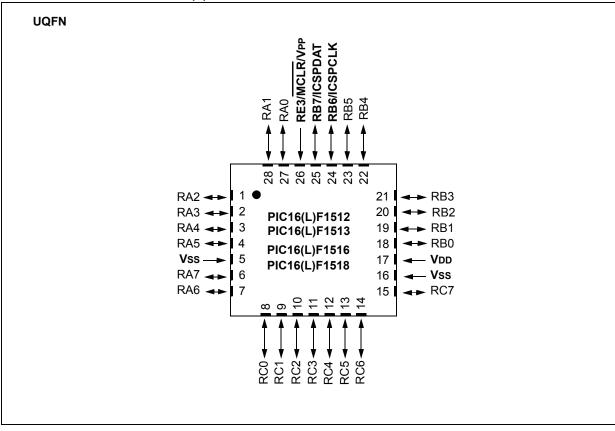


Welcome to E-XFL.COM

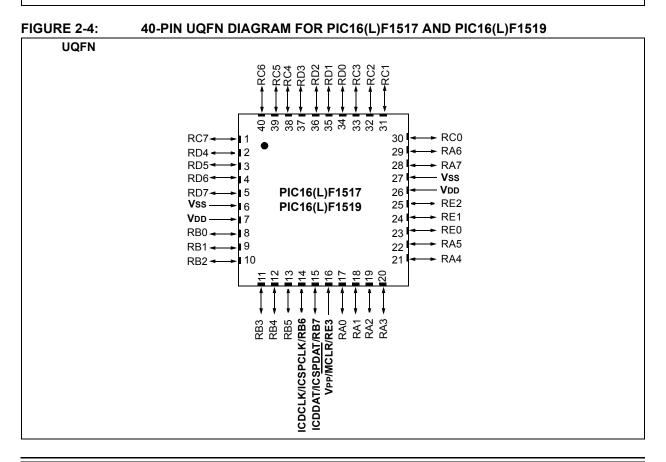
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Betans	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1518-i-so


Email: info@E-XFL.COM

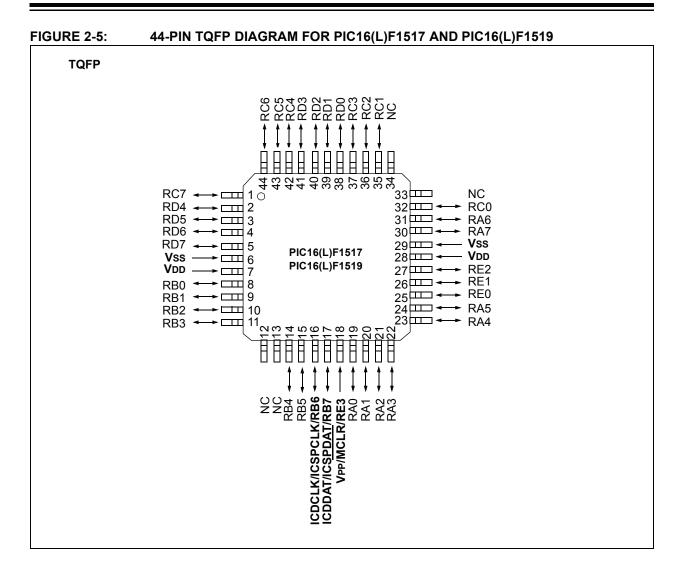
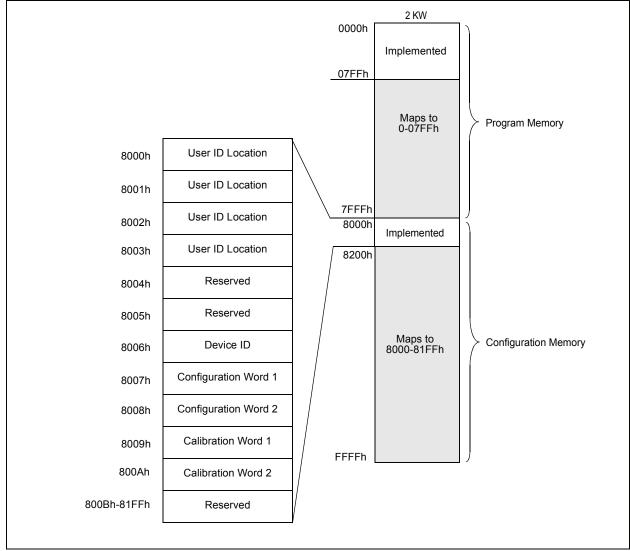
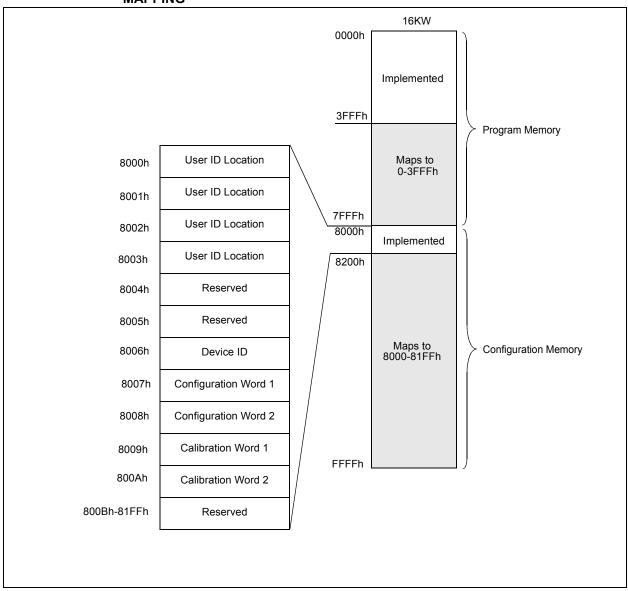

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-2: 28-PIN UQFN DIAGRAM FOR PIC16(L)F1512, PIC16(L)F1513, PIC16(L)F1516 AND PIC16(L)F1518

FIGURE 2-3:	40-PIN PDIP DIAGRAM F	OR PIC1	6(L)F1517 AND PIC16(L)F1519
PDIP			
	Vpp/MCLR/RE3 1	\bigcirc	40 RB7/ICSPDAT/ICDDAT
	RA0 🔶 2		
	RA1 🗕 🗕 🔤 3		38 → RB5
	RA2 🛶 🗖 4		37 → RB4
	RA3 🛶 🗖 5		36 → RB3
	RA4 🖛 🛏 6		35 🗌 🗲 → RB2
	RA5 🔶 7		34 → RB1
	RE0 🗕 🕨 🔤 8	<u>⊳</u> 6	33 - → RB0
	RE1 🛶 🕨 🗍 9	151	32 - VDD
	RE2	PIC16(L)F1517 PIC16(L)F1519	31
	V DD —— 11	:16(:16(30 - → RD7
	Vss —► 12		29 🗌 🖛 🕨 RD6
	RA7 🛶 🗖 13		28 🗌 🔸 RD5
	RA6 💶 14		27 🗌 🖛 → RD4
	RC0 🔶 🚺 15		26 - → RC7
	RC1 🗕 🗕 16		25 🗌 🛶 RC6
	RC2 🗕 ► 🗌 17		24 🗌 🛶 RC5
	RC3 🗕 ► 🗌 18		23 🗌 💶 🕨 RC4
	RD0 🗕 ► 🗌 19		22 - → RD3
	RD1 ← ► 20		21 RD2




3.0 MEMORY MAP

The memory for the PIC16(L)F151X/152X devices is broken into two sections: program memory and configuration memory. Only the size of the program memory changes between devices, the configuration memory remains the same.

FIGURE 3-4: PIC16(L)F1527, PIC16(L)F1518 AND PIC16(L)F1519 PROGRAM MEMORY MAPPING

DEVICE	DEVICE	DEVICE ID VALUES							
	DEV	REV							
PIC16F1527	0001 0101 101	x xxxx							
PIC16F1526	0001 0101 100	x xxxx							
PIC16LF1527	0001 0101 111	x xxxx							
PIC16LF1526	0001 0101 110	x xxxx							
PIC16F1519	0001 0110 111	x xxxx							
PIC16F1518	0001 0110 110	x xxxx							
PIC16F1517	0001 0110 101	x xxxx							
PIC16F1516	0001 0110 100	x xxxx							
PIC16F1513	0001 0110 010	x xxxx							
PIC16F1512	0001 0111 000	x xxxx							
PIC16LF1519	0001 0111 111	x xxxx							
PIC16LF1518	0001 0111 110	x xxxx							
PIC16LF1517	0001 0111 101	x xxxx							
PIC16LF1516	0001 0111 100	x xxxx							
PIC16LF1513	0001 0111 010	X XXXX							
PIC16LF1512	0001 0111 001	X XXXX							

TABLE 3-1: DEVICE ID VALUES

3.3 Configuration Words

There are two Configuration Words, Configuration Word 1 (8007h) and Configuration Word 2 (8008h). The individual bits within these Configuration Words are used to enable or disable device functions such as the Brown-out Reset, code protection and Power-up Timer.

3.4 Calibration Words

The internal calibration values are factory calibrated and stored in Calibration Words 1 and 2 (8009h, 800Ah).

The Calibration Words do not participate in erase operations. The device can be erased without affecting the Calibration Words.

REGISTER 3-2: CONFIGURATION WORD 1

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1			
		FCMEN	IESO	CLKOUTEN	BORE	EN<1:0>	_			
		bit 13			•		bit 8			
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
CP	MCLRE	PWRTE	WD ⁻	ΓE<1:0>		FOSC<2:0>				
bit 7							bit			
Legend:										
R = Readable bit		P = Programmat	DIE DIT		nted bit, read as '					
0' = Bit is cleared	1	'1' = Bit is set		-n = value whe	n blank or after E	SUIK Erase				
bit 13	1 = Fail-Safe Clo	afe Clock Monitor E ock Monitor is enal ock Monitor is disa	bled							
bit 12	1 = Internal/Exte	external Switchover ernal Switchover m ernal Switchover m	ode is enabled							
bit 11	1 = CLKOUT fu	ock Out Enable bit unction is disabled unction is enabled	I/O or oscillato	r function on CLKO	UT pin.					
bit 10-9	11 = BOR enabl 10 = BOR enabl	ed during operatio olled by SBOREN	n and disabled i	•						
bit 8	Unimplemente	Unimplemented: Read as '1'								
bit 7		ction bit ⁽²⁾ mory code protect mory code protect								
bit 6	$\frac{\text{If LVP bit} = 1}{\text{This bit is ig}}$ $\frac{\text{If LVP bit} = 0}{1 = \text{MCLR}}$	VPP pin function is	MCLR; Weak pul	I-up enabled. R internally disabled	t Weak pull-up up	ider control of WPL	A register			
bit 5		-up Timer Enable b abled			,					
bit 4-3	WDTE<1:0>: Wa 11 = WDT enab 10 = WDT enab	atchdog Timer Ena bled bled while running rolled by the SWD	and disabled in							
bit 2-0	FOSC<2:0>: Os 111 = ECH: Ex 110 = ECM: Ex 101 = ECL: Ex 100 = INTOSC 011 = EXTRC 010 = HS oscil 001 = XT oscil	cillator Selection b kternal Clock, High xternal Clock, Med (ternal Clock, Low- c oscillator: I/O fund oscillator: RC fund	-Power mode: c ium-Power mode Power mode: or ction on OSC1 p tion on OSC1 p crystal/resonato nator on OSC2 p	e: on CLKIN pin n CLKIN pin bin in r on OSC2 pin and bin and OSC1 pin	OSC1 pin					
	-		-	le Power-up Timer. de protection is turr	ned off.					

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1				
		LVP	DEBUG	LPBOR	BORV	STVREN	_				
		bit 13					bit				
U-1	U-1	U-1	R/P-1	U-1	U-1	R/P-1	R/P-1				
_	_	_	VCAPEN ⁽²⁾	_	_	WRT<	1:0>				
bit 7					I	I	bit				
Legend:											
R = Readable bit	t	P = Programma	ble bit	U = Unimpleme	nted bit, read as '1						
0' = Bit is cleared	t	'1' = Bit is set		-n = Value whe	n blank or after B	ulk Erase					
bit 13	LVP: Low-Volta	age Programming	Enable bit ⁽¹⁾								
		e programming e									
		LR/VPP must be u	1 0	ning							
bit 12		rcuit Debugger Mo									
)ebugger disabled)ebugger enabled		•		•					
bit 11	LPBOR: Low-F		,			-990					
2.1		1 = Low-Power BOR is disabled									
	0 = Low-Power	r BOR is enabled									
bit 10		out Reset Voltage									
		Reset voltage (Vi	· · ·								
h# 0		Reset voltage (Vi	<i>/</i> 0 11								
bit 9		k Overflow/Under flow or Underflow									
		flow or Underflow									
bit 8-5	Unimplemented: Read as '1'										
bit 4	VCAPEN: Volta	age Regulator Ca	pacitor Enable bi	ts ⁽¹⁾							
	0 = VCAP funct	ionality is enabled	d on VCAP pin								
	1 = All VCAP pi	n functions are di	sabled								
bit 3-2	Unimplemente	ed: Read as '1'									
bit 1-0	WRT<1:0>: Flash Memory Self-Write Protection bits										
		emory (PIC16(L)F ite protection off	<u>1512)</u> :								
		0h to 1FFh write-p	protected, 200h to	o 7FFh may be m	nodified by PMCC	N control					
	01 = 000	0h to FFFh write-	protected, 400h to	o 7FFh may be m	nodified by PMCC	N control					
		Oh to 7FFh write-		resses may be n	nodified by PMCC	ON control					
		emory (PIC16(L)F ite protection off	<u>1513)</u> .								
		0h to 1FFh write-p	protected, 200h to	o FFFh may be m	nodified by PMCC	N control					
		0h to 7FFh write-p	,	,	,						
		Dh to FFFh write-p mory (PIC16F/LF		•	nodified by PMCO	N control					
		ite protection off	1310/1317/1320	1.							
	10 = 000	0h to 1FFh write-p									
		Oh to FFFh write-									
		0h to 1FFFh write emory (PIC16F/L	•		modified by PINC	ON control					
		ite protection off		<u></u> .							
	10 = 000	0h to 1FFh write-p									
	01 - 000				a madified by DN	ICON control					
		0h to 1FFFh write 0h to 3FFFh write									

REGISTER 3-3: CONFIGURATION WORD 2

2: Applies to PIC16F151X/152X devices only. On PIC16LF151X/152X, the VCAPEN bit is unimplemented.

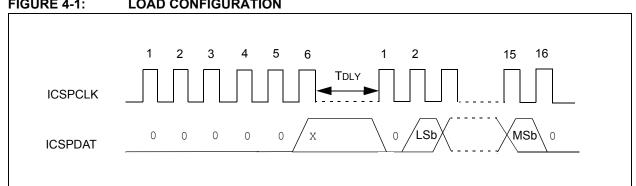
4.3 **Program/Verify Commands**

The PIC16(L)F151X/152X 10 implements programming commands; each six bits in length. The commands are summarized in Table 4-1.

Commands that have data associated with them are specified to have a minimum delay of TDLY between the command and the data. After this delay 16 clocks are required to either clock in or clock out the 14-bit data word. The first clock is for the Start bit and the last clock is for the Stop bit.

TABLE 4-1: COMMAND MAPPING

Command				Маррі	Data/Note			
		Binary (MSb … LSb)						
Load Configuration	Х	0	0	0	0	0	00h	0, data (14), 0
Load Data For Program Memory	Х	0	0	0	1	0	02h	0, data (14), 0
Read Data From Program Memory	Х	0	0	1	0	0	04h	0, data (14), 0
Increment Address	Х	0	0	1	1	0	06h	—
Reset Address	Х	1	0	1	1	0	16h	—
Begin Internally Timed Programming	Х	0	1	0	0	0	08h	—
Begin Externally Timed Programming	Х	1	1	0	0	0	18h	—
End Externally Timed Programming	Х	0	1	0	1	0	0Ah	—
Bulk Erase Program Memory	Х	0	1	0	0	1	09h	Internally Timed
Row Erase Program Memory	х	1	0	0	0	1	11h	Internally Timed


4.3.1 LOAD CONFIGURATION

The Load Configuration command is used to access the configuration memory (User ID Locations, Configuration Words, Calibration Words). The Load Configuration command sets the address to 8000h and loads the data latches with one word of data (see Figure 4-1).

After issuing the Load Configuration command, use the Increment Address command until the proper address to be programmed is reached. The address is then programmed by issuing either the Begin Internally Timed Programming or Begin Externally Timed Programming command.

Note: Externally timed writes are not supported for Configuration and Calibration bits. Any externally timed write to the Configuration or Calibration Word will have no effect on the targeted word.

The only way to get back to the program memory (address 0) is to exit Program/Verify mode or issue the Reset Address command after the configuration memory has been accessed by the Load Configuration command.

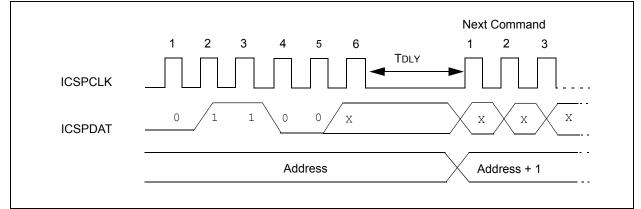


FIGURE 4-1: LOAD CONFIGURATION

4.3.4 INCREMENT ADDRESS

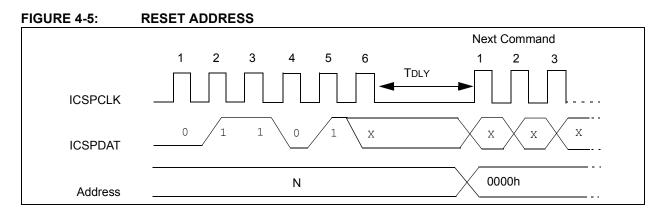
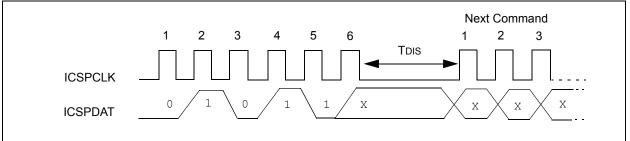

The address is incremented when this command is received. It is not possible to decrement the address. To reset this counter, the user must use the Reset Address command or exit Program/Verify mode and reenter it. If the address is incremented from address 7FFFh, it will wrap-around to location 0000h. If the address is incremented from FFFFh, it will wrap-around to location 8000h.

FIGURE 4-4: INCREMENT ADDRESS

4.3.5 RESET ADDRESS

The Reset Address command will reset the address to 0000h, regardless of the current value. The address is used in program memory or the configuration memory.



4.3.8 END EXTERNALLY TIMED PROGRAMMING

This command is required after a Begin Externally Timed Programming command is given. This command must be sent within the time window specified by TPEXT after the Begin Externally Timed Programming command is sent.

After sending the End Externally Timed Programming command, an additional delay (TDIS) is required before sending the next command. This delay is longer than the delay ordinarily required between other commands (see Figure 4-8).

FIGURE 4-8: END EXTERNALLY TIMED PROGRAMMING

4.3.9 BULK ERASE PROGRAM MEMORY

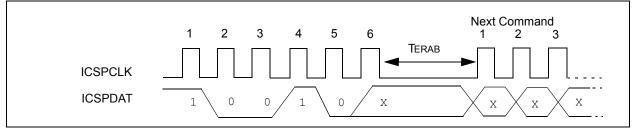
The Bulk Erase Program Memory command performs two different functions dependent on the current state of the address.

Address 0000h-7FFFh:

Program Memory is erased

Configuration Words are erased

Address 8000h-8008h:


Program Memory is erased

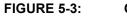
Configuration Words are erased

User ID Locations are erased

A Bulk Erase Program Memory command should not be issued when the address is greater than 8008h.

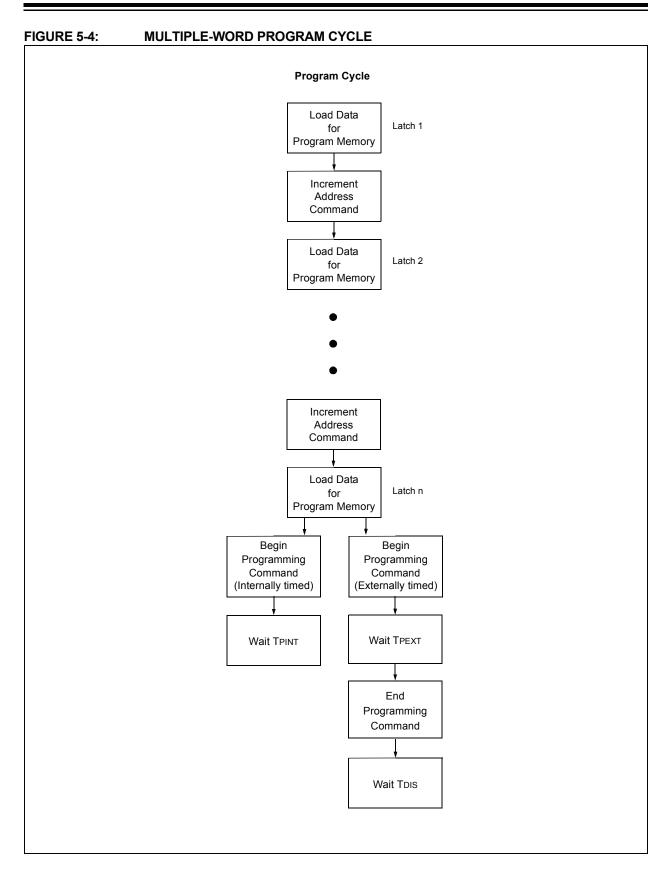
FIGURE 4-9: BULK ERASE PROGRAM MEMORY

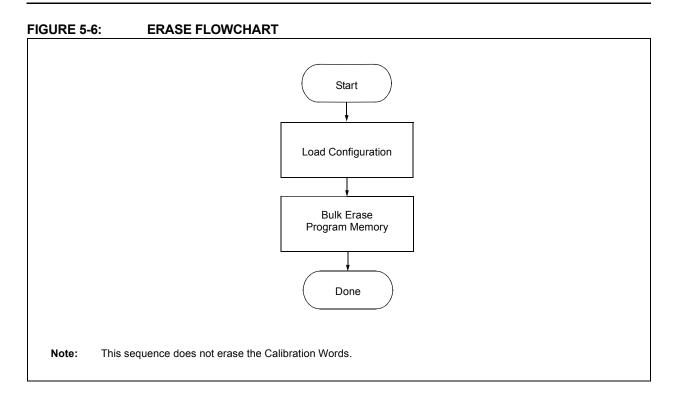
After receiving the Bulk Erase Program Memory command the erase will not complete until the time interval, TERAB, has expired.


Note: The code protection Configuration bit (CP) has no effect on the Bulk Erase Program Memory command.

5.0 PROGRAMMING ALGORITHMS


The devices use internal latches to temporarily store the 14-bit words used for programming. Refer to Table 4-2 for specific latch information. The data latches allow the user to write the program words with a single Begin Externally Timed Programming or Begin Internally Timed Programming command. The Load Program Data or the Load Configuration command is used to load a single data latch. The data latch will hold the data until the Begin Externally Timed Programming or Begin Internally Timed Programming or Begin Internally Timed Programming command is given.


The data latches are aligned with the LSbs of the address. The PC's address at the time the Begin Externally Timed Programming or Begin Internally Timed Programming command is given will determine which location(s) in memory are written. Writes cannot cross the physical boundary. For example, with the PIC16F1527, attempting to write from address 0002h-0009h will result in data being written to 0008h-000Fh.


If more than the maximum number of data latches are written without a Begin Externally Timed Programming or Begin Internally Timed Programming command, the data in the data latches will be overwritten. The following figures show the recommended flowcharts for programming.

ONE-WORD PROGRAM CYCLE

7.3 Checksum Computation

The checksum is calculated by two different methods dependent on the setting of the CP Configuration bit.

MASK VALUES							
Device	Config. Word 1 Mask	Config. Word 2 Mask					
PIC16F1512	3EFFh	3E13h					
PIC16F1513	3EFFh	3E13h					
PIC16F1516	3EFFh	3E13h					
PIC16F1517	3EFFh	3E13h					
PIC16F1518	3EFFh	3E13h					
PIC16F1519	3EFFh	3E13h					
PIC16LF1512	3EFFh	3E03h					
PIC16LF1513	3EFFh	3E03h					
PIC16LF1516	3EFFh	3E03h					
PIC16LF1517	3EFFh	3E03h					
PIC16LF1518	3EFFh	3E03h					
PIC16LF1519	3EFFh	3E03h					
PIC16F1526	3EFFh	3E13h					
PIC16F1527	3EFFh	3E13h					
PIC16LF1526	3EFFh	3E03h					
PIC16LF1527	3EFFh	3E03h					

TABLE 7-1: CONFIGURATION WORD MASK VALUES

7.3.1 PROGRAM CODE PROTECTION DISABLED

With the program code protection disabled, the checksum is computed by reading the contents of the PIC16(L)F151X/152X program memory locations and adding up the program memory data starting at address 0000h, up to the maximum user addressable location. Any Carry bit exceeding 16 bits are ignored. Additionally, the relevant bits of the Configuration Words are added to the checksum. All unimplemented Configuration bits are masked to '0'.

EXAMPLE 7-4: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED PIC16LF1527, 00AAh AT FIRST AND LAST ADDRESS

	· · · ·						
PIC16LF	1527 Configuration Word 1 ⁽²⁾	3F7Fh					
	Configuration Word 1 mask ⁽³⁾	3EFFh					
	Configuration Word 2 ⁽²⁾	3FFFh					
	Configuration Word 2 mask ^{(3), (5)}) 3E03h					
	User ID (8000h) ⁽¹⁾	000Eh					
	User ID (8001h) ⁽¹⁾	0008h					
	User ID (8002h) ⁽¹⁾	0005h					
	User ID (8003h) ⁽¹⁾	0008h					
	Sum of User IDs ⁽⁴⁾ = (000Eh a	and 000Fh) << 12 + (0008h and 000Fh) << 8 +					
(0005h and 000Fh) << 4 + (0008h and 000Fh)							
	= E000h +	0800h + 0050h + 0008h					
= E858h							
	Checksum = (3F7Fh a	= (3F7Fh and 3EFFh) + (3FFFh and 3E03h) + Sum of User IDs					
	= 3E7Fh +3	3E03h + E858h					
	= 64DAh	= 64DAh					
Note 1:	User ID values in this example are randor	m values					
2:	-	Configuration Word 1 and 2 = all bits are '1' except the code-protect enable bit.					
3:							
4:	 <= shift left, thus the LSb of the first user ID value is the MSb of the sum of user IDs and so on, unti the LSb of the last user ID value becomes the LSb of the sum of user IDs. 						
5:	On the PIC16LF1527 device, the \overline{VCAPE} unimplemented bits are '0'.	\overline{N} bit is not implemented in Configuration Word 2; thus, all					

8.0 ELECTRICAL SPECIFICATIONS

Refer to device specific data sheet for absolute maximum ratings.

TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

AC/DC CHARACTERISTICS			Standard O Production		J Conditions 25°C	;	
Sym.	Characteristics	Min.	Тур.	Max.	Units	Conditions/Comments	
		Supply Volt	ages and C	urrents			
Vdd	Supply Voltage	PIC16F151X PIC16F152X	2.3	_	5.5	V	
	(VDDMIN, VDDMAX)	PIC16LF151X PIC16LF152X	1.8	—	3.6	V	
VPEW	Read/Write and Row Erase opera	itions	VDDMIN		VDDMAX	V	
VPBE	Bulk Erase operations		2.7	_	VDDMAX	V	
Iddi	Current on VDD, Idle		—	—	1.0	mA	
IDDP	Current on VDD, Programming		—	_	3.0	mA	
	VPP						
IPP	Current on MCLR/VPP		_	_	600	μA	
Vінн	High voltage on MCLR/VPP for Program/Verify mode entry		8.0	_	9.0	V	
TVHHR	MCLR rise time (VIL to VIHH) for Program/Verify mode entry		_	_	1.0	μs	
	I/O pins				•		
Viн	(ICSPCLK, ICSPDAT, MCLR/VPP level	0.8 Vdd	_	_	V		
VIL	(ICSPCLK, ICSPDAT, MCLR/VPP	_	_	0.2 VDD	V		
Vон	ICSPDAT output high level	Vdd-0.7 Vdd-0.7 Vdd-0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 2 mA, VDD = 1.8V	
Vol	ICSPDAT output low level	_	_	Vss+0.6 Vss+0.6 Vss+0.6	V	IOH = 8 mA, VDD = 5V IOH = 6 mA, VDD = 3.3V IOH = 3 mA, VDD = 1.8V	
		Programming	Mode Entry	y and Exi	t		
Tents	Programing mode entry setup tim ICSPDAT setup time before VDD		100	_	_	ns	
TENTH	Programing mode entry hold time ICSPDAT hold time after VDD or I		250	—	_	μs	
		Serial F	Program/Vei	rify			
TCKL	Clock Low Pulse Width		100	—	—	ns	
Тскн	Clock High Pulse Width		100		—	ns	
TDS	Data in setup time before clock↓		100	—	-	ns	
Трн	Data in hold time after clock↓		100	—	-	ns	
Тсо	Clock↑ to data out valid (during a Read Data command)		0	—	80	ns	
	Clock↓ to data low-impedance (d	uring a					
Tlzd	Read Data command)	-	0	—	80	ns	
THZD	Clock↓ to data high-impedance (Read Data command)	-	0	_	80	ns	
TDLY	Data input not driven to next clock input (delay required between command/data or command/ command)			_	_	μs	
TERAB	Bulk Erase cycle time		—	—	5	ms	
TERAR	Row Erase cycle time		—	—	2.5	ms	

Note 1: Externally timed writes are not supported for Configuration and Calibration bits.

APPENDIX A: REVISION HISTORY

Revision A (08/2010)

Original release of this document.

Revision B (09/2011)

Added PIC16(L)F1512/1513 devices; Added new Figures 3-1 and 3-2; Updated Registers 3-1, 3-2 and 3-3 to new format; Updated Register 3-3 to add 2 kW and 4 kW Flash memory; Added Notes to Examples 7-1 to 7-4; Updated Table 8-1; Other minor corrections.

NOTES: