

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1516-i-mv

1.2 Pin Utilization

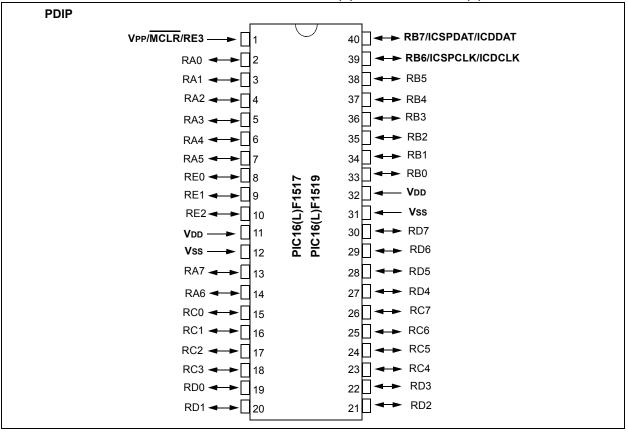
Five pins are needed for ICSP $^{\text{TM}}$ programming. The pins are listed in Table 1-1 and Table 1-2.

TABLE 1-1: PIN DESCRIPTIONS DURING PROGRAMMING – PIC16(L)F1526 AND PIC16(L)F1527

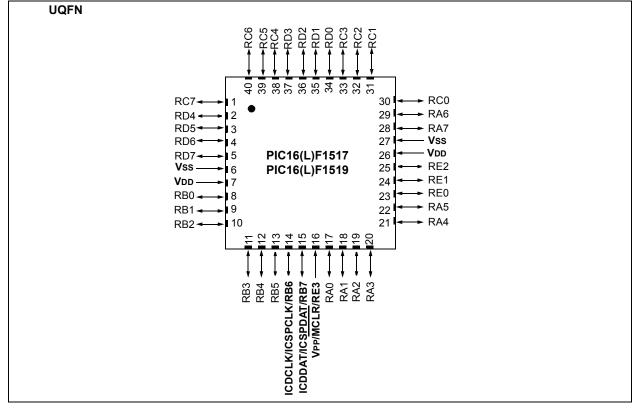
Pin Name		During	Programming
Pili Name	Function	Pin Type	Pin Description
RB6	ICSPCLK	-	Clock Input – Schmitt Trigger Input
RB7	ICSPDAT	I/O	Data Input/Output – Schmitt Trigger Input
RG5/MCLR/VPP	Program/Verify mode	P ⁽¹⁾	Program Mode Select/Programming Power Supply
VDD	Vdd	Р	Power Supply
Vss	Vss	Р	Ground

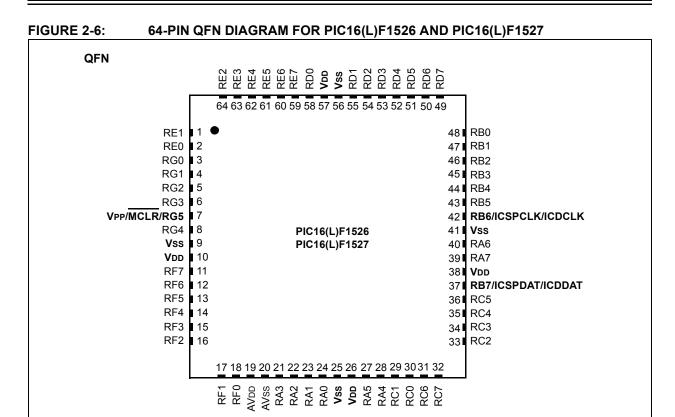
Legend: I = Input, O = Output, P = Power

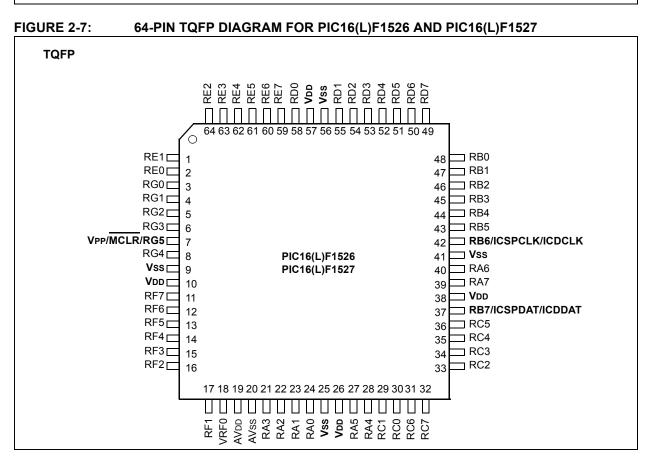
Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.


TABLE 1-2: PIN DESCRIPTIONS DURING PROGRAMMING – PIC16(L)F1512, PIC16(L)F1513, PIC16(L)F1516, PIC16(L)F1517, PIC16(L)F1518 and PIC16(L)F1519

Din Nome		Programming	
Pin Name	Function	Pin Type	Pin Description
RB6	ICSPCLK	I	Clock Input – Schmitt Trigger Input
RB7	ICSPDAT	I/O	Data Input/Output – Schmitt Trigger Input
RE3/MCLR/VPP	Program/Verify mode	P ⁽¹⁾	Program Mode Select/Programming Power Supply
VDD	VDD	Р	Power Supply
Vss	Vss	Р	Ground


Legend: I = Input, O = Output, P = Power


Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.


FIGURE 2-3: 40-PIN PDIP DIAGRAM FOR PIC16(L)F1517 AND PIC16(L)F1519 **PDIP**

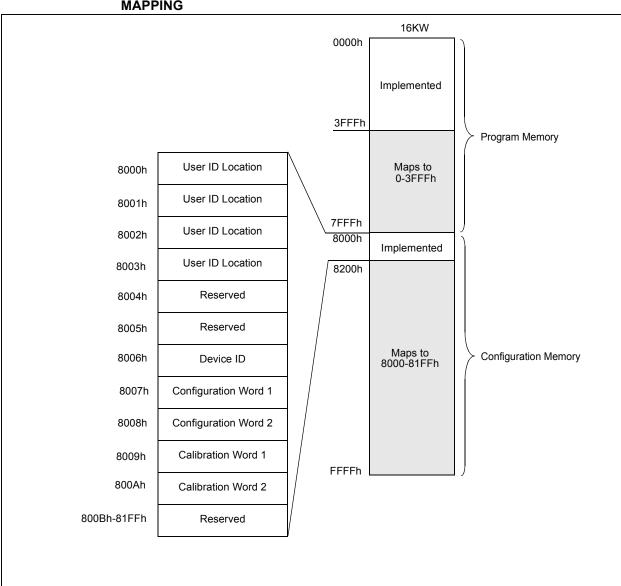


FIGURE 3-4: PIC16(L)F1527, PIC16(L)F1518 AND PIC16(L)F1519 PROGRAM MEMORY MAPPING

3.1 User ID Location

A user may store identification information (user ID) in four designated locations. The user ID locations are mapped to 8000h-8003h. Each location is 14 bits in length. Code protection has no effect on these memory locations. Each location may be read with code protection enabled or disabled.

Note: MPLAB[®] IDE only displays the 7 Least Significant bits (LSb) of each user ID location, the upper bits are not read. It is recommended that only the 7 LSbs be used if MPLAB IDE is the primary tool used to read these addresses.

3.2 Device ID

The device ID word is located at 8006h. This location is read-only and cannot be erased or modified.

REGISTER 3-1: DEVICE ID: DEVICE ID REGISTER⁽¹⁾

R	R	R	R	R	R
DEV<8:3>					
bit 13					bit 8

R	R	R	R	R	R	R	R
	DEV<2:0>				REV<4:0>		
bit 7							bit 0

Legend:	P = Programmable bit	U = Unimplemented bit, read as '0'
R = Readable bit	W = Writable bit	'0' = Bit is cleared
-n = Value at POR	'1' = Bit is set	x = Bit is unknown

bit 13-5 **DEV<8:0>:** Device ID bits

These bits are used to identify the part number.

bit 4-0 **REV<4:0>:** Revision ID bits

These bits are used to identify the revision.

Note 1: This location cannot be written.

TABLE 3-1: DEVICE ID VALUES

DE///OF	DEVICE II	D VALUES
DEVICE	DEV	REV
PIC16F1527	0001 0101 101	x xxxx
PIC16F1526	0001 0101 100	x xxxx
PIC16LF1527	0001 0101 111	x xxxx
PIC16LF1526	0001 0101 110	x xxxx
PIC16F1519	0001 0110 111	x xxxx
PIC16F1518	0001 0110 110	x xxxx
PIC16F1517	0001 0110 101	x xxxx
PIC16F1516	0001 0110 100	x xxxx
PIC16F1513	0001 0110 010	x xxxx
PIC16F1512	0001 0111 000	x xxxx
PIC16LF1519	0001 0111 111	x xxxx
PIC16LF1518	0001 0111 110	x xxxx
PIC16LF1517	0001 0111 101	x xxxx
PIC16LF1516	0001 0111 100	x xxxx
PIC16LF1513	0001 0111 010	x xxxx
PIC16LF1512	0001 0111 001	x xxxx

3.3 Configuration Words

There are two Configuration Words, Configuration Word 1 (8007h) and Configuration Word 2 (8008h). The individual bits within these Configuration Words are used to enable or disable device functions such as the Brown-out Reset, code protection and Power-up Timer.

3.4 Calibration Words

The internal calibration values are factory calibrated and stored in Calibration Words 1 and 2 (8009h, 800Ah).

The Calibration Words do not participate in erase operations. The device can be erased without affecting the Calibration Words.

REGISTER 3-2: CONFIGURATION WORD 1

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	
FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	_	
bit 13					bit	t 8

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>	
bit 7							bit 0

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1

'0' = Bit is cleared '1' = Bit is set -n = Value when blank or after Bulk Erase

bit 13 FCMEN: Fail-Safe Clock Monitor Enable bit

1 = Fail-Safe Clock Monitor is enabled

0 = Fail-Safe Clock Monitor is disabled

bit 12 IESO: Internal External Switchover bit

1 = Internal/External Switchover mode is enabled 0 = Internal/External Switchover mode is disabled

bit 11 CLKOUTEN: Clock Out Enable bit

1 = CLKOUT function is disabled. I/O or oscillator function on CLKOUT pin.

0 = CLKOUT function is enabled on CLKOUT pin

bit 10-9 **BOREN<1:0>:** Brown-out Reset Enable bits⁽¹⁾

11 = BOR enabled

10 = BOR enabled during operation and disabled in Sleep

01 = BOR controlled by SBOREN bit of the PCON register

00 = BOR disabled

bit 8 Unimplemented: Read as '1'

bit 7 **CP**: Code Protection bit⁽²⁾

1 = Program memory code protection is disabled

0 = Program memory code protection is enabled

bit 6 MCLRE: MCLR/VPP Pin Function Select bit

If LVP bit = 1:

This bit is ignored.

If LVP bit = 0:

1 = \overline{MCLR}/VPP pin function is \overline{MCLR} ; Weak pull-up enabled.

0 = MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUA register.

bit 5 **PWRTE**: Power-up Timer Enable bit⁽¹⁾

1 = PWRT disabled

0 = PWRT enabled

bit 4-3 WDTE<1:0>: Watchdog Timer Enable bit

11 = WDT enabled

10 = WDT enabled while running and disabled in Sleep

01 = WDT controlled by the SWDTEN bit in the WDTCON register

00 = WDT disabled

bit 2-0 FOSC<2:0>: Oscillator Selection bits

111 = ECH: External Clock, High-Power mode: on CLKIN pin

110 = ECM: External Clock, Medium-Power mode: on CLKIN pin

101 = ECL: External Clock, Low-Power mode: on CLKIN pin

100 = INTOSC oscillator: I/O function on OSC1 pin

011 = EXTRC oscillator: RC function on OSC1 pin

010 = HS oscillator: High-speed crystal/resonator on OSC2 pin and OSC1 pin

001 = XT oscillator: Crystal/resonator on OSC2 pin and OSC1 pin

000 = LP oscillator: Low-power crystal on OSC2 pin and OSC1 pin

Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.

2: The entire program memory will be erased when the code protection is turned off.

REGISTER 3-3: CONFIGURATION WORD 2

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
LVP	DEBUG	LPBOR	BORV	STVREN	_
bit 13					bit 8

U-1	U-1	U-1	R/P-1	U-1	U-1	R/P-1	R/P-1
_	_	_	VCAPEN ⁽²⁾	_	_	WRT<	:1:0>
bit 7							bit 0

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '1
'0' = Bit is cleared	'1' = Bit is set	-n = Value when blank or after Bulk Erase

bit 13 LVP: Low-Voltage Programming Enable bit⁽¹⁾

1 = Low-voltage programming enabled

0 = HV on \overline{MCLR}/VPP must be used for programming

bit 12 **DEBUG:** In-Circuit Debugger Mode bit

 ${\tt 1}$ = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins

0 = In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger

bit 11 LPBOR: Low-Power BOR

1 = Low-Power BOR is disabled

0 = Low-Power BOR is enabled

bit 10 BORV: Brown-out Reset Voltage Selection bit

1 = Brown-out Reset voltage (VBOR), low trip point selected

0 = Brown-out Reset voltage (VBOR), high trip point selected

bit 9 STVREN: Stack Overflow/Underflow Reset Enable bit

1 = Stack Overflow or Underflow will cause a Reset

0 = Stack Overflow or Underflow will not cause a Reset

bit 8-5 **Unimplemented:** Read as '1'

bit 4

VCAPEN: Voltage Regulator Capacitor Enable bits⁽¹⁾

0 = VCAP functionality is enabled on VCAP pin

1 = All VCAP pin functions are disabled

bit 3-2 Unimplemented: Read as '1'

bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits

2 kW Flash memory (PIC16(L)F1512):

11 = Write protection off

10 = 000h to 1FFh write-protected, 200h to 7FFh may be modified by PMCON control

01 = 000h to FFFh write-protected, 400h to 7FFh may be modified by PMCON control

00 = 000h to 7FFh write-protected, no addresses may be modified by PMCON control

4 kW Flash memory (PIC16(L)F1513):

11 = Write protection off

10 = 000h to 1FFh write-protected, 200h to FFFh may be modified by PMCON control

01 = 000h to 7FFh write-protected, 800h to FFFh may be modified by PMCON control

00 = 000h to FFFh write-protected, no addresses may be modified by PMCON control

8 kW Flash memory (PIC16F/LF1516/1517/1526):

11 = Write protection off

10 = 000h to 1FFh write-protected, 200h to 1FFFh may be modified by PMCON control

01 = 000h to FFFh write-protected, 1000h to 1FFFh may be modified by PMCON control

00 = 000h to 1FFFh write-protected, no addresses may be modified by PMCON control

16 kW Flash memory (PIC16F/LF1518/1519/1527):

11 = Write protection off

10 = 000h to 1FFh write-protected, 200h to 3FFFh may be modified by PMCON control

01 = 000h to 1FFFh write-protected, 2000h to 3FFFh may be modified by PMCON control

00 = 000h to 3FFFh write-protected, no addresses may be modified by PMCON control

Note 1: The LVP bit cannot be programmed to '0' when Programming mode is entered via LVP.

Applies to PIC16F151X/152X devices only. On PIC16LF151X/152X, the VCAPEN bit is unimplemented.

4.0 PROGRAM/VERIFY MODE

In Program/Verify mode, the program memory and the configuration memory can be accessed and programmed in serial fashion. ICSPDAT and ICSPCLK are used for the data and the clock, respectively. All commands and data words are transmitted LSb first. Data changes on the rising edge of the ICSPCLK and latched on the falling edge. In Program/Verify mode both the ICSPDAT and ICSPCLK are Schmitt Trigger inputs. The sequence that enters the device into Program/Verify mode places all other logic into the Reset state. Upon entering Program/Verify mode, all I/Os are automatically configured as high-impedance inputs and the address is cleared.

4.1 High-Voltage Program/Verify Mode Entry and Exit

There are two different methods of entering Program/ Verify mode via high-voltage:

- VPP First entry mode
- VDD First entry mode

4.1.1 VPP – FIRST ENTRY MODE

To enter Program/Verify mode via the VPP-first method the following sequence must be followed:

- 1. Hold ICSPCLK and ICSPDAT low. All other pins should be unpowered.
- 2. Raise the voltage on MCLR from 0V to VIHH.
- 3. Raise the voltage on VDD FROM 0V to the desired operating voltage.

The VPP-first entry prevents the device from executing code prior to entering Program/Verify mode. For example, when Configuration Word 1 has MCLR disabled (MCLRE = 0), the power-up time is disabled (PWRTE = 0), the internal oscillator is selected (Fosc = 100), and ICSPCLK and ICSPDAT pins are driven by the user application, the device will execute code. Since this may prevent entry, VPP-first entry mode is strongly recommended. See the timing diagram in Figure 8-2.

4.1.2 VDD – FIRST ENTRY MODE

To enter Program/Verify mode via the VDD-first method the following sequence must be followed:

- Hold ICSPCLK and ICSPDAT low.
- Raise the voltage on VDD from 0V to the desired operating voltage.
- Raise the voltage on MCLR from VDD or below to VIHH.

The VDD-first method is useful when programming the device when VDD is already applied, for it is not necessary to disconnect VDD to enter Program/Verify mode. See the timing diagram in Figure 8-1.

4.1.3 PROGRAM/VERIFY MODE EXIT

To exit Program/Verify mode take MCLR to VDD or lower (VIL). See Figures 8-3 and 8-4.

4.2 Low-Voltage Programming (LVP) Mode

The Low-Voltage Programming mode allows the PIC16(L)F151X/152X devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 register is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'. This can only be done while in the High-Voltage Entry mode.

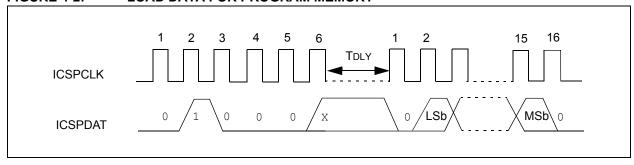
Entry into the Low-Voltage ICSP Program/Verify modes requires the following steps:

- 1. MCLR is brought to VIL.
- A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

The key sequence is a specific 32-bit pattern, '0100 1101 0100 0011 0100 1000 0101 0000' (more easily remembered as MCHP in ASCII). The device will enter Program/Verify mode only if the sequence is valid. The Least Significant bit of the Least Significant nibble must be shifted in first.

Once the key sequence is complete, \overline{MCLR} must be held at VIL for as long as Program/Verify mode is to be maintained.

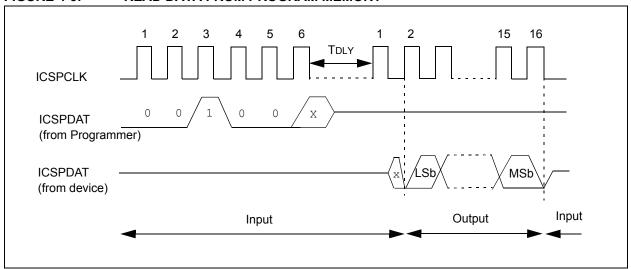
For low-voltage programming timing, see Figure 8-8 and Figure 8-9.


Exiting Program/Verify mode is done by no longer driving MCLR to VIL. See Figure 8-8 and Figure 8-9.

Note: To enter LVP mode, the LSB of the Least Significant nibble must be shifted in first. This differs from entering the key sequence on other parts.

4.3.2 LOAD DATA FOR PROGRAM MEMORY

The Load Data for Program Memory command is used to load one 14-bit word into the data latches. The word programs into program memory after the Begin Internally Timed Programming or Begin Externally Timed Programming command is issued (see Figure 4-2).


FIGURE 4-2: LOAD DATA FOR PROGRAM MEMORY

4.3.3 READ DATA FROM PROGRAM MEMORY

The Read Data from Program Memory command will transmit data bits out of the program memory map currently accessed, starting with the second rising edge of the clock input. The ICSPDAT pin will go into Output mode on the first falling clock edge, and it will revert to Input mode (high-impedance) after the 16th falling edge of the clock. If the program memory is code-protected (\overline{CP}) , the data will be read as zeros (see Figure 4-3).

FIGURE 4-3: READ DATA FROM PROGRAM MEMORY

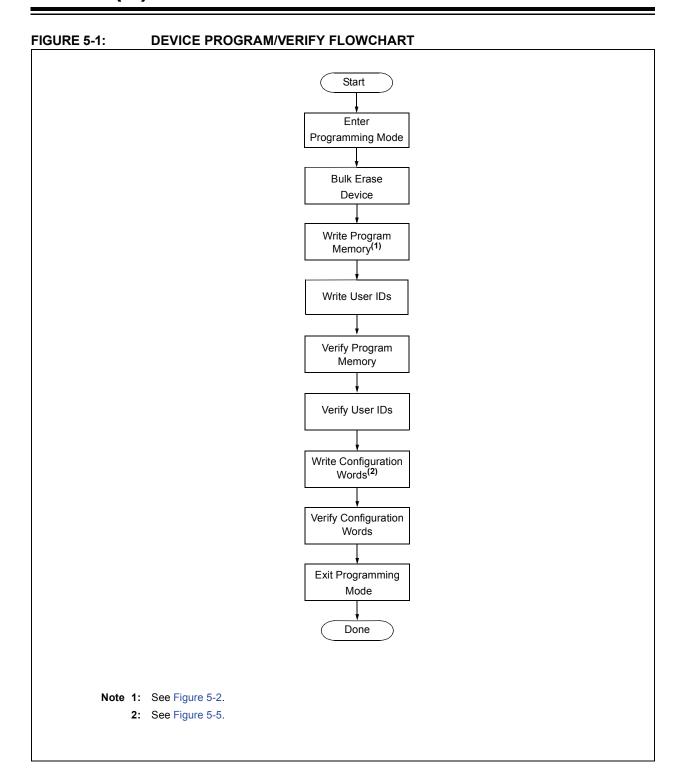
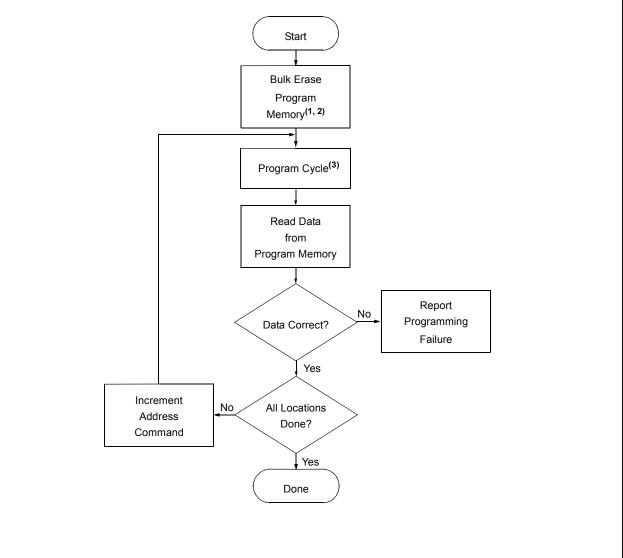
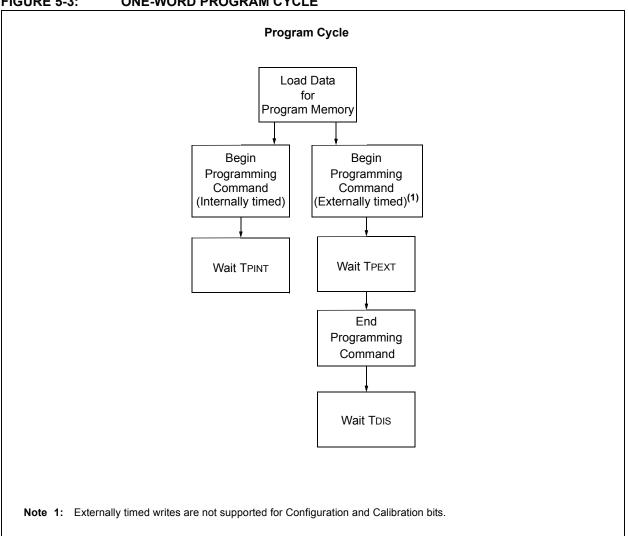
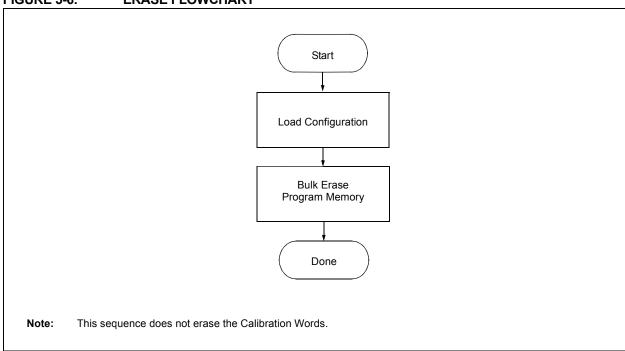




FIGURE 5-2: PROGRAM MEMORY FLOWCHART



- Note 1: This step is optional if device has already been erased or has not been previously programmed.
 - 2: If the device is code-protected or must be completely erased, then Bulk Erase device per Figure 5-6.
 - **3:** See Figure 5-3 or Figure 5-4.

FIGURE 5-3: **ONE-WORD PROGRAM CYCLE**

FIGURE 5-6: ERASE FLOWCHART

6.0 CODE PROTECTION

Code protection is controlled using the $\overline{\text{CP}}$ bit in Configuration Word 1. When code protection is enabled, all program memory locations (0000h-7FFFh) read as all '0'. Further programming is disabled for the program memory (0000h-7FFFh).

The user ID locations and Configuration Words can be programmed and read out regardless of the code protection settings.

6.1 Program Memory

Code protection is enabled by programming the \overline{CP} bit in Configuration Word 1 register to '0'.

The only way to disable code protection is to use the Bulk Erase Program Memory command.

7.0 HEX FILE USAGE

In the hex file there are two bytes per program word stored in the Intel[®] INHX32 hex format. Data is stored LSB first, MSB second. Because there are two bytes per word, the addresses in the hex file are 2x the address in program memory. (Example: Configuration Word 1 is stored at 8007h on the PIC16(L)F151X/152X. In the hex file this will be referenced as 1000Eh-1000Fh).

7.1 Configuration Word

To allow portability of code, it is strongly recommended that the programmer is able to read the Configuration Words and user ID locations from the hex file. If the Configuration Words information was not present in the hex file, a simple warning message may be issued. Similarly, while saving a hex file, Configuration Words and user ID information should be included.

7.2 Device ID and Revision

If a device ID is present in the hex file at 1000Ch-1000Dh (8006h on the part), the programmer should verify the device ID (excluding the revision) against the value read from the part. On a mismatch condition the programmer should generate a warning message.

EXAMPLE 7-4: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED PIC16LF1527, 00AAh AT FIRST AND LAST ADDRESS

PIC16LF1527	Configuration Word	1 ⁽²⁾	3F7Fh			
	Configuration Word 1 mask ⁽³⁾		3EFFh			
	Configuration Word 2 ⁽²⁾ Configuration Word 2 mask ^{(3), (5)} User ID (8000h) ⁽¹⁾		3FFFh			
			3E03h			
			000Eh			
	User ID (8001h) ⁽¹⁾		0008h			
	User ID (8002h) ⁽¹⁾		0005h			
	User ID (8003h) ⁽¹⁾		0008h			
	Sum of User IDs ⁽⁴⁾	= (000Eh and 000Fh) << 12	+ (0008h and 000Fh) << 8 +			
	(0005h and 000Fh) << 4 + (0008h and 000Fh)					
		= E000h + 0800h + 0050h + 0008h				
		= E858h				
	Checksum	= (3F7Fh and 3EFFh) + (3FF	Fh and 3E03h) + Sum of User IDs			
		= 3E7Fh +3E03h + E858h				
		= 64DAh				
Note 1: User	ID values in this exam	ole are random values.				

- User ID values in this example are random values.
 - 2: Configuration Word 1 and 2 = all bits are '1' except the code-protect enable bit.
 - 3: Configuration Word 1 and 2 Mask = all Configuration Word bits are set to '1', except for unimplemented bits which read '0'.
 - 4: << = shift left, thus the LSb of the first user ID value is the MSb of the sum of user IDs and so on, until the LSb of the last user ID value becomes the LSb of the sum of user IDs.
 - 5: On the PIC16LF1527 device, the VCAPEN bit is not implemented in Configuration Word 2; thus, all unimplemented bits are '0'.

TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY

AC/DC CHARACTERISTICS		Standard Operating Conditions Production tested at 25°C				
Sym.	Characteristics	Min.	Тур.	Max.	Units	Conditions/Comments
TPINT	Internally timed programming operation time			2.5 5	ms ms	Program memory Configuration Words
TPEXT	Externally timed programming pulse	1.0	_	2.1	ms	Note 1
TDIS	Time delay from program to compare (HV discharge time)	300	_	_	μS	
TEXIT	Time delay when exiting Program/Verify mode	1	_	_	μS	

Note 1: Externally timed writes are not supported for Configuration and Calibration bits.

8.1 AC Timing Diagrams

FIGURE 8-1: PROGRAMMING MODE ENTRY – VDD FIRST

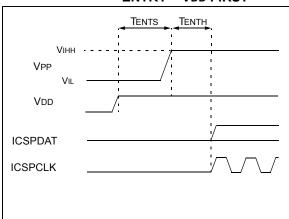


FIGURE 8-2: PROGRAMMING MODE ENTRY – VPP FIRST

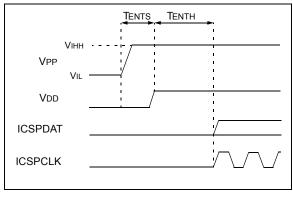


FIGURE 8-3: PROGRAMMING MODE EXIT – VPP LAST

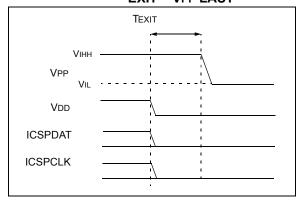


FIGURE 8-4: PROGRAMMING MODE EXIT – VDD LAST

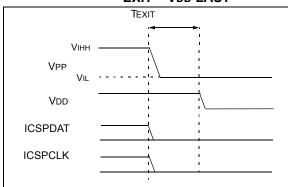
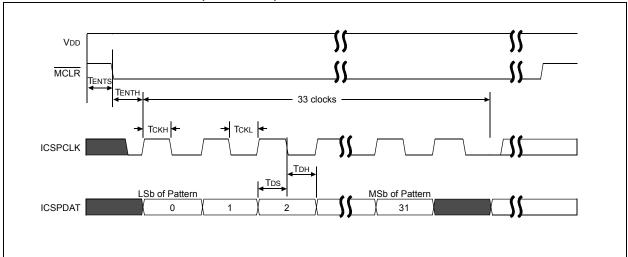
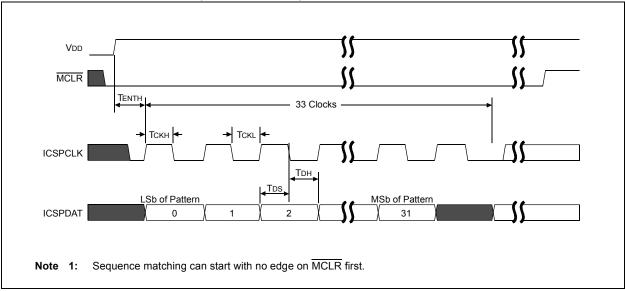




FIGURE 8-8: LVP ENTRY (POWERED)

FIGURE 8-9: LVP ENTRY (POWERING UP)

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-635-8

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2009

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.