

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1516-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Pin Utilization

Five pins are needed for ICSP[™] programming. The pins are listed in Table 1-1 and Table 1-2.

			.,			
Din Nama	During Programming					
Fin Name	Function	Pin Type	Pin Description			
RB6	ICSPCLK	-	Clock Input – Schmitt Trigger Input			
RB7	ICSPDAT	I/O	Data Input/Output – Schmitt Trigger Input			
RG5/MCLR/VPP	Program/Verify mode	P ⁽¹⁾	Program Mode Select/Programming Power Supply			
VDD	Vdd	Р	Power Supply			
Vss	Vss	Р	Ground			

TABLE 1-1: PIN DESCRIPTIONS DURING PROGRAMMING – PIC16(L)F1526 AND PIC16(L)F1527

Legend: I = Input, O = Output, P = Power

Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.

TABLE 1-2:PIN DESCRIPTIONS DURING PROGRAMMING – PIC16(L)F1512, PIC16(L)F1513,
PIC16(L)F1516, PIC16(L)F1517, PIC16(L)F1518 and PIC16(L)F1519

Din Nome	During Programming					
Pin Name	Function	Pin Type	Pin Description			
RB6	ICSPCLK	I	Clock Input – Schmitt Trigger Input			
RB7	ICSPDAT	I/O	Data Input/Output – Schmitt Trigger Input			
RE3/MCLR/VPP	Program/Verify mode	P ⁽¹⁾	Program Mode Select/Programming Power Supply			
Vdd	Vdd	Р	Power Supply			
Vss	Vss	Р	Ground			

Legend: I = Input, O = Output, P = Power

Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.

2.0 DEVICE PINOUTS

The pin diagrams for the PIC16(L)F151X/152X family are shown in Figure 2-1 through Figure 2-7. The pins that are required for programming are listed in Table 1-1 and shown in bold lettering in the pin diagrams.

FIGURE 2-1: 28-PIN SPDIP, SOIC, SSOP DIAGRAM FOR PIC16(L)F1512, PIC16(L)F1513, PIC16(L)F1516 AND PIC16(L)F1518

SPDIP, SOIC, SSOP		
	RA0 🛶 🔁 2	
	RA1 🛶 🗖 3	26 □ → ► RB5
	RA2 🔫 🗕 🗛 🔤 4	25 - → RB4
		24 □ ← ► RB3
		23 → RB2
		Σ 22 - → RB1
	Vss → 🛛 🛛 🗃 🕁	
	RA7 → [9 ธีธีธีอี	
		⊡ 19 ≺ — Vss
	RC0 🔸 🗖 11	18 □ - ► RC7
	RC1 🛶 🔤 12	17∐ → RC6
	RC2 🔫 🗕 🔤 13	16
	RC3 🖛 🗌 14	15 □ - ► RC4

FIGURE 2-3:	40-PIN PDIP DIAGRAM FOR PIC16(L)F1517 AND PIC16(L)F1519					
PDIP						
		1	\bigcirc	40		
	RA0 🖛 ►	2				
	RA1 🗕 ► 🗌 :	3		38 🛛 🛶 RB5		
	RA2 🛶 🗖	4		37 → RB4		
	RA3 🖛 🕨 🗌	5		36 → RB3		
	RA4 🗕 ►	6		35 → RB2		
	RA5 🔶 🗖	7		34 → RB1		
	RE0 🔶 🛌	8	6	33 - → RB0		
	RE1 🛶 🗕 🔤	9	151 151			
	RE2 -	10	Ľ Ľ	31 □ ← Vss		
		11	.16(16(30 🗌 🛶 RD7		
	Vss ——	12	PIC PIC	29 🛛 🛶 RD6		
	RA7 🛶 🕨 🗌	13		28 🗌 🔸 RD5		
	RA6 🗕 🕨 🗌	14		27 🗌 🛶 RD4		
	RC0 🖛 🕨 🗌	15		26 → RC7		
	RC1 🗕 🗕	16		25 → RC6		
	RC2 🛶 🗖	17		24 - → RC5		
	RC3 → □	18		23 🗖 🖛 🕨 RC4		
	RD0 🛶 🗖	19		22 🛛 🔸 RD3		
	RD1 ◀ ► 🔤	20		21		

FIGURE 2-7: 64-PIN TQFP DIAGRAM FOR PIC16(L)F1526 AND PIC16(L)F1527

3.1 User ID Location

A user may store identification information (user ID) in four designated locations. The user ID locations are mapped to 8000h-8003h. Each location is 14 bits in length. Code protection has no effect on these memory locations. Each location may be read with code protection enabled or disabled. Note: MPLAB[®] IDE only displays the 7 Least Significant bits (LSb) of each user ID location, the upper bits are not read. It is recommended that only the 7 LSbs be used if MPLAB IDE is the primary tool used to read these addresses.

3.2 Device ID

The device ID word is located at 8006h. This location is read-only and cannot be erased or modified.

REGISTER 3-1: DEVICE ID: DEVICE ID REGISTER⁽¹⁾

		R	R	R	R	R	R
				DEV<	<8:3>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
	DEV<2:0>				REV<4:0>		
bit 7							bit 0
Legend:		P = Programma	ble bit	U = Unimpleme	ented bit, read as	0'	

Legend:	P = Programmable bit	U = Unimplemented bit, read as '0'
R = Readable bit	W = Writable bit	'0' = Bit is cleared
-n = Value at POR	'1' = Bit is set	x = Bit is unknown

bit 13-5 **DEV<8:0>:** Device ID bits

These bits are used to identify the part number.

bit 4-0 **REV<4:0>:** Revision ID bits

These bits are used to identify the revision.

Note 1: This location cannot be written.

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		LVP	DEBUG	LPBOR	BORV	STVREN	
		bit 13			•	•	bit 8
U-1	U-1	U-1	R/P-1	U-1	U-1	R/P-1	R/P-1
_	_	_	VCAPEN(2)	_	_	WRT<	1.0>
bit 7			VOIN LIV			, inclusion of the second seco	hit 0
bit 7							bit 0
Lawanda							
Legena:		D D	L. L. L. M.				
R = Readable bit		P = Programma		U = Unimpleme	ented bit, read as		
"0" = Bit is cleared		1' = Bit is set		-n = value whe	n blank or after B	UIK Erase	
bit 13	LVP: Low-Volt 1 = Low-voltag 0 = HV on MC	age Programming je programming e LR/VPP must be t	g Enable bit ⁽¹⁾ mabled used for programr	ning			
bit 12	DEBUG: In-Cir 1 = In-Circuit E 0 = In-Circuit E	rcuit Debugger M Debugger disabled Debugger enabled	ode bit d, ICSPCLK and I l, ICSPCLK and I	CSPDAT are ge CSPDAT are dec	neral purpose I/C dicated to the deb	pins pugger	
bit 11	LPBOR: Low- 1 = Low-Powe 0 = Low-Powe	Power BOR r BOR is disabled r BOR is enabled	I				
bit 10	BORV: Brown- 1 = Brown-out 0 = Brown-out	-out Reset Voltage Reset voltage (V Reset voltage (V	e Selection bit BOR), low trip poir BOR), high trip poi	nt selected			
bit 9	STVREN: Stac 1 = Stack Over 0 = Stack Over	ck Overflow/Unde rflow or Underflov rflow or Underflov	rflow Reset Enab v will cause a Res v will not cause a	le bit set Reset			
bit 8-5	Unimplement	ed: Read as '1'					
bit 4	VCAPEN: Volt 0 = VCAP funct 1 = All VCAP pi	age Regulator Ca tionality is enabled in functions are di	apacitor Enable bi d on VCAP pin isabled	ts ⁽¹⁾			
bit 3-2	Unimplement	ed: Read as '1'					
bit 1-0	WRT<1:0>: Fil 2 kW Flash me 11 = Wr 10 = 00 01 = 00 00 = 00 4 kW Flash me 11 = Wr 10 = 00 01 = 00 01 = 00 01 = 00 00 = 000 8 kW Flash me	ash Memory Self- emory (PIC16(L)F ite protection off 0h to 1FFh write- 0h to 7FFh write- emory (PIC16(L)F ite protection off 0h to 1FFh write- 0h to 7FFh write- 0h to 7FFh write- emory (PIC16F/LF	Write Protection I (1512): protected, 200h tr protected, 400h tr protected, no add (1513): protected, 200h tr protected, 800h tr protected, no add (1516/1517/1526)	bits o 7FFh may be n o 7FFh may be n lresses may be n o FFFh may be n o FFFh may be n resses may be n):	nodified by PMCC nodified by PMCC nodified by PMCC nodified by PMCC nodified by PMCC nodified by PMCC	DN control DN control DN control DN control DN control DN control	
	$11 = Wr \\ 10 = 00 \\ 01 = 00 \\ 00 = 00 \\ 16 kW Flash m \\ 11 = Wr \\ 10 = 00 \\ 01 = 00 \\ 00 \\ 00 = 00 \\ 00 \\ 00 = 00 \\ 00 \\ 00 \\ 00 = 00 \\ 00 $	ite protection off Oh to 1FFh write- Oh to FFFh write- Oh to 1FFFh write- <u>hemory (PIC16F/I</u> ite protection off Oh to 1FFh write- Oh to 1FFFh write- Oh to 3FFFh write-	protected, 200h to protected, 1000h p-protected, no ad <u>F1518/1519/152</u> protected, 200h to protected, 2000h p-protected, no ad	o 1FFFh may be to 1FFFh may b dresses may be 7 <u>)</u> : o 3FFFh may be n to 3FFFh may dresses may be	modified by PMC e modified by PMC modified by PMC be modified by PMC be modified by PMC	CON control ICON control CON control CON control MCON control CON control	
Note 1: The	EVP bit cannot	be programmed	to '0' when Progra	amming mode is	entered via LVP.		

REGISTER 3-3: CONFIGURATION WORD 2

2: Applies to PIC16F151X/152X devices only. On PIC16LF151X/152X, the VCAPEN bit is unimplemented.

4.0 PROGRAM/VERIFY MODE

In Program/Verify mode, the program memory and the configuration memory can be accessed and programmed in serial fashion. ICSPDAT and ICSPCLK are used for the data and the clock, respectively. All commands and data words are transmitted LSb first. Data changes on the rising edge of the ICSPCLK and latched on the falling edge. In Program/Verify mode both the ICSPDAT and ICSPCLK are Schmitt Trigger inputs. The sequence that enters the device into Program/Verify mode places all other logic into the Reset state. Upon entering Program/Verify mode, all I/Os are automatically configured as high-impedance inputs and the address is cleared.

4.1 High-Voltage Program/Verify Mode Entry and Exit

There are two different methods of entering Program/ Verify mode via high-voltage:

- VPP First entry mode
- VDD First entry mode

4.1.1 VPP – FIRST ENTRY MODE

To enter Program/Verify mode via the VPP-first method the following sequence must be followed:

- 1. Hold ICSPCLK and ICSPDAT low. All other pins should be unpowered.
- 2. Raise the voltage on MCLR from 0V to VIHH.
- 3. Raise the voltage on VDD FROM 0V to the desired operating voltage.

The VPP-first entry prevents the device from executing code prior to entering Program/Verify mode. For example, when Configuration Word 1 has MCLR disabled (MCLRE = 0), the power-up time is disabled ($\overline{PWRTE} = 0$), the internal oscillator is selected ($\overline{FOSC} = 100$), and ICSPCLK and ICSPDAT pins are driven by the user application, the device will execute code. Since this may prevent entry, VPP-first entry mode is strongly recommended. See the timing diagram in Figure 8-2.

4.1.2 VDD – FIRST ENTRY MODE

To enter Program/Verify mode via the VDD-first method the following sequence must be followed:

- 1. Hold ICSPCLK and ICSPDAT low.
- 2. Raise the voltage on VDD from 0V to the desired operating voltage.
- 3. Raise the voltage on MCLR from VDD or below to VIHH.

The VDD-first method is useful when programming the device when VDD is already applied, for it is not necessary to disconnect VDD to enter Program/Verify mode. See the timing diagram in Figure 8-1.

4.1.3 PROGRAM/VERIFY MODE EXIT

To exit Program/Verify mode take MCLR to VDD or lower (VIL). See Figures 8-3 and 8-4.

4.2 Low-Voltage Programming (LVP) Mode

The Low-Voltage Programming mode allows the PIC16(L)F151X/152X devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 register is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'. This can only be done while in the High-Voltage Entry mode.

Entry into the Low-Voltage ICSP Program/Verify modes requires the following steps:

- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

The key sequence is a specific 32-bit pattern, '0100 1101 0100 0011 0100 1000 0101 0000' (more easily remembered as MCHP in ASCII). The device will enter Program/Verify mode only if the sequence is valid. The Least Significant bit of the Least Significant nibble must be shifted in first.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

For low-voltage programming timing, see Figure 8-8 and Figure 8-9.

Exiting <u>Program/Verify</u> mode is done by no longer driving MCLR to VIL. See Figure 8-8 and Figure 8-9.

Note: To enter LVP mode, the LSB of the Least Significant nibble must be shifted in first. This differs from entering the key sequence on other parts.

4.3.8 END EXTERNALLY TIMED PROGRAMMING

This command is required after a Begin Externally Timed Programming command is given. This command must be sent within the time window specified by TPEXT after the Begin Externally Timed Programming command is sent.

After sending the End Externally Timed Programming command, an additional delay (TDIS) is required before sending the next command. This delay is longer than the delay ordinarily required between other commands (see Figure 4-8).

FIGURE 4-8: END EXTERNALLY TIMED PROGRAMMING

4.3.9 BULK ERASE PROGRAM MEMORY

The Bulk Erase Program Memory command performs two different functions dependent on the current state of the address.

Address 0000h-7FFFh:

Program Memory is erased

Configuration Words are erased

Address 8000h-8008h:

Program Memory is erased

Configuration Words are erased

User ID Locations are erased

A Bulk Erase Program Memory command should not be issued when the address is greater than 8008h.

FIGURE 4-9: BULK ERASE PROGRAM MEMORY

After receiving the Bulk Erase Program Memory command the erase will not complete until the time interval, TERAB, has expired.

Note: The code protection Configuration bit (CP) has no effect on the Bulk Erase Program Memory command.

5.0 PROGRAMMING ALGORITHMS

The devices use internal latches to temporarily store the 14-bit words used for programming. Refer to Table 4-2 for specific latch information. The data latches allow the user to write the program words with a single Begin Externally Timed Programming or Begin Internally Timed Programming command. The Load Program Data or the Load Configuration command is used to load a single data latch. The data latch will hold the data until the Begin Externally Timed Programming or Begin Internally Timed Programming or Begin Internally Timed Programming command is given.

The data latches are aligned with the LSbs of the address. The PC's address at the time the Begin Externally Timed Programming or Begin Internally Timed Programming command is given will determine which location(s) in memory are written. Writes cannot cross the physical boundary. For example, with the PIC16F1527, attempting to write from address 0002h-0009h will result in data being written to 0008h-000Fh.

If more than the maximum number of data latches are written without a Begin Externally Timed Programming or Begin Internally Timed Programming command, the data in the data latches will be overwritten. The following figures show the recommended flowcharts for programming.

CONFIGURATION MEMORY PROGRAM FLOWCHART

Advance Information

6.0 CODE PROTECTION

Code protection is controlled using the \overline{CP} bit in Configuration Word 1. When code protection is enabled, all program memory locations (0000h-7FFFh) read as all '0'. Further programming is disabled for the program memory (0000h-7FFFh).

The user ID locations and Configuration Words can be programmed and read out regardless of the code protection settings.

6.1 Program Memory

Code protection is enabled by programming the \overline{CP} bit in Configuration Word 1 register to '0'.

The only way to disable code protection is to use the Bulk Erase Program Memory command.

7.0 HEX FILE USAGE

In the hex file there are two bytes per program word stored in the Intel[®] INHX32 hex format. Data is stored LSB first, MSB second. Because there are two bytes per word, the addresses in the hex file are 2x the address in program memory. (Example: Configuration Word 1 is stored at 8007h on the PIC16(L)F151X/152X. In the hex file this will be referenced as 1000Eh-1000Fh).

7.1 Configuration Word

To allow portability of code, it is strongly recommended that the programmer is able to read the Configuration Words and user ID locations from the hex file. If the Configuration Words information was not present in the hex file, a simple warning message may be issued. Similarly, while saving a hex file, Configuration Words and user ID information should be included.

7.2 Device ID and Revision

If a device ID is present in the hex file at 1000Ch-1000Dh (8006h on the part), the programmer should verify the device ID (excluding the revision) against the value read from the part. On a mismatch condition the programmer should generate a warning message.

EXAMPLE 7-4: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED PIC16LF1527, 00AAh AT FIRST AND LAST ADDRESS

PIC16L	F1527	Configuration Word	1 ⁽²⁾	3F7Fh
		Configuration Word	1 mask ⁽³⁾	3EFFh
		Configuration Word	2 ⁽²⁾	3FFFh
		Configuration Word	2 mask ^{(3),} (⁵⁾	3E03h
		User ID (8000h) ⁽¹⁾		000Eh
		User ID (8001h) ⁽¹⁾		0008h
		User ID (8002h) ⁽¹⁾		0005h
		User ID (8003h) ⁽¹⁾		0008h
		Sum of User IDs ⁽⁴⁾	= (000Eh and 000Fh) << 12 +	(0008h and 000Fh) << 8 +
			(0005h and 000Fh) << 4 + (0008h and 000Fh)
			= E000h + 0800h + 0050h + 00	008h
			= E858h	
		Checksum	= (3F7Fh and 3EFFh) + (3FFF	h and 3E03h) + Sum of User IDs
			= 3E7Fh +3E03h + E858h	
			= 64DAh	
Note 1:	: User II	D values in this examp	le are random values.	
2:	: Config	uration Word 1 and 2 =	all bits are '1' except the code-	protect enable bit.
3:	Config bits wh	uration Word 1 and 2 Mich read '0'.	Mask = all Configuration Word bi	ts are set to '1', except for unimplemented
4:	4: << = shift left, thus the LSb of the first user ID value is the MSb of the sum of user IDs and so on, the LSb of the last user ID value becomes the LSb of the sum of user IDs.			
5:	: On the unimpl	PIC16LF1527 device, emented bits are '0'.	the VCAPEN bit is not impleme	ented in Configuration Word 2; thus, all

8.0 ELECTRICAL SPECIFICATIONS

Refer to device specific data sheet for absolute maximum ratings.

TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

AC/DC CHARACTERISTICS			Standard Operating Conditions				
C1.000	Characteristics		Production		25 C	Unite	Conditions/Commonto
Sym.	Characteristics		win.	Typ.	wax.	Units	conditions/comments
	1	Supply Volt	ages and C	urrents			
Vdd	Supply Voltage	PIC16F151X PIC16F152X	2.3	—	5.5	V	
	PIC16LF151 PIC16LF152		1.8	—	3.6	V	
VPEW	Read/Write and Row Erase operation	itions	VDDMIN	—	VDDMAX	V	
VPBE	Bulk Erase operations		2.7	—	VDDMAX	V	
Iddi	Current on VDD, Idle			_	1.0	mA	
IDDP	Current on VDD, Programming		—	—	3.0	mA	
	Vpp						
IPP	Current on MCLR/VPP		—	—	600	μA	
Vінн	High voltage on MCLR/VPP for Program/Verify mode entry		8.0	—	9.0	V	
TVHHR	MCLR rise time (VIL to VIHH) for Program/Verify mode entry		_	_	1.0	μS	
	I/O pins						
Viн	(ICSPCLK, ICSPDAT, MCLR/VPP level	0.8 Vdd	_	_	V		
VIL	(ICSPCLK, ICSPDAT, MCLR/VPP	_		0.2 Vdd	V		
Vон	ICSPDAT output high level		VDD-0.7 VDD-0.7 VDD-0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 2 mA, VDD = 1.8V
Vol	ICSPDAT output low level			_	Vss+0.6 Vss+0.6 Vss+0.6	V	IOH = 8 mA, VDD = 5V IOH = 6 mA, VDD = 3.3V IOH = 3 mA, VDD = 1.8V
		Programming	Mode Entry	and Exit			,
TENTS	Programing mode entry setup tim ICSPDAT setup time before VDD	e: ICSPCLK, or MCLR↑	100	_	—	ns	
Tenth	Programing mode entry hold time ICSPDAT hold time after VDD or N	<u>: ICS</u> PCLK, ∕ICLR↑	250	_	—	μS	
		Serial F	Program/Vei	rify			
TCKL	Clock Low Pulse Width		100	—	—	ns	
Тскн	Clock High Pulse Width		100	—	—	ns	
TDS	Data in setup time before clock↓		100	—	—	ns	
IDH	Data in hold time after clock↓		100	—	—	ns	
Тсо	Read Data command)		0	_	80	ns	
Tlzd	Clock↓ to data low-impedance (di Read Data command)	uring a	0	_	80	ns	
THZD	Clock↓ to data high-impedance (during a Read Data command)		0	—	80	ns	
Tdly	Data input not driven to next clock required between command/data command)	< input (delay or command/	1.0		_	μS	
TERAB	Bulk Erase cycle time		—		5	ms	
TERAR	Row Erase cycle time		—	—	2.5	ms	

Note 1: Externally timed writes are not supported for Configuration and Calibration bits.

TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY

AC/DC CHARACTERISTICS		Standard Operating Conditions Production tested at 25°C				
Sym. Characteristics		Min.	Тур.	Max.	Units	Conditions/Comments
TPINT	Internally timed programming operation time		_	2.5 5	ms ms	Program memory Configuration Words
TPEXT	Externally timed programming pulse	1.0	_	2.1	ms	Note 1
TDIS	Time delay from program to compare (HV discharge time)	300	—	—	μS	
TEXIT	Time delay when exiting Program/Verify mode	1		_	μS	

Note 1: Externally timed writes are not supported for Configuration and Calibration bits.

8.1 AC Timing Diagrams

FIGURE 8-2:

PROGRAMMING MODE ENTRY – VPP FIRST

FIGURE 8-3:

PROGRAMMING MODE EXIT – VPP LAST

FIGURE 8-4:

PROGRAMMING MODE EXIT – VDD LAST

FIGURE 8-6:

WRITE COMMAND-PAYLOAD TIMING

