

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1517-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Pin Utilization

Five pins are needed for ICSP[™] programming. The pins are listed in Table 1-1 and Table 1-2.

Dia Nama	During Programming				
Pin Name	Function	Pin Type	Pin Description		
RB6	ICSPCLK	l	Clock Input – Schmitt Trigger Input		
RB7	ICSPDAT	I/O	Data Input/Output – Schmitt Trigger Input		
RG5/MCLR/VPP	Program/Verify mode	P ⁽¹⁾	Program Mode Select/Programming Power Supply		
Vdd	Vdd	Р	Power Supply		
Vss	Vss	Р	Ground		

TABLE 1-1: PIN DESCRIPTIONS DURING PROGRAMMING – PIC16(L)F1526 AND PIC16(L)F1527

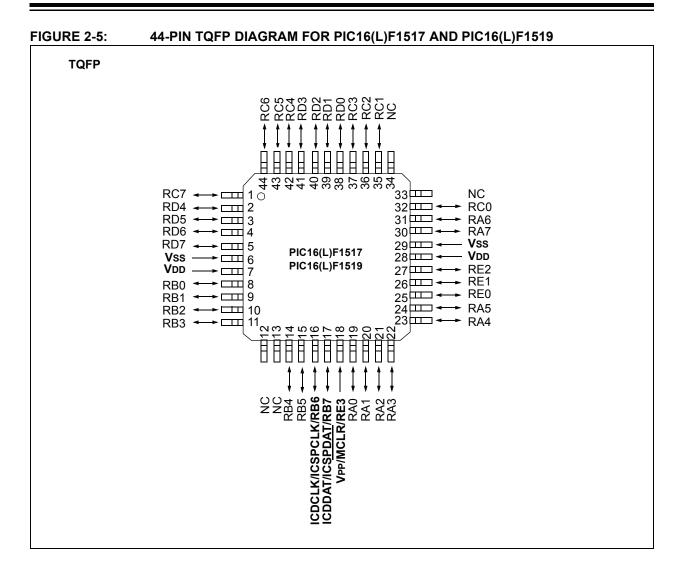
Legend: I = Input, O = Output, P = Power

Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.

TABLE 1-2:PIN DESCRIPTIONS DURING PROGRAMMING – PIC16(L)F1512, PIC16(L)F1513,
PIC16(L)F1516, PIC16(L)F1517, PIC16(L)F1518 and PIC16(L)F1519

Din Nome	During Programming			
Pin Name	Function	Pin Type	Pin Description	
RB6	ICSPCLK	I	Clock Input – Schmitt Trigger Input	
RB7	ICSPDAT	I/O	Data Input/Output – Schmitt Trigger Input	
RE3/MCLR/VPP	Program/Verify mode	P ⁽¹⁾	Program Mode Select/Programming Power Supply	
Vdd	Vdd	Р	Power Supply	
Vss	Vss	Р	Ground	

Legend: I = Input, O = Output, P = Power


Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.

2.0 DEVICE PINOUTS

The pin diagrams for the PIC16(L)F151X/152X family are shown in Figure 2-1 through Figure 2-7. The pins that are required for programming are listed in Table 1-1 and shown in bold lettering in the pin diagrams.

FIGURE 2-1: 28-PIN SPDIP, SOIC, SSOP DIAGRAM FOR PIC16(L)F1512, PIC16(L)F1513, PIC16(L)F1516 AND PIC16(L)F1518

SPDIP, SOIC, SSOP		
		RB7/ICSPDAT
RA02	27	←► RB6/ICSPCLK
RA13	26	→ RB5
RA2	25	 → RB4
RA3 🛶 🗌 5	24	→ RB3
RA4 6	513 518 518 518	←► RB2
RA5 - 7		→ RB1
Vss → 8	() 21 () 21 () 9 () 9 () 9 () 1 () 1 () 1 () 1 () 1 () 1 () 1 () 1	RB0
RA7 ◄ ► 9	5555 ²⁰	VDD
RA6		✓ Vss
RC0 - 11	18	 → RC7
RC1 - 12	17	←► RC6
RC2	16	← RC5
RC3	15	← RC4

3.0 MEMORY MAP

The memory for the PIC16(L)F151X/152X devices is broken into two sections: program memory and configuration memory. Only the size of the program memory changes between devices, the configuration memory remains the same.

3.1 User ID Location

A user may store identification information (user ID) in four designated locations. The user ID locations are mapped to 8000h-8003h. Each location is 14 bits in length. Code protection has no effect on these memory locations. Each location may be read with code protection enabled or disabled. Note: MPLAB[®] IDE only displays the 7 Least Significant bits (LSb) of each user ID location, the upper bits are not read. It is recommended that only the 7 LSbs be used if MPLAB IDE is the primary tool used to read these addresses.

3.2 Device ID

The device ID word is located at 8006h. This location is read-only and cannot be erased or modified.

REGISTER 3-1: DEVICE ID: DEVICE ID REGISTER⁽¹⁾

		R	R	R	R	R	R
				DEV	<8:3>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
	DEV<2:0>				REV<4:0>		
bit 7							bit 0
Legend:		P = Programma	ble bit	U = Unimpleme	ented bit, read as	ʻ0'	

Legend:	P = Programmable bit	U = Unimplemented bit, read as '0'
R = Readable bit	W = Writable bit	'0' = Bit is cleared
-n = Value at POR	'1' = Bit is set	x = Bit is unknown

bit 13-5 **DEV<8:0>:** Device ID bits

These bits are used to identify the part number.

bit 4-0 **REV<4:0>:** Revision ID bits

These bits are used to identify the revision.

Note 1: This location cannot be written.

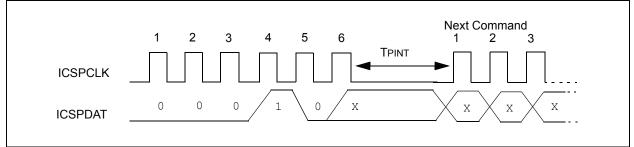
REGISTER 3-2: CONFIGURATION WORD 1

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		FCMEN	IESO	CLKOUTEN	BORE	EN<1:0>	_
		bit 13			•		bit 8
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
CP	MCLRE	PWRTE	WD ⁻	ΓE<1:0>		FOSC<2:0>	
bit 7							bit
Legend:							
R = Readable bit		P = Programmal	DIE DIT		nted bit, read as '		
0' = Bit is cleared	1	'1' = Bit is set		-n = value whe	n blank or after E	SUIK Erase	
bit 13	1 = Fail-Safe Clo	afe Clock Monitor E ock Monitor is enal ock Monitor is disa	oled				
bit 12	1 = Internal/Exte	External Switchover ernal Switchover m ernal Switchover m	ode is enabled				
bit 11	1 = CLKOUT fu	ock Out Enable bit unction is disabled unction is enabled	. I/O or oscillato	r function on CLKO	UT pin.		
bit 10-9	11 = BOR enabl 10 = BOR enabl	led during operatio olled by SBOREN	n and disabled i	•			
bit 8	Unimplemente	ed: Read as '1'					
bit 7	CP: Code Protection bit ⁽²⁾ 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled						
bit 6	$\frac{\text{If LVP bit} = 1}{\text{This bit is ig}}$ $\frac{\text{If LVP bit} = 0}{1 = \text{MCLR}}$	VPP pin function is I	MCLR; Weak pul	I-up enabled. R internally disabled	t Weak pull-up up	ider control of WPL	A register
bit 5		-up Timer Enable b abled			,		
bit 4-3	WDTE<1:0>: Wa 11 = WDT enab 10 = WDT enab	atchdog Timer Ena bled bled while running rolled by the SWD	and disabled in				
bit 2-0	FOSC<2:0>: Os 111 = ECH: Ex 110 = ECM: Ex 101 = ECL: Ex 100 = INTOSC 011 = EXTRC 010 = HS oscil 001 = XT oscil	cillator Selection b kternal Clock, High xternal Clock, Med kternal Clock, Low- C oscillator: I/O fun- oscillator: RC func	-Power mode: c ium-Power mode Power mode: or ction on OSC1 p tion on OSC1 p crystal/resonato nator on OSC2 p	e: on CLKIN pin n CLKIN pin bin in r on OSC2 pin and bin and OSC1 pin	OSC1 pin		
	-		•	le Power-up Timer. de protection is turr	ned off.		

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		LVP	DEBUG	LPBOR	BORV	STVREN	_
		bit 13					bit
		L					
U-1	U-1	U-1	R/P-1	U-1	U-1	R/P-1	R/P-1
_	_	_	VCAPEN ⁽²⁾	_	_	WRT<	1:0>
bit 7	1	I			I		bit
Legend:							
R = Readable bit	t	P = Programma	ble bit	U = Unimpleme	nted bit, read as '1		
0' = Bit is cleared	1	'1' = Bit is set		-n = Value whe	n blank or after B	ulk Erase	
bit 13	LVP: Low-Volta	age Programming	Enable bit ⁽¹⁾				
		<u>je p</u> rogramming e					
		LR/VPP must be u	1 0	ning			
bit 12		rcuit Debugger Mo					
		Debugger disabled Debugger enabled		•		•	
bit 11	LPBOR: Low-F	00				49901	
		r BOR is disabled					
	0 = Low-Power	r BOR is enabled					
bit 10		-out Reset Voltage					
		Reset voltage (Vi	· · ·				
L:4 0		Reset voltage (Vi	<i>/</i> 0 11				
bit 9		ck Overflow/Under rflow or Underflow					
		rflow or Underflow					
bit 8-5	Unimplement	ed: Read as '1'					
bit 4	VCAPEN: Volt	age Regulator Ca	pacitor Enable bi	its(1)			
	0 = VCAP funct	tionality is enabled	d on VCAP pin				
	1 = All VCAP pi	in functions are di	sabled				
bit 3-2	Unimplemente	ed: Read as '1'					
bit 1-0		ash Memory Self-		bits			
		emory (PIC16(L)F rite protection off	<u>1512)</u> :				
		0h to 1FFh write-p	protected. 200h to	o 7FFh mav be m	nodified by PMCC	N control	
		Oh to FFFh write-					
		Oh to 7FFh write-		lresses may be n	nodified by PMCC	ON control	
		emory (PIC16(L)F rite protection off	<u>1513)</u> :				
		0h to 1FFh write-p	protected, 200h to	o FFFh may be n	nodified by PMCC	N control	
	01 = 000	0h to 7FFh write-p	protected, 800h to	o FFFh may be n	nodified by PMCC	N control	
		Oh to FFFh write-p		•	nodified by PMCC	N control	
		emory (PIC16F/LF rite protection off	1516/1517/1526	<u>)</u> :			
		0h to 1FFh write-p	protected, 200h to	o 1FFFh may be	modified by PMC	ON control	
		0h to FFFh write-					
		Oh to 1FFFh write	•		modified by PMC	ON control	
		nemory (PIC16F/L rite protection off	<u>. F 1518/1519/152</u>	<u>/)</u> .			
	VVI	protobilon on					
	10 = 000	0h to 1FFh write-p	protected, 200h to	o 3FFFh may be	modified by PIVIC	ON CONTROL	
	01 = 000	0h to 1FFh write-p 0h to 1FFFh write 0h to 3FFFh write	-protected, 2000	h to 3FFFh may l	be modified by PN	ACON control	

REGISTER 3-3: CONFIGURATION WORD 2

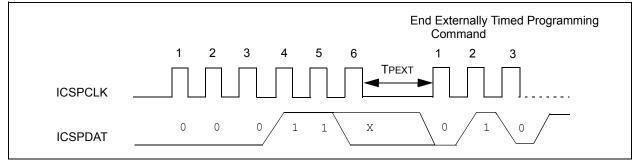
2: Applies to PIC16F151X/152X devices only. On PIC16LF151X/152X, the VCAPEN bit is unimplemented.


4.3.6 BEGIN INTERNALLY TIMED PROGRAMMING

A Load Configuration or Load Data for Program Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. An internal timing mechanism executes the write. The user must allow for the program cycle time, TPINT, for the programming to complete.

The End Externally Timed Programming command is not needed when the Begin Internally Timed Programming is used to start the programming.

The program memory address that is being programmed is not erased prior to being programmed.



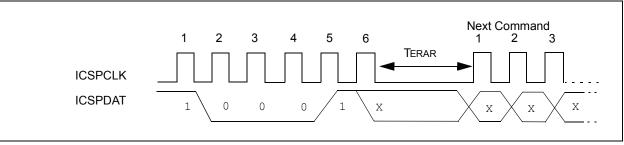
4.3.7 BEGIN EXTERNALLY TIMED PROGRAMMING

A Load Configuration or Load Data for Program Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. To complete the programming the End Externally Timed Programming command must be sent in the specified time window defined by TPEXT (see Figure 4-7).

Externally timed writes are not supported for Configuration and Calibration bits. Any externally timed write to the Configuration or Calibration Word will have no effect on the targeted word.

FIGURE 4-7: BEGIN EXTERNALLY TIMED PROGRAMMING

4.3.10 ROW ERASE PROGRAM MEMORY


The Row Erase Program Memory command will erase an individual row. Refer to Table 4-2 for row sizes of specific devices and the PC bits used to address them. If the program memory is code-protected the Row Erase Program Memory command will be ignored. When the address is 8000h-8008h the Row Erase Program Memory command will only erase the user ID locations regardless of the setting of the CP Configuration bit.

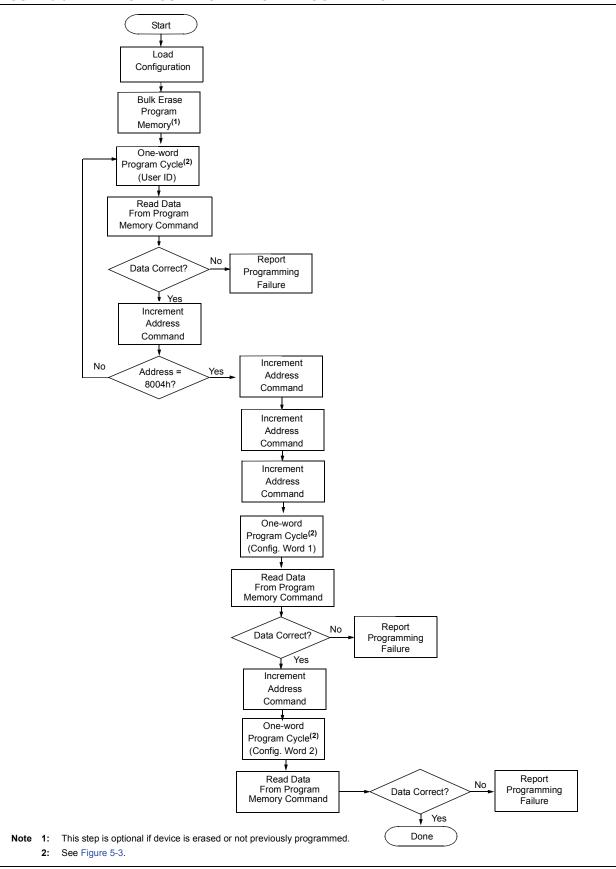
After receiving the Row Erase Program Memory command the erase will not complete until the time interval, TERAR, has expired.

TABLE 4-2:PROGRAMMING ROW SIZE AND LATCHES

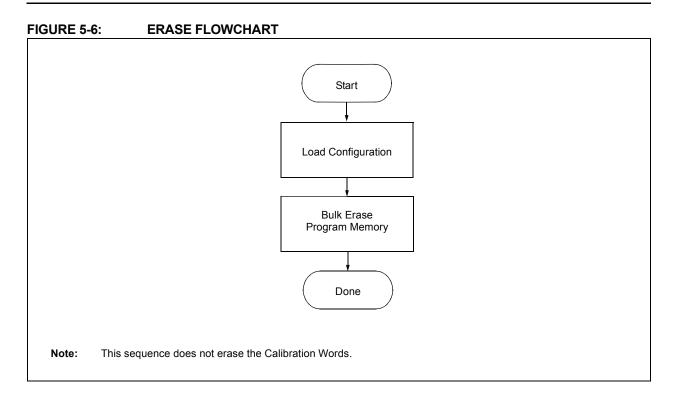
Devices	PC	Row Size	Number of Latches
PIC16(L)F151X/152X	<15:5>	32	32

FIGURE 4-10: ROW ERASE PROGRAM MEMORY

5.0 PROGRAMMING ALGORITHMS


The devices use internal latches to temporarily store the 14-bit words used for programming. Refer to Table 4-2 for specific latch information. The data latches allow the user to write the program words with a single Begin Externally Timed Programming or Begin Internally Timed Programming command. The Load Program Data or the Load Configuration command is used to load a single data latch. The data latch will hold the data until the Begin Externally Timed Programming or Begin Internally Timed Programming or Begin Internally Timed Programming command is given.

The data latches are aligned with the LSbs of the address. The PC's address at the time the Begin Externally Timed Programming or Begin Internally Timed Programming command is given will determine which location(s) in memory are written. Writes cannot cross the physical boundary. For example, with the PIC16F1527, attempting to write from address 0002h-0009h will result in data being written to 0008h-000Fh.


If more than the maximum number of data latches are written without a Begin Externally Timed Programming or Begin Internally Timed Programming command, the data in the data latches will be overwritten. The following figures show the recommended flowcharts for programming.

CONFIGURATION MEMORY PROGRAM FLOWCHART

Advance Information

6.0 CODE PROTECTION

Code protection is controlled using the \overline{CP} bit in Configuration Word 1. When code protection is enabled, all program memory locations (0000h-7FFFh) read as all '0'. Further programming is disabled for the program memory (0000h-7FFFh).

The user ID locations and Configuration Words can be programmed and read out regardless of the code protection settings.

6.1 Program Memory

Code protection is enabled by programming the \overline{CP} bit in Configuration Word 1 register to '0'.

The only way to disable code protection is to use the Bulk Erase Program Memory command.

7.0 HEX FILE USAGE

In the hex file there are two bytes per program word stored in the Intel[®] INHX32 hex format. Data is stored LSB first, MSB second. Because there are two bytes per word, the addresses in the hex file are 2x the address in program memory. (Example: Configuration Word 1 is stored at 8007h on the PIC16(L)F151X/152X. In the hex file this will be referenced as 1000Eh-1000Fh).

7.1 Configuration Word

To allow portability of code, it is strongly recommended that the programmer is able to read the Configuration Words and user ID locations from the hex file. If the Configuration Words information was not present in the hex file, a simple warning message may be issued. Similarly, while saving a hex file, Configuration Words and user ID information should be included.

7.2 Device ID and Revision

If a device ID is present in the hex file at 1000Ch-1000Dh (8006h on the part), the programmer should verify the device ID (excluding the revision) against the value read from the part. On a mismatch condition the programmer should generate a warning message.

7.3 Checksum Computation

The checksum is calculated by two different methods dependent on the setting of the CP Configuration bit.

MASK VALUES						
Device	Config. Word 1 Mask	Config. Word 2 Mask				
PIC16F1512	3EFFh	3E13h				
PIC16F1513	3EFFh	3E13h				
PIC16F1516	3EFFh	3E13h				
PIC16F1517	3EFFh	3E13h				
PIC16F1518	3EFFh	3E13h				
PIC16F1519	3EFFh	3E13h				
PIC16LF1512	3EFFh	3E03h				
PIC16LF1513	3EFFh	3E03h				
PIC16LF1516	3EFFh	3E03h				
PIC16LF1517	3EFFh	3E03h				
PIC16LF1518	3EFFh	3E03h				
PIC16LF1519	3EFFh	3E03h				
PIC16F1526	3EFFh	3E13h				
PIC16F1527	3EFFh	3E13h				
PIC16LF1526	3EFFh	3E03h				
PIC16LF1527	3EFFh	3E03h				

TABLE 7-1: CONFIGURATION WORD MASK VALUES

7.3.1 PROGRAM CODE PROTECTION DISABLED

With the program code protection disabled, the checksum is computed by reading the contents of the PIC16(L)F151X/152X program memory locations and adding up the program memory data starting at address 0000h, up to the maximum user addressable location. Any Carry bit exceeding 16 bits are ignored. Additionally, the relevant bits of the Configuration Words are added to the checksum. All unimplemented Configuration bits are masked to '0'.

unimplemented bits are '0'.

EXAMPLE 7-1: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED PIC16F1527, BLANK DEVICE

	,		
PIC16F15	527 Sum of Memory add	resses 0000h-3FFFh ⁽¹⁾	C000h
	Configuration Word	1 ⁽²⁾	3FFFh
	Configuration Word	1 mask ⁽³⁾	3EFFh
	Configuration Word	2 ⁽²⁾	3FFFh
	Configuration Word	2 mask ⁽³⁾	3E13h
	Checksum	= C000h + (3FFFh and 3EFF	n) + (3FFFh and 3E13h)
		= C000h + 3EFFh + 3E13h	
		= 3D12h	
Note 1:	um of memory addresses = (Total number of program memory address locations) x (3FFFh) = C000h runcated to 16 bits.		

- 2: Configuration Word 1 and 2 = all bits are '1'; thus, code-protect is disabled.
- 3: Configuration Word 1 and 2 Mask = all bits are set to '1', except for unimplemented bits that are '0'.

EXAMPLE 7-2: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED PIC16LF1527, 00AAh AT FIRST AND LAST ADDRESS

PIC16LF1	527 Sum of Memory ad	ldresses 0000h-3FFFh ⁽¹⁾	4156h	
	Configuration Word	1 1 ⁽²⁾	3FFFh	
	Configuration Word	1 mask ⁽³⁾	3EFFh	
	Configuration Word	1 2 ⁽²⁾	3FFFh	
	Configuration Word	l 2 mask ⁽⁴⁾	3E03h	
	Checksum	= 4156h + (3FFFh and 3EFF	h) + (3FFFh and 3E03h)	
		= 4156h + 3EFFh + 3E03h		
		= BE58h		
Note 1:	0	n memory address locations: 3FF + (2 x 00AAh)] = 4156h, truncate	Fh + 1 = 4000h. Then, 4000h - 2 = 3FFEh. ed to 16 bits.	
2:	Configuration Word 1 an	nfiguration Word 1 and 2 = all bits are '1'; thus, code-protect is disabled.		
3:	Configuration Word 1 Ma that are '0'.	ask = all Configuration Word bits	are set to '1', except for unimplemented bits	
4:	On the PIC16LF1527 de	vice, the VCAPEN bit is not impl	emented in Configuration Word 2; Thus, all	

7.3.2 PROGRAM CODE PROTECTION ENABLED

With the program code protection enabled, the checksum is computed in the following manner: The Least Significant nibble of each user ID is used to create a 16-bit value. The masked value of user ID location 8000h is the Most Significant nibble. This sum of user IDs is summed with the Configuration Words (all unimplemented Configuration bits are masked to '0').

EXAMPLE 7-3: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED PIC16F1527, BLANK DEVICE

PIC16F1	527 Configuration Word	(2) 3F7Fh							
	Configuration Word	mask ⁽³⁾ 3EFFh							
	Configuration Word 2	(2) 3FFFh							
	Configuration Word 2	mask ⁽³⁾ 3E13h							
	User ID (8000h) ⁽¹⁾	0006h							
	User ID (8001h) ⁽¹⁾	0007h							
	User ID (8002h) ⁽¹⁾	0001h							
	User ID (8003h) ⁽¹⁾	0002h							
Sum of User IDs ⁽⁴⁾ = (0006h and 000Fh) << 12 + (0007h and 000Fh) << 8 +									
		(0001h and 000Fh) << 4 + (0002h and 000Fh)							
	= 6000h + 0700h + 0010h + 0002h								
	= 6712h								
	Checksum	= (3F7Fh and 3EFFh) + (3FFFh and 3E13h) + Sum of User IDs							
		= 3E7Fh +3713h + 6712h							
		= DCA4h							
Note 1:	1: User ID values in this example are random values.								
2:	Configuration Word 1 and 2 = all bits are '1' except the code-protect enable bit.								
3:	Configuration Word 1 and 2 Mask = all Configuration Word bits are set to '1', except for unimplemented bits which read '0'.								
4:	<< = shift left, thus the LSb of the first user ID value is the MSb of the sum of user IDs and so on, until								

 <= shift left, thus the LSb of the first user ID value is the MSb of the sum of user IDs and so on, unti the LSb of the last user ID value becomes the LSb of the sum of user IDs.

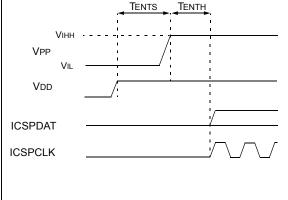
8.0 ELECTRICAL SPECIFICATIONS

Refer to device specific data sheet for absolute maximum ratings.

TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

AC/DC CHARACTERISTICS			Standard Operating Conditions Production tested at 25°C					
Sym.	Characteristics	Min.	Тур.	Max.	Units	Conditions/Comments		
		Supply Volt	ages and C	urrents				
Vdd	Supply Voltage	PIC16F151X PIC16F152X	2.3	_	5.5	V		
	(VDDMIN, VDDMAX)	PIC16LF151X PIC16LF152X	1.8	—	3.6	V		
VPEW	Read/Write and Row Erase operations		VDDMIN		VDDMAX	V		
VPBE	Bulk Erase operations		2.7	_	VDDMAX	V		
Iddi	Current on VDD, Idle		—	—	1.0	mA		
IDDP	Current on VDD, Programming		—	_	3.0	mA		
	VPP							
IPP	Current on MCLR/VPP		_	_	600	μA		
Vінн	High voltage on MCLR/VPP for Program/Verify mode entry		8.0	_	9.0	V		
TVHHR	MCLR rise time (VIL to VIHH) for Program/Verify mode entry		_	_	1.0	μs		
	I/O pins				•			
Viн	(ICSPCLK, ICSPDAT, MCLR/VPP) input high level		0.8 Vdd	_	_	V		
VIL	(ICSPCLK, ICSPDAT, MCLR/VPP) input low level		_	_	0.2 VDD	V		
Vон	ICSPDAT output high level		Vdd-0.7 Vdd-0.7 Vdd-0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 2 mA, VDD = 1.8V	
Vol	ICSPDAT output low level		_	_	Vss+0.6 Vss+0.6 Vss+0.6	V	IOH = 8 mA, VDD = 5V IOH = 6 mA, VDD = 3.3V IOH = 3 mA, VDD = 1.8V	
		Programming	Mode Entry	y and Exi	t			
Tents	Programing mode entry setup time: ICSPCLK, ICSPDAT setup time before VDD or MCLR1		100	_	_	ns		
TENTH	Programing mode entry hold time: ICSPCLK, ICSPDAT hold time after VDD or MCLR↑		250	—	_	μs		
		Serial F	Program/Vei	rify				
TCKL	Clock Low Pulse Width		100	—	—	ns		
Тскн	Clock High Pulse Width		100		—	ns		
TDS	Data in setup time before clock↓		100	—	-	ns		
Трн	Data in hold time after clock↓		100	—	-	ns		
Тсо	Clock↑ to data out valid (during a Read Data command)		0	—	80	ns		
Tlzd	Clock↓ to data low-impedance (during a		0	_	80	ns		
	Read Data command)							
THZD	Clock↓ to data high-impedance (during a Read Data command)		0	_	80	ns		
TDLY	Data input not driven to next clock input (delay required between command/data or command/ command)		1.0	_	_	μs		
TERAB	Bulk Erase cycle time		—	—	5	ms		
TERAR	Row Erase cycle time		—	—	2.5	ms		

Note 1: Externally timed writes are not supported for Configuration and Calibration bits.


TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY

AC/DC CHARACTERISTICS		Standard Operating Conditions Production tested at 25°C					
Sym.	Characteristics	Min.	Тур.	Max.	Units	Conditions/Comments	
TPINT	Internally timed programming operation time			2.5 5	ms ms	Program memory Configuration Words	
TPEXT	Externally timed programming pulse	1.0	—	2.1	ms	Note 1	
TDIS	Time delay from program to compare (HV discharge time)	300	—	—	μs		
TEXIT	Time delay when exiting Program/Verify mode	1	—		μS		

Note 1: Externally timed writes are not supported for Configuration and Calibration bits.

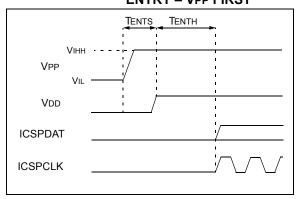

8.1 AC Timing Diagrams

FIGURE 8-2:

PROGRAMMING MODE ENTRY – VPP FIRST

FIGURE 8-3:

PROGRAMMING MODE EXIT – VPP LAST

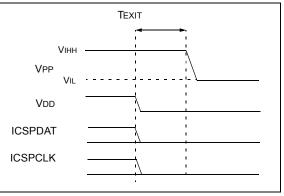
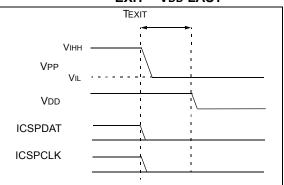



FIGURE 8-4:

PROGRAMMING MODE EXIT – VDD LAST

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820