ ► []1	4	15 - - - - - - - - - -

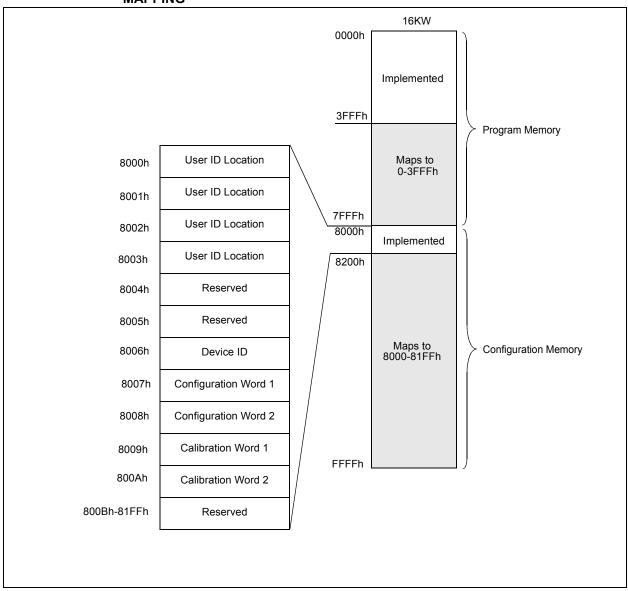

FIGURE 2-3:	40-PIN PDIP DIAGRAM F	OR PIC1	6(L)F1517 AND PIC16(L)F1519
PDIP			
	Vpp/MCLR/RE3 1	\bigcirc	40 RB7/ICSPDAT/ICDDAT
	RA0 🔶 2		
	RA1 🗕 🗕 🔤 3		38 → RB5
	RA2 🛶 🗖 4		37 → RB4
	RA3 🛶 🗖 5		36 → RB3
	RA4 🖛 🛏 6		35 🗌 🗲 → RB2
	RA5 🔶 7		34 → RB1
	RE0 🗕 🗕 8	<u>⊳</u> 6	33 - → RB0
	RE1 🛶 🕨 🗍 9	151	32 - VDD
	RE2 - 10	PIC16(L)F1517 PIC16(L)F1519	31
	V DD —— 11	:16(:16(30 - → RD7
	Vss —► 12		29 🗌 🖛 🕨 RD6
	RA7 🛶 🗖 13		28 🗌 🔸 RD5
	RA6 💶 14		27 🗌 🖛 → RD4
	RC0 🔶 🚺 15		26 - → RC7
	RC1 🗕 🗕 16		25 🗌 🛶 RC6
	RC2 🗕 ► 🗌 17		24 🗌 🛶 RC5
	RC3 🗕 ► 🗌 18		23 🗌 💶 🕨 RC4
	RD0 🗕 ► 🗌 19		22 - → RD3
	RD1 ← ► 20		21 RD2

FIGURE 3-4: PIC16(L)F1527, PIC16(L)F1518 AND PIC16(L)F1519 PROGRAM MEMORY MAPPING

3.1 User ID Location

A user may store identification information (user ID) in four designated locations. The user ID locations are mapped to 8000h-8003h. Each location is 14 bits in length. Code protection has no effect on these memory locations. Each location may be read with code protection enabled or disabled. Note: MPLAB[®] IDE only displays the 7 Least Significant bits (LSb) of each user ID location, the upper bits are not read. It is recommended that only the 7 LSbs be used if MPLAB IDE is the primary tool used to read these addresses.

3.2 Device ID

The device ID word is located at 8006h. This location is read-only and cannot be erased or modified.

REGISTER 3-1: DEVICE ID: DEVICE ID REGISTER⁽¹⁾

		R	R	R	R	R	R
				DEV	<8:3>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
	DEV<2:0>				REV<4:0>		
bit 7							bit 0
Legend:		P = Programma	ble bit	U = Unimpleme	ented bit, read as	ʻ0'	

Legend:	P = Programmable bit	U = Unimplemented bit, read as '0'
R = Readable bit	W = Writable bit	'0' = Bit is cleared
-n = Value at POR	'1' = Bit is set	x = Bit is unknown

bit 13-5 **DEV<8:0>:** Device ID bits

These bits are used to identify the part number.

bit 4-0 **REV<4:0>:** Revision ID bits

These bits are used to identify the revision.

Note 1: This location cannot be written.

	DEVICE	ID VALUES
DEVICE	DEV	REV
PIC16F1527	0001 0101 101	x xxxx
PIC16F1526	0001 0101 100	x xxxx
PIC16LF1527	0001 0101 111	x xxxx
PIC16LF1526	0001 0101 110	x xxxx
PIC16F1519	0001 0110 111	x xxxx
PIC16F1518	0001 0110 110	x xxxx
PIC16F1517	0001 0110 101	x xxxx
PIC16F1516	0001 0110 100	x xxxx
PIC16F1513	0001 0110 010	x xxxx
PIC16F1512	0001 0111 000	x xxxx
PIC16LF1519	0001 0111 111	x xxxx
PIC16LF1518	0001 0111 110	x xxxx
PIC16LF1517	0001 0111 101	x xxxx
PIC16LF1516	0001 0111 100	x xxxx
PIC16LF1513	0001 0111 010	X XXXX
PIC16LF1512	0001 0111 001	X XXXX

TABLE 3-1: DEVICE ID VALUES

3.3 Configuration Words

There are two Configuration Words, Configuration Word 1 (8007h) and Configuration Word 2 (8008h). The individual bits within these Configuration Words are used to enable or disable device functions such as the Brown-out Reset, code protection and Power-up Timer.

3.4 Calibration Words

The internal calibration values are factory calibrated and stored in Calibration Words 1 and 2 (8009h, 800Ah).

The Calibration Words do not participate in erase operations. The device can be erased without affecting the Calibration Words.

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	
		LVP	DEBUG	LPBOR	BORV	STVREN	_	
		bit 13					bit	
U-1	U-1	U-1	R/P-1	U-1	U-1	R/P-1	R/P-1	
_	_	_	VCAPEN ⁽²⁾	_	_	WRT<	1:0>	
bit 7					I	I	bit	
Legend:								
R = Readable bit	t	P = Programma	ble bit	U = Unimpleme	nted bit, read as '1			
0' = Bit is cleared	t	'1' = Bit is set		-n = Value whe	n blank or after B	ulk Erase		
bit 13	LVP: Low-Volta	age Programming	Enable bit ⁽¹⁾					
		e programming e						
		LR/VPP must be u	1 0	ning				
bit 12		rcuit Debugger Mo						
)ebugger disabled)ebugger enabled		•		•		
bit 11	LPBOR: Low-F		,			-990		
2.1		r BOR is disabled						
	0 = Low-Power	r BOR is enabled						
bit 10		out Reset Voltage						
	 = Brown-out Reset voltage (VBOR), low trip point selected = Brown-out Reset voltage (VBOR), high trip point selected 							
h# 0		0 (<i>/</i> 0 11					
bit 9		k Overflow/Under flow or Underflow						
		flow or Underflow						
bit 8-5	Unimplemented: Read as '1'							
bit 4	VCAPEN: Volta	age Regulator Ca	pacitor Enable bi	ts ⁽¹⁾				
	0 = VCAP funct	ionality is enabled	d on VCAP pin					
	1 = All VCAP pi	n functions are di	sabled					
bit 3-2	Unimplemente	ed: Read as '1'						
bit 1-0	WRT<1:0>: Flash Memory Self-Write Protection bits							
		emory (PIC16(L)F ite protection off	<u>1512)</u> :					
		0h to 1FFh write-p	protected, 200h to	o 7FFh may be m	nodified by PMCC	N control		
	01 = 000	0h to FFFh write-	protected, 400h to	o 7FFh may be m	nodified by PMCC	N control		
		Oh to 7FFh write-		resses may be n	nodified by PMCC	ON control		
		emory (PIC16(L)F ite protection off	<u>1513)</u> .					
		0h to 1FFh write-p	protected, 200h to	o FFFh may be m	nodified by PMCC	N control		
		0h to 7FFh write-p	,	,	,			
		Dh to FFFh write-p mory (PIC16F/LF		•	nodified by PMCO	N control		
		ite protection off	1310/1317/1320	1.				
	10 = 000	0h to 1FFh write-p						
		Oh to FFFh write-						
		0h to 1FFFh write emory (PIC16F/L	•		modified by PINC	ON control		
		ite protection off		<u></u> .				
	10 = 000	0h to 1FFh write-p						
	01 - 000				a madified by DN	ICON control		
		0h to 1FFFh write 0h to 3FFFh write						

REGISTER 3-3: CONFIGURATION WORD 2

2: Applies to PIC16F151X/152X devices only. On PIC16LF151X/152X, the VCAPEN bit is unimplemented.

4.0 PROGRAM/VERIFY MODE

In Program/Verify mode, the program memory and the configuration memory can be accessed and programmed in serial fashion. ICSPDAT and ICSPCLK are used for the data and the clock, respectively. All commands and data words are transmitted LSb first. Data changes on the rising edge of the ICSPCLK and latched on the falling edge. In Program/Verify mode both the ICSPDAT and ICSPCLK are Schmitt Trigger inputs. The sequence that enters the device into Program/Verify mode places all other logic into the Reset state. Upon entering Program/Verify mode, all I/Os are automatically configured as high-impedance inputs and the address is cleared.

4.1 High-Voltage Program/Verify Mode Entry and Exit

There are two different methods of entering Program/ Verify mode via high-voltage:

- VPP First entry mode
- VDD First entry mode

4.1.1 VPP – FIRST ENTRY MODE

To enter Program/Verify mode via the VPP-first method the following sequence must be followed:

- 1. Hold ICSPCLK and ICSPDAT low. All other pins should be unpowered.
- 2. Raise the voltage on MCLR from 0V to VIHH.
- 3. Raise the voltage on VDD FROM 0V to the desired operating voltage.

The VPP-first entry prevents the device from executing code prior to entering Program/Verify mode. For example, when Configuration Word 1 has MCLR disabled (MCLRE = 0), the power-up time is disabled ($\overline{PWRTE} = 0$), the internal oscillator is selected ($\overline{FOSC} = 100$), and ICSPCLK and ICSPDAT pins are driven by the user application, the device will execute code. Since this may prevent entry, VPP-first entry mode is strongly recommended. See the timing diagram in Figure 8-2.

4.1.2 VDD – FIRST ENTRY MODE

To enter Program/Verify mode via the VDD-first method the following sequence must be followed:

- 1. Hold ICSPCLK and ICSPDAT low.
- 2. Raise the voltage on VDD from 0V to the desired operating voltage.
- 3. Raise the voltage on MCLR from VDD or below to VIHH.

The VDD-first method is useful when programming the device when VDD is already applied, for it is not necessary to disconnect VDD to enter Program/Verify mode. See the timing diagram in Figure 8-1.

4.1.3 PROGRAM/VERIFY MODE EXIT

To exit Program/Verify mode take MCLR to VDD or lower (VIL). See Figures 8-3 and 8-4.

4.2 Low-Voltage Programming (LVP) Mode

The Low-Voltage Programming mode allows the PIC16(L)F151X/152X devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 register is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'. This can only be done while in the High-Voltage Entry mode.

Entry into the Low-Voltage ICSP Program/Verify modes requires the following steps:

- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

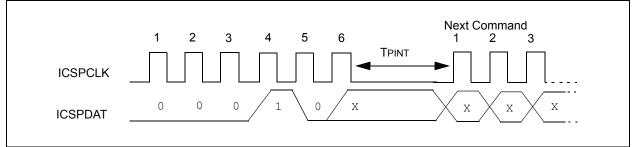
The key sequence is a specific 32-bit pattern, '0100 1101 0100 0011 0100 1000 0101 0000' (more easily remembered as MCHP in ASCII). The device will enter Program/Verify mode only if the sequence is valid. The Least Significant bit of the Least Significant nibble must be shifted in first.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

For low-voltage programming timing, see Figure 8-8 and Figure 8-9.

Exiting <u>Program/Verify</u> mode is done by no longer driving MCLR to VIL. See Figure 8-8 and Figure 8-9.

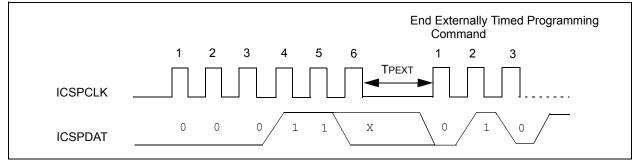
Note: To enter LVP mode, the LSB of the Least Significant nibble must be shifted in first. This differs from entering the key sequence on other parts.

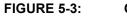

4.3.6 BEGIN INTERNALLY TIMED PROGRAMMING

A Load Configuration or Load Data for Program Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. An internal timing mechanism executes the write. The user must allow for the program cycle time, TPINT, for the programming to complete.

The End Externally Timed Programming command is not needed when the Begin Internally Timed Programming is used to start the programming.

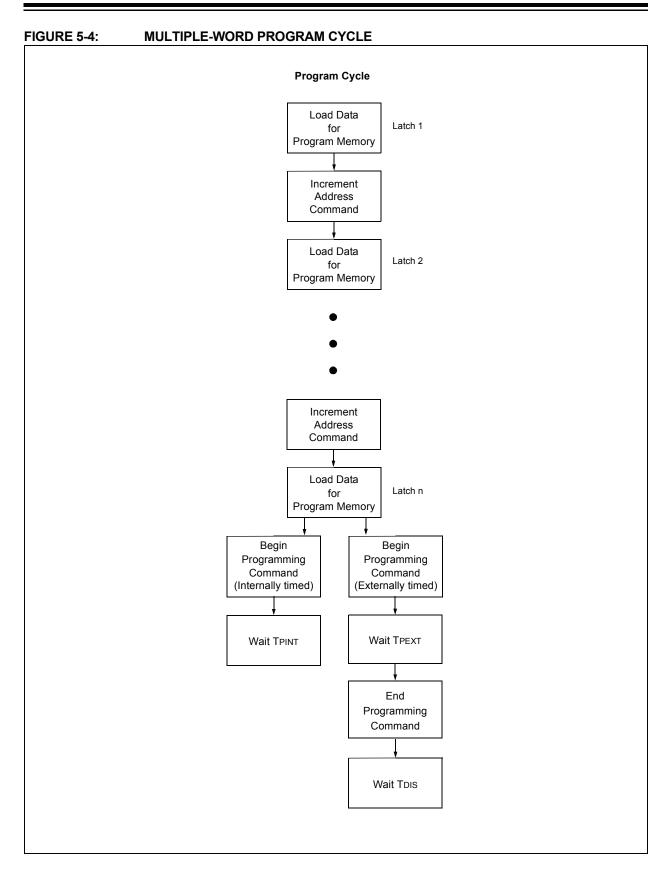
The program memory address that is being programmed is not erased prior to being programmed.

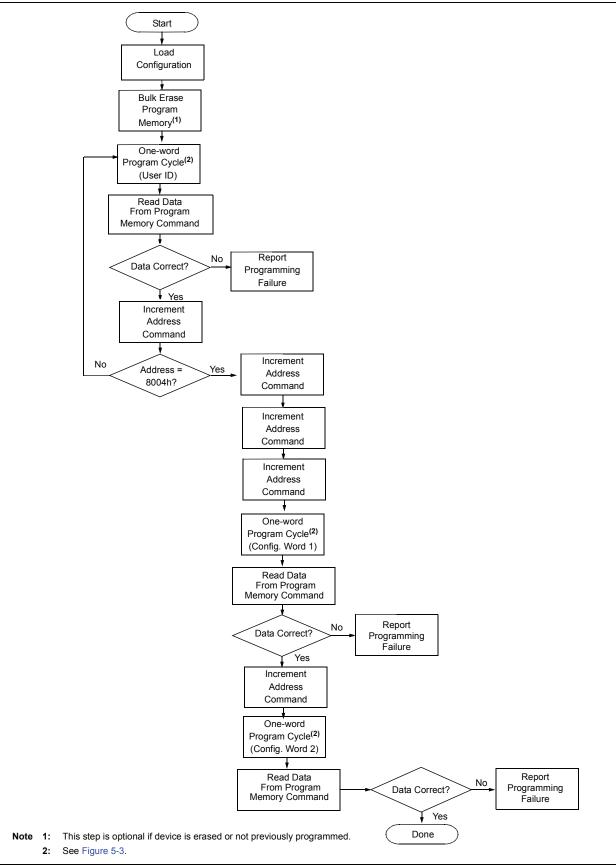



4.3.7 BEGIN EXTERNALLY TIMED PROGRAMMING

A Load Configuration or Load Data for Program Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. To complete the programming the End Externally Timed Programming command must be sent in the specified time window defined by TPEXT (see Figure 4-7).


Externally timed writes are not supported for Configuration and Calibration bits. Any externally timed write to the Configuration or Calibration Word will have no effect on the targeted word.


FIGURE 4-7: BEGIN EXTERNALLY TIMED PROGRAMMING


ONE-WORD PROGRAM CYCLE

CONFIGURATION MEMORY PROGRAM FLOWCHART

Advance Information

unimplemented bits are '0'.

EXAMPLE 7-1: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED PIC16F1527, BLANK DEVICE

PIC16F15	527 Sum of Memory add	resses 0000h-3FFFh ⁽¹⁾	C000h		
	Configuration Word	1 ⁽²⁾	3FFFh		
	Configuration Word	1 mask ⁽³⁾	3EFFh		
	Configuration Word	2 ⁽²⁾	3FFFh		
	Configuration Word	2 mask ⁽³⁾	3E13h		
	Checksum	= C000h + (3FFFh and 3EFF	h) + (3FFFh and 3E13h)		
		= C000h + 3EFFh + 3E13h			
		= 3D12h			
Note 1:	Sum of memory addresse truncated to 16 bits.	s = (Total number of program m	emory address locations) x (3FFFh) = C000h,		

- 2: Configuration Word 1 and 2 = all bits are '1'; thus, code-protect is disabled.
- 3: Configuration Word 1 and 2 Mask = all bits are set to '1', except for unimplemented bits that are '0'.

EXAMPLE 7-2: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED PIC16LF1527, 00AAh AT FIRST AND LAST ADDRESS

PIC16LF1	527 Sum of Memory ad	ldresses 0000h-3FFFh ⁽¹⁾	4156h		
	Configuration Word	1 1 ⁽²⁾	3FFFh		
	Configuration Word	1 mask ⁽³⁾	3EFFh		
	Configuration Word	1 2 ⁽²⁾	3FFFh		
	Configuration Word	l 2 mask ⁽⁴⁾	3E03h		
	Checksum	= 4156h + (3FFFh and 3EFF	n) + (3FFFh and 3E03h)		
		= 4156h + 3EFFh + 3E03h			
		= BE58h			
Note 1:	0	otal number of Program memory address locations: 3FFFh + 1 = 4000h. Then, 4000h - 2 = 3FFEl hus, [(3FFEh x 3FFFh) + (2 x 00AAh)] = 4156h, truncated to 16 bits.			
2:	Configuration Word 1 an	onfiguration Word 1 and 2 = all bits are '1'; thus, code-protect is disabled.			
3:	Configuration Word 1 Ma that are '0'.	ask = all Configuration Word bits	are set to '1', except for unimplemented bits		
4:	On the PIC16LF1527 de	vice, the VCAPEN bit is not imple	emented in Configuration Word 2; Thus, all		

EXAMPLE 7-4: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED PIC16LF1527, 00AAh AT FIRST AND LAST ADDRESS

	· · · · ·				
PIC16LF	1527 Configuration Word 1 ⁽²⁾	3F7Fh			
	Configuration Word 1 mask ⁽³⁾	3EFFh			
	Configuration Word 2 ⁽²⁾	3FFFh			
	Configuration Word 2 mask ^{(3), (5)}) 3E03h			
	User ID (8000h) ⁽¹⁾	000Eh			
	User ID (8001h) ⁽¹⁾	0008h			
	User ID (8002h) ⁽¹⁾	0005h			
	User ID (8003h) ⁽¹⁾	0008h			
	Sum of User IDs ⁽⁴⁾ = (000Eh a	and 000Fh) << 12 + (0008h and 000Fh) << 8 +			
	(0005h a	and 000Fh) << 4 + (0008h and 000Fh)			
	= E000h +	0800h + 0050h + 0008h			
	= E858h				
	Checksum = (3F7Fh a	nd 3EFFh) + (3FFFh and 3E03h) + Sum of User IDs			
	= 3E7Fh +3	3E03h + E858h			
	= 64DAh				
Note 1:	User ID values in this example are randor	m values			
2:	Configuration Word 1 and 2 = all bits are				
3:					
4: << = shift left, thus the LSb of the first user ID value is the MSb of the sum of user IDs and so on, unt the LSb of the last user ID value becomes the LSb of the sum of user IDs.					
5:	On the PIC16LF1527 device, the \overline{VCAPE} unimplemented bits are '0'.	\overline{N} bit is not implemented in Configuration Word 2; thus, all			

8.0 ELECTRICAL SPECIFICATIONS

Refer to device specific data sheet for absolute maximum ratings.

TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

AC/DC CHARACTERISTICS			Standard C Production		J Conditions 25°C	;	
Sym.	Characteristics	Min.	Тур.	Max.	Units	Conditions/Comments	
		Supply Volt	ages and C	urrents			
Vdd	Supply Voltage	PIC16F151X PIC16F152X	2.3	_	5.5	V	
	(VDDMIN, VDDMAX)	PIC16LF151X PIC16LF152X	1.8	—	3.6	V	
VPEW	Read/Write and Row Erase opera	itions	VDDMIN		VDDMAX	V	
VPBE	Bulk Erase operations		2.7	_	VDDMAX	V	
Iddi	Current on VDD, Idle		—	—	1.0	mA	
IDDP	Current on VDD, Programming		—	_	3.0	mA	
	VPP						
IPP	Current on MCLR/VPP		_	_	600	μA	
Vінн	High voltage on MCLR/VPP for Program/Verify mode entry		8.0	_	9.0	V	
TVHHR	MCLR rise time (VIL to VIHH) for Program/Verify mode entry		_	_	1.0	μs	
	I/O pins				•		
Viн	(ICSPCLK, ICSPDAT, MCLR/VPP level	0.8 Vdd	_	_	V		
VIL	(ICSPCLK, ICSPDAT, MCLR/VPP	_	_	0.2 VDD	V		
Vон	ICSPDAT output high level		Vdd-0.7 Vdd-0.7 Vdd-0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 2 mA, VDD = 1.8V
Vol	ICSPDAT output low level	_	_	Vss+0.6 Vss+0.6 Vss+0.6	V	IOH = 8 mA, VDD = 5V IOH = 6 mA, VDD = 3.3V IOH = 3 mA, VDD = 1.8V	
		Programming	Mode Entry	y and Exi	t		
Tents	Programing mode entry setup tim ICSPDAT setup time before VDD		100	_	_	ns	
TENTH	Programing mode entry hold time ICSPDAT hold time after VDD or I		250	—	_	μs	
		Serial F	Program/Vei	rify			
TCKL	Clock Low Pulse Width		100	—	—	ns	
Тскн	Clock High Pulse Width		100		—	ns	
TDS	Data in setup time before clock↓		100	—	-	ns	
Трн	Data in hold time after clock↓		100	—	-	ns	
Тсо	Clock↑ to data out valid (during a Read Data command)		0	—	80	ns	
	Clock↓ to data low-impedance (d	uring a					
Tlzd	Read Data command)	-	0	—	80	ns	
THZD	Clock↓ to data high-impedance (Read Data command)	-	0	_	80	ns	
TDLY	Data input not driven to next clock input (delay required between command/data or command/ command)		1.0	_	_	μs	
TERAB	Bulk Erase cycle time		—	—	5	ms	
TERAR	Row Erase cycle time		—	—	2.5	ms	

Note 1: Externally timed writes are not supported for Configuration and Calibration bits.

APPENDIX A: REVISION HISTORY

Revision A (08/2010)

Original release of this document.

Revision B (09/2011)

Added PIC16(L)F1512/1513 devices; Added new Figures 3-1 and 3-2; Updated Registers 3-1, 3-2 and 3-3 to new format; Updated Register 3-3 to add 2 kW and 4 kW Flash memory; Added Notes to Examples 7-1 to 7-4; Updated Table 8-1; Other minor corrections.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

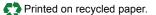
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2009

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-61341-635-8

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820