### E. Analog Devices Inc./Maxim Integrated - MAXQ7665BATM+T Datasheet



Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Obsolete                                                           |
|----------------------------|--------------------------------------------------------------------|
| Core Processor             | -                                                                  |
| Core Size                  | 16-Bit                                                             |
| Speed                      | 8MHz                                                               |
| Connectivity               | CANbus, LINbus, UART/USART                                         |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                              |
| Number of I/O              | 8                                                                  |
| Program Memory Size        | 64KB (32K x 16)                                                    |
| Program Memory Type        | FLASH                                                              |
| EEPROM Size                | -                                                                  |
| RAM Size                   | 256 x 16                                                           |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.25V                                                       |
| Data Converters            | A/D 8x12b; D/A 1x12b                                               |
| Oscillator Type            | Internal                                                           |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                 |
| Mounting Type              | Surface Mount                                                      |
| Package / Case             | 48-VFQFN Exposed Pad                                               |
| Supplier Device Package    | 48-SQFN (7x7)                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/analog-devices/maxq7665batm-t |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### **ELECTRICAL CHARACTERISTICS (continued)**

 $(AV_{DD} = DV_{DDIO} = +5.0V, DV_{DD} = +3.3V, f_{SYSCLK} = 8MHz, V_{REFDAC} = V_{REFADC} = +5V, T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}$ C.) (Note 1)

| PARAMETER                               | SYMBOL | CONDITIONS                                                               | MIN  | ТҮР  | MAX  | UNITS   |
|-----------------------------------------|--------|--------------------------------------------------------------------------|------|------|------|---------|
| MEMORY SECTION                          | •      | •                                                                        |      |      |      |         |
|                                         |        | MAXQ7665A                                                                |      | 128  |      |         |
|                                         |        | MAXQ7665B                                                                |      | 64   |      |         |
| Flash Memory Size                       |        | MAXQ7665C                                                                |      | 48   |      | KB      |
|                                         |        | MAXQ7665D                                                                |      | 32   |      | ]       |
|                                         |        | DV <sub>DD</sub> = +3V, at +25°C                                         |      | 1    |      | MCycles |
| Flash Erase/Write Endurance             |        | DV <sub>DD</sub> = +3V, at +85°C                                         |      | 100  |      | kCycles |
|                                         |        | DV <sub>DD</sub> = +3V, at +125°C                                        |      | 100  |      | kCycles |
| Flash Erase Timing                      |        | One sector                                                               |      | 0.7  | 15   | s       |
|                                         |        | Single word                                                              |      | 11   | 360  | μs      |
| Flash Program Timing                    |        | Entire flash                                                             |      | 1.5  | 4.5  | S       |
|                                         |        | $T_A = +125^{\circ}C$ , single write                                     | 20   |      |      |         |
| Flash Data Retention Time               |        | First 100,000 cycles at +25°C, then retention tested at $T_A$ = +125°C   | 10   |      |      | Years   |
| RAM Memory Size                         |        |                                                                          |      | 512  |      | Bytes   |
| Utility ROM Size                        |        |                                                                          |      | 4096 |      | Words   |
| ANALOG SENSE PATH                       | 1      | 1                                                                        |      |      |      |         |
| Resolution                              | NADC   | No missing codes                                                         | 12   |      |      | Bits    |
|                                         |        | Gain = 1, bipolar mode, V <sub>IN</sub> = ±2500mV,<br>500ksps            |      | ±0.5 | ±4.0 |         |
|                                         |        | Gain = 8, unipolar mode, V <sub>IN</sub> = +400mV,<br>142ksps            |      | ±2.0 |      |         |
| Integral Noninearity                    | INLADC | Gain = 16, bipolar mode, V <sub>IN</sub> = ±156mV,<br>142ksps            |      | ±2.0 | ±4.0 | LSB     |
|                                         |        | Gain = 32, bipolar mode, V <sub>IN</sub> = ±50mV,<br>142ksps             |      | ±2.0 |      |         |
|                                         |        | Gain = 1, bipolar, $V_{IN} = \pm 2500 \text{mV}$ , 500ksps               |      |      | ±1.0 |         |
| Differential Nonlinearity               | DNLADC | Gain = 16, bipolar, V <sub>IN</sub> = ±156mV, 142ksps                    |      |      | ±1.0 | LSB     |
|                                         |        | All other gain settings                                                  |      | ±0.6 |      |         |
| Offset Error                            |        | Input referred                                                           |      | ±2.5 | ±5   | mV      |
| Offset-Error Temperature<br>Coefficient |        |                                                                          |      | ±8   |      | µV/°C   |
| Zero-Code Error                         |        | Bipolar, differential measurement of error for ideal ADC output of 0x000 |      | ±2.5 |      | mV      |
| Gain Error                              |        | Exclude offset and reference error                                       | -1.0 |      | +1.0 | %       |
| Gain-Error Temperature<br>Coefficient   |        |                                                                          |      | ±8.5 |      | ppm/°C  |
| Signal-to-Noise Plus Distortion         | SINAD  | PGA gain = 1V/V                                                          |      | -71  |      | dB      |
| Total Harmonic Distortion               | THD    | PGA gain = 1V/V                                                          |      | -85  |      | dB      |



### **ELECTRICAL CHARACTERISTICS (continued)**

 $(AV_{DD} = DV_{DDIO} = +5.0V, DV_{DD} = +3.3V, f_{SYSCLK} = 8MHz, V_{REFDAC} = V_{REFADC} = +5V, T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}$ C.) (Note 1)

| PARAMETER                       | SYMBOL          | CONDITIC                            | ONS                        | MIN                        | TYP MAX                     | UNITS |  |
|---------------------------------|-----------------|-------------------------------------|----------------------------|----------------------------|-----------------------------|-------|--|
| Spurious-Free Dynamic Range     | SFDR            | PGA gain = 1V/V                     |                            |                            | -91                         | dB    |  |
| Conversion Clock Frequency      | <b>f</b> ADCCLK | fsysclk = 8MHz                      |                            | 0.5                        | 8.0                         | MHz   |  |
| i i                             |                 | PGA gain = 1V/V, RSOURG             | CE≤1kΩ                     |                            | 500                         |       |  |
| Sample Rate                     | <b>f</b> SAMPLE | Any PGA gain setting > 1 $5k\Omega$ | V/V, R <sub>SOURCE</sub> ≤ |                            | 142                         | ksps  |  |
| Conversion Time                 | <b>t</b> CONV   | t <sub>ACQ</sub> plus 13 ADCCLK cy  | cles at 8MHz               |                            | t <sub>ACQ</sub> +<br>1.625 | μs    |  |
| Channel/Gain Select Plus        |                 | PGA gain = 1V/V, R <sub>SOUR</sub>  | $CE \le 1k\Omega$          |                            | 2                           |       |  |
| Conversion Time                 |                 | Any PGA gain setting, RS            | OURCE $\leq 5 k\Omega$     |                            | 7                           | μο    |  |
|                                 |                 | PGA gain = 1V/V, R <sub>SOUR</sub>  | $CE \le 1k\Omega$          |                            | 375                         | ns    |  |
| Track-and-Hold Acquisition Time | tacq            | Any PGA gain setting > 1 $5k\Omega$ | V/V, R <sub>SOURCE</sub> ≤ |                            | 5                           | μs    |  |
| Turn-On Time                    | <b>t</b> RECOV  |                                     |                            |                            | 5                           | μs    |  |
| Aperture Delay                  |                 |                                     |                            |                            | 30                          | ns    |  |
| Aperture Jitter                 |                 |                                     |                            |                            | 50                          | psp_p |  |
|                                 |                 |                                     | PGA gain = 1               | 0                          | AV <sub>DD</sub>            |       |  |
|                                 |                 |                                     | PGA gain = 2               | 0                          | 1.6                         |       |  |
|                                 |                 |                                     | PGA gain = 4               | 0                          | 0.8                         |       |  |
|                                 |                 | Unipolar mode                       | PGA gain = 8               | 0                          | 0.4                         |       |  |
|                                 |                 |                                     | PGA gain = 16              | 0                          | 0.2                         |       |  |
|                                 |                 |                                     | PGA gain = $32$            | 0                          | 0.1                         |       |  |
|                                 |                 |                                     | PGA gain = 1               | -VREFADC<br>/2             | +VREFADC<br>/2              |       |  |
| Input-Voltage Range             |                 |                                     | PGA gain = 2               | -VREFADC<br>/4             | +VREFADC<br>/4              | V     |  |
|                                 |                 | Bipolar mode, AIN+ to               | PGA gain = 4               | -V <sub>REFADC</sub><br>/8 | +VREFADC<br>/8              |       |  |
|                                 |                 | AIN-                                | PGA gain = 8               | -Vrefadc<br>/16            | +VREFADC<br>/16             |       |  |
|                                 |                 |                                     | PGA gain = 16              | -Vrefadc<br>/32            | +VREFADC<br>/32             |       |  |
|                                 |                 |                                     | PGA gain = 32              | -Vrefadc<br>/64            | +VREFADC<br>/64             |       |  |
| Absolute Input-Voltage Range    |                 |                                     |                            | AGND                       | V                           |       |  |
| Input Leakage Current           |                 | AIN15-AIN0                          |                            |                            | ±20                         | nA    |  |
|                                 |                 |                                     | PGA gain = 1               |                            | 180                         |       |  |
|                                 |                 |                                     | PGA gain = 2               |                            | 140                         | 1     |  |
|                                 |                 |                                     | PGA gain = 4               |                            |                             |       |  |
| Small-Signal Bandwidth (-3dB)   |                 | $V_{IN} \times gain = 100 mV_{P-P}$ | PGA gain = 8               | 1                          | MHz                         |       |  |
|                                 |                 |                                     | PGA gain = 16              | 1                          |                             |       |  |
|                                 |                 |                                     | PGA gain = 32              | 1                          | 80                          |       |  |

M/XI/M



12

### **Pin Description**

| PIN        | NAME               | FUNCTION                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 1          | AIN11              | Analog Input Channel 11. AIN11 is multiplexed to the PGA as a differential input with AIN10.                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 2          | AIN10              | Analog Input Channel 10. AIN10 is multiplexed to the PGA as a differential input with AIN11.                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 3          | AIN9               | Analog Input Channel 9. AIN9 is multiplexed to the PGA as a differential input with AIN8.                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 4          | AIN8               | Analog Input Channel 8. AIN8 is multiplexed to the PGA as a differential input with AIN9.                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 5, 8       | AGND               | Analog Ground                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| 6          | REFADC             | ADC External Reference Input. Connect an external reference voltage between 1V and $\mbox{AV}_{\mbox{DD}}$ to REFADC.                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| 7          | REFDAC             | DAC External Reference Input. Connect an external reference voltage between 0V and $AV_{DD}$ to REFDAC.                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 9          | AIN7               | Analog Input Channel 7. AIN7 is multiplexed to the PGA as a differential input with AIN6.                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 10         | AIN6               | Analog Input Channel 6. AIN6 is multiplexed to the PGA as a differential input with AIN7.                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 11         | AIN5               | Analog Input Channel 5. AIN5 is multiplexed to the PGA as a differential input with AIN4.                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 12         | AIN4               | Analog Input Channel 4. AIN4 is multiplexed to the PGA as a differential input with AIN5.                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 13         | AIN3               | Analog Input Channel 3. AIN3 is multiplexed to the PGA as a differential input with AIN2. AIN3–AIN0 have remote temperature sensor capability.                                                                                                          |  |  |  |  |  |  |  |  |  |
| 14         | AIN2               | Analog Input Channel 2. AIN2 is multiplexed to the PGA as a differential input with AIN3. AIN3–AIN0 have remote temperature sensor capability.                                                                                                          |  |  |  |  |  |  |  |  |  |
| 15         | AIN1               | Analog Input Channel 1. AIN1 is multiplexed to the PGA as a differential input with AIN0. AIN3–AIN0 have remote temperature sensor capability.                                                                                                          |  |  |  |  |  |  |  |  |  |
| 16         | AINO               | Analog Input Channel 0. AIN0 is multiplexed to the PGA as a differential input with AIN1. AIN3–AIN0 have remote temperature sensor capability.                                                                                                          |  |  |  |  |  |  |  |  |  |
| 17         | DACOUT             | DAC Buffer Output. DACOUT is the DAC voltage buffer output.                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| 18, 19, 31 | DGND               | Digital Ground for the Digital Core and Flash                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| 20         | CANRXD             | CAN Bus Receiver Input. Control area network receiver input.                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 21         | CANTXD             | CAN Bus Transmitter Output. Control area network transmitter output.                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| 22         | UTX                | UART Transmitter Output                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 23         | URX                | UART Receiver Input                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| 24         | P0.6/T0            | Port 0 Bit 6/Timer 0. P0.6 is a general-purpose digital I/O with interrupt/wake-up input capability. T0 is a primary timer/PWM input or output.                                                                                                         |  |  |  |  |  |  |  |  |  |
| 25         | P0.7/T1            | Port 0 Bit 7/Timer 1. P0.7 is a general-purpose digital I/O with interrupt/wake-up input capability. T1 is a primary timer/PWM input or output.                                                                                                         |  |  |  |  |  |  |  |  |  |
| 26, 39     | DV <sub>DDIO</sub> | Digital I/O Supply Voltage. Supplies all digital I/O except for XIN, XOUT, and RESET. Bypass $DV_{DDIO}$ to GNDIO with a 0.1µF capacitor placed as close as possible to the device. $DV_{DDIO}$ is also connected to the input of the linear regulator. |  |  |  |  |  |  |  |  |  |
| 27         | GNDIO              | Digital I/O Ground                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 28, 29     | I.C.               | Internal Connection. Connect I.C. to GNDIO or DV <sub>DDIO</sub> .                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 30         | N.C.               | No Connection. No internal connection. Leave N.C. unconnected.                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| 32         | P0.0/TDO           | Port 0 Data 0/JTAG Serial Test Data Output. P0.0 is a general-purpose digital I/O with interrupt/wake-up capability. TDO is the JTAG serial test, data output.                                                                                          |  |  |  |  |  |  |  |  |  |



Figure 3. Temperature-Sensor Application Circuit—Single-Ended Configuration



Figure 4. Temperature-Sensor Application Circuit—Differential Configuration

### Power-On Reset and Brownout

Power supplies  $DV_{DD}$  and  $DV_{DDIO}$  each include a brownout monitor that alerts the  $\mu$ C through interrupt when their corresponding supply voltages drop below a selectable threshold. This condition is generally referred to as brownout interrupt (BOI), and these thresholds are set by the VDBI and VIOBI bits for  $DV_{DD}$ and  $DV_{DDIO}$ , respectively. Continuous monitoring ensures that a valid supply is present at all times while the  $\mu$ C is executing code. For example, the brownout monitors check that DV<sub>DDIO</sub> does not drop during a CAN bus transfer, or DV<sub>DD</sub> is not disrupted while the  $\mu$ C core is executing. The DV<sub>DDIO</sub> brownout monitor also covers the analog peripherals if AV<sub>DD</sub> and DV<sub>DDIO</sub> are directly connected.

The DV<sub>DD</sub> supply (internal core logic) also includes a voltage supervisor that controls the  $\mu$ C reset during power-up (DV<sub>DD</sub> rising) and brownout (DV<sub>DD</sub> falling) conditions (see Figure 5 for a POR and brownout timing example).



**MAXQ7665A-MAXQ7665D** 

**Note:** The MAXQ7665A–MAXQ7665D do not have secondary timer I/O pins (such as T0B and T1B) that are present in some other MAXQ products.

**16-Bit x 16-Bit Hardware Multiplier** 

A hardware multiplier supports high-speed multiplications. The multiplier is capable of completing a 16-bit x 16-bit multiply in a single cycle and contains a 48-bit accumulator that requires one more cycle. The multiplier is not part of the MAXQ core function but a peripheral that performs seven different multiply operations without interfering with the normal core functions:

- Unsigned 16-bit multiplication (one cycle)
- Unsigned 16-bit multiplication and accumulation (two cycles)
- Unsigned 16-bit multiplication and subtraction (two cycles)
- Signed 16-bit multiplication (one cycle)
- Signed 16-bit multiplication and negate (one cycle)
- Signed 16-bit multiplication and accumulation (two cycles)
- Signed 16-bit multiplication and subtraction (two cycles)

Figure 9 illustrates the simplified hardware multiplier circuitry. Two 16-bit parallel-load registers and a 48-bit



Figure 9. 16-Bit Hardware Multiplier Functional Diagram

accumulator are used: operand A (MA), operand B (MB), and accumulator (MC). The accumulator is formed by three 16-bit parallel registers (MC2, MC1, and MC0). The overflow bit is organized in the MCNT status/control register. The multiplicand and the multiplier are initially loaded into the MA and MB registers, respectively. Loading the required operands triggers the respective multiply, multiply-accumulate/subtract or multiply-negate operation. The multiply operation completes in a single cycle with the results in the read-only MC1R/MCOR register. The multiply-accumulate/subtract operation requires one extra wait cycle for the results to be stable in the MC2, MC1, and MC0 registers.

The main arithmetic unit is the 16-bit x 16-bit multiplier, which processes operands feeding from the MA and MB registers and generates a 32-bit final product. The product value goes through the 32-bit adder to perform final accumulation with zeroes for multiply operation or with the contents from the MC1 and MC0 registers for multiply-accumulation. The final sum is accessible directly from the accumulator.

To support negate operations including signed multiplynegate and signed and unsigned multiply-subtract, the operand in MA is negated by 1's complement operation before being supplied to the arithmetic unit and the partial product terms are sign corrected. Refer to the *MAXQ7665/MAXQ7666 User's Guide* for more detailed information.

### **CAN Interface Bus**

The MAXQ7665A–MAXQ7665D incorporate a CAN controller that is fully compliant with the CAN 2.0B specification.

The  $\mu$ C interface to the CAN controller is broken into two groups of registers. To simplify the software associated with the operation of the CAN controllers, most of the global CAN status and controls as well as the individual message center control/status registers are located in the peripheral register map. The remaining registers associated with the data identification, identification masks, format, and data are located in a dual port memory to allow the CAN controller and the processor access to the required functions. The CAN controller can directly access the dual port memory. A dedicated interface is incorporated to support dual port memory accessing by the processor through the CAN 0 data pointer (CODP) and the CAN 0 data buffer (CODB) special function registers.

### **CAN Functional Description**

The basic functions covered by the CAN controller include the use of 11-bit standard or 29-bit extended acceptance identifiers, as programmed by the  $\mu$ C for each message center, as shown in Figure 10. The CAN unit provides storage for up to 15 messages, with the standard 8-byte data field, in each message.

Each of the first 14 message centers is programmable in either transmit or receive mode. Message center 15 is designed as a receive-only message center with a buffer FIFO arrangement to help prevent the inadvertent loss of data when the  $\mu$ C is busy and is not allowed time to retrieve the incoming message prior to the acceptance of a second message into message center 15. Message center 15 also utilizes an independent set of mask registers and identification registers, which are only applied once an incoming message has not been accepted by any of the first 14 message centers. A second filter test is also supported for all message centers (1–15) to allow the CAN controller to use two separate 8-bit media masks and media arbitration fields to verify the contents of the first 2 bytes of data of





Figure 10. CAN 0 Controller Block Diagram



Figure 11a. UART Synchronous Mode (Mode 0)

each incoming message, before accepting an incoming message. This feature allows the CAN unit to directly support the use of higher CAN protocols, which make use of the first and/or second byte of data as a part of the acceptance layer for storing incoming messages. Each message center can also be programmed independently to perform testing of the incoming data with or without the use of the global masks.

Global controls and status registers in the CAN unit allow the  $\mu$ C to evaluate error messages, validate new data and the location of such data, establish the bus timing for the CAN bus, establish the identification mask bits, and verify the source of individual messages. In addition, each message center is individually equipped with the necessary status and controls to establish directions, interrupt generation, identification mode (standard or extended), data field size, data status, automatic remote frame request and acknowledgment, and masked or nonmasked identification acceptance testing.

### **UART** Interface

**MAXQ7665A-MAXQ7665D** 

Serial interfacing is provided through one (UTX/URX) 8051-style universal synchronous/asynchronous receiver/transmitter (UART) capable of interfacing with a LIN transceiver. Figure 11a shows the UART block diagram in synchronous mode and Figure 11b shows asynchronous mode. The UART allows the device to conveniently communicate with other RS-232 interface-enabled devices, as well as PCs and serial modems when paired with an external RS-232 line driver/receiver. The UART can detect framing errors and indicate the condition through a user-accessible software bit. The time base of the serial port is derived from either a division of the system clock or the dedicated baud clock generator. The UART is capable of supporting LIN protocol implementation in software when using one of the timers for autobaud





**SBUF0** 

Figure 11b. UART Asynchronous Mode (Mode 1)

detection. Table 1 summarizes the operating characteristics as well as the maximum baud rate of each mode.

### **JTAG Interface Bus**

The joint test action group (JTAG) IEEE 1149.1 standard defines a unique method for in-circuit testing and programming. The MAXQ7665A-MAXQ7665D conform to this standard, implementing an external test access port (TAP) and internal TAP controller for communication with a JTAG bus master, such as an automatic test equipment (ATE) system. For detailed information on

the TAP and TAP controller, refer to IEEE Standard 1149.1 on the IEEE website at http://standards.ieee.org. The JTAG on the MAXQ7665A-MAXQ7665D is used for in-circuit emulation and debug support, but does not support boundary scan test capability.

The TAP controller communicates synchronously with the host system (bus master) through four digital I/O pins: test mode select (TMS), test clock (TCK), test data input (TDI), and test data output (TDO). The internal TAP module consists of several shift registers and a

| Table 1. | Operating | <b>Characteristics</b> | and Mo | de Baud | Rate |
|----------|-----------|------------------------|--------|---------|------|
|----------|-----------|------------------------|--------|---------|------|

| MODE   | ТҮРЕ         | BAUD CLOCK      | START BITS | DATA BITS | STOP BITS | MAX BAUD RATE AT<br>8MHz |
|--------|--------------|-----------------|------------|-----------|-----------|--------------------------|
| Mode 0 | Synchronous  | 4 or 12 clock   | N/A        | 8         | N/A       | 2Mbps                    |
| Mode 1 | Asynchronous | Baud generation | 1          | 8         | 1         | 250kbps                  |
| Mode 2 | Asynchronous | 32 or 64 clock  | 1          | 8 + 1     | 1         | 250kbps                  |
| Mode 3 | Asynchronous | Baud generation | 1          | 8 + 1     | 1         | 250kbps                  |



the host to the internal TAP module shift registers. Data is transferred LSB first.

- TCK—Serial clock for the test logic.
- TMS—Test mode selection. Test signals received at TMS are sampled at the rising edge of TCK and decoded by the TAP controller to control the test operation.

### **General-Purpose Digital I/Os**

The MAXQ7665A–MAXQ7665D provide eight generalpurpose digital I/Os (GPIOs). All GPIOs have an additional special function (SF), such as a timer input/output, or TAP signal for JTAG communication. For example, the state of pin P0.6/T0 can be programmed to depend on timer channel 0 logic. When programmed as a port, each I/O is configurable for high-impedance or weak pullup to DV<sub>DDIO</sub>. At powerup, each GPIO is configured as an input with pullups to DV<sub>DDIO</sub>. Note that at power-up, the JTAG function is enabled and should be turned off before normal operation. In addition, each GPIO can be programmed to cause an interrupt (on falling or rising edges). In stop mode, any interrupt can be used to wake up the device.

The data input/output direction in a port is independently controlled by the port direction register (PD). Each I/O within the port can be individually set as an output or input. The port output register (PO) contains the current state of the logic output buffers. When an I/O is configured as an output, writing to the PO register controls the output logic state. Reading the PO register shows the current state of the output buffers, independent of the data direction. The port input register (PI) is a read-only register that always reflects the logic state of the I/Os. When an I/O is configured as an input, writing to the PO register enables/disables the pull-up resistor. Refer to the *MAXQ7665/MAXQ7666 User's Guide* for more detailed information.

### **Port Characteristics**

The MAXQ7665A–MAXQ7665D contain only one port (P0). It is a bidirectional 8-bit I/O port, which contains the following features:

- Schmitt trigger input circuitry with software-selectable high-impedance or weak pullup to DV<sub>DDIO</sub>
- Software-selectable push-pull CMOS output drivers capable of sinking and sourcing 1.6mA
- Software-selectable open-drain output drivers capable of sinking 1.6mA
- Falling or rising edge interrupt capability
- All I/Os contain an additional special function, such as a logic input/output for a timer channel. Selecting an I/O for a special function alters the port characteristics of that I/O (refer to the MAXQ7665/MAXQ7666 User's Guide for more details). Figure 13 illustrates the functional blocks of an I/O.



Figure 13. Digital I/O Circuitry

### MAXQ Core Architecture

The MAXQ7665A–MAXQ7665D are low-cost, high-performance, CMOS, fully static, 16-bit  $\mu$ Cs with flash memory and are members of the MAXQ family of  $\mu$ Cs. The MAXQ7665A–MAXQ7665D are structured on a highly advanced, accumulator-based, 16-bit RISC architecture. Fetch and execution operations are completed in one cycle without pipelining, because the instruction contains both the operation code and data. The result is a streamlined 8 million instructions-per-second (MIPS)  $\mu$ C.

The highly efficient core is supported by a 16-level hardware stack, enabling fast subroutine calling and task switching. Data can be quickly and efficiently manipulated with three internal data pointers. Multiple data pointers allow more than one function to access data memory without having to save and restore data pointers each time. The data pointers can automatically increment or decrement following an operation, eliminating the need for software intervention. As a result, application speed is greatly increased.

### Instruction Set

The instruction set is composed of fixed-length, 16-bit instructions that operate on registers and memory locations. The instruction set is highly orthogonal, allowing arithmetic and logical operations to use any register along with the accumulator. Special-function registers (also called peripheral registers) control the peripherals and are subdivided into register modules. The family architecture is modular, so that new devices and modules can reuse code developed for existing products.

The architecture is transport-triggered. This means that writes or reads from certain register locations can also cause side effects to occur. These side effects form the basis for the higher level operation codes defined by the assembler, such as ADDC, OR, JUMP, etc. The operation codes are actually implemented as MOVE instructions between certain register locations, while the assembler handles the encoding, which need not be a concern to the programmer.

The 16-bit instruction word is designed for efficient execution. Bit 15 indicates the format for the source field of the instruction. Bits 0 to 7 of the instruction represent the source for the transfer. Depending on the value of the format field, this can either be an immediate value or a source register. If this field represents a register, the lower 4 bits contain the module specifier and the upper 4 bits contain the register index in that module.

Bits 8 to 14 represent the destination for the transfer. This value always represents a destination register, with the lower 4 bits containing the module specifier and the upper 3 bits containing the register subindex within that module. Any time that it is necessary to directly select one of the upper 24 registers as a destination, the prefix register, PFX, is needed to supply the extra destination bits. This prefix register write is inserted automatically by the assembler and requires only one additional execution cycle.

### Memory Organization

The MAXQ7665A–MAXQ7665D incorporate several memory areas:

- 8KB (4K x 16) utility ROM
- Up to 128KB (64K x 16) of flash memory for program storage
- 512 bytes (256 x 16) of SRAM for storage of temporary variables
- 16-level stack memory for storage of program return addresses and general-purpose use

The memory is arranged by default in a Harvard architecture, with separate address spaces for program and data memory (see Figure 14). A special mode allows data memory to be mapped into program space, permitting code execution from data memory. In addition, another mode allows program memory to be mapped into data space, permitting code constants to be accessed as data memory.

The incorporation of flash memory allows the devices to be reprogrammed, eliminating the expense of throwing away one-time programmable devices during development and field upgrades (see Figure 15 for the flash memory sector maps). Flash memory can be password protected with a 16-word key, denying access to program memory by unauthorized individuals.

Following any reset, execution begins in the utility ROM. The ROM software determines whether the program execution should immediately jump to location 0000h, the start of user-application code, or to one of the special routines mentioned. Routines within the utility ROM are user-accessible and can be called as subroutines by the application software. More information on the utility ROM contents is contained in the *MAXQ7665/MAXQ7666 User's Guide*.

Some applications require protection against unauthorized viewing of program code memory. For these applications, access to in-system programming, inapplication programming, or in-circuit debugging functions is prohibited until a password has been supplied. The password is defined as the 16 words of physical program memory at addresses 0010h to 001Fh.

A single password lock (PWL) bit is implemented in the SC register. When the PWL is set to one (POR default), the password is required to access the utility ROM, including in-circuit debug and in-system programming routines that allow reading or writing of internal memory. When PWL is cleared to zero, these utilities are fully accessible without the password. The password is automatically set to all ones following a mass erase.

### Programming

The flash memory of the  $\mu$ C can be programmed by two different methods: in-system programming and inapplication programming. Both methods afford great flexibility in system design as well as reduce the lifecycle cost of the embedded system. These features can be password protected to prevent unauthorized access to program memory.

### In-System Programming

An internal bootstrap loader allows the device to be reloaded over a simple JTAG interface. As a result, software can be upgraded in-system, eliminating the need for a costly hardware retrofit when updates are required. Remote software uploads are possible that enable physically inaccessible applications to be frequently updated. The interface hardware can be a JTAG connection to another  $\mu$ C, or a connection to a PC serial port using a serial-to-JTAG converter such as the MAXQJTAG-001, available from Maxim Integrated Products, Inc. If in-system programmability is not required, a commercial gang programmer can be used for mass programming.

After a power-up or reset, the JTAG interface is active and loading the TAP with the system programming instruction invokes the bootstrap loader. Setting the SPE bit to 1 during reset through the JTAG interface executes the bootstrap-loader-mode program that resides in the utility ROM. When programming is complete, the bootstrap loader can clear the SPE bit and reset the device, allowing the device to bypass the utility ROM and begin execution of the application software.

The following bootstrap loader functions are supported:

- Load
- Dump
- CRC
- Verify
- Erase

### In-Application Programming

The in-application programming feature allows the  $\mu$ C to modify its own flash program memory while simultaneously executing its application software. This allows onthe-fly software updates in mission-critical applications that cannot afford downtime. Alternatively, it allows the application to develop custom loader software that can operate under the control of the application software. The utility ROM contains user-accessible flash programming functions that erase and program flash memory. These functions are described in detail in the *MAXQ7665/MAXQ7666 User's Guide* for these devices.

### **Register Set**

Most functions of these devices are controlled by sets of registers. These registers provide a working space for memory operations as well as configuring and addressing peripheral registers on the device. Registers are divided into two major types: system registers and peripheral registers. The common register set, also known as the system registers, includes the ALU, accumulator registers, data pointers, interrupt vectors and control, and stack pointer. The peripheral registers define additional functionality that may be included by different products based on the MAXQ architecture. This functionality is broken up into discrete modules so that only the features required for a given product need to be included. Tables 2 and 4 show the MAXQ7665A-MAXQ7665D register set. Tables 3 and 5 show the bit functions and reset values.



Figure 15. Flash Memory Sector Maps

### **External System Reset**

Asserting the external RESET input low causes the device to enter the reset state. The external reset functions as described in the *MAXQ7665/MAXQ7666 User's Guide*. Execution resumes at location 8000h after RESET is released.

### **Crystal Selection**

The MAXQ7665A–MAXQ7665D require a crystal with the following specifications:

Frequency: 8MHz

CLOAD: 6pF (min)

Drive level: 5µW

Series resonance resistance:  $30\Omega$  max

**Note:** Series resonance resistance is the resistance observed when the resonator is in the series resonant condition. This is a parameter often stated by quartz crystal vendors and is called R1. When a resonator is used in the parallel resonant mode with an external load capacitance, as is the case with the MAXQ7665A–MAXQ7665D oscillator circuit, the effective resistance is sometimes stated. This effective resistance at the loaded frequency of oscillation is:

### R1 x ( 1 + (CO/CLOAD))<sup>2</sup>

For typical C\_O and C\_LOAD values, the effective resistance can be greater than R1 by a factor of 2.

### **Development and Technical Support**

A variety of highly versatile, affordably priced development tools for this  $\mu$ C are available from Maxim and third-party suppliers, including:

- Compilers
- Evaluation kits
- Integrated development environments (IDEs)
- JTAG-to-serial converters for programming and debugging

A list of some development-tool vendors can be found at <u>www.maxim-ic.com/microcontrollers</u>.

Technical support is available through email at maxq.support@maxim-ic.com.

| REGISTER       |       |       |       |       |          |       |      | REG  | ISTER BIT      | Γ     |       |       |            |       |              |       |
|----------------|-------|-------|-------|-------|----------|-------|------|------|----------------|-------|-------|-------|------------|-------|--------------|-------|
| REGISTER       | 15    | 14    | 13    | 12    | 11       | 10    | 9    | 8    | 7              | 6     | 5     | 4     | 3          | 2     | 1            | 0     |
| AP             |       |       |       |       |          |       |      |      | _              | —     | —     | —     |            | AP (4 | 4 Bits)      |       |
|                |       |       |       |       |          |       |      |      | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| APC            | -     |       |       |       |          |       |      |      | CLR            | IDS   |       |       |            | MOD2  | MOD1         | MODO  |
|                |       |       |       |       |          |       |      |      | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| PSF            |       |       |       |       |          |       |      |      | 1              | 3     | _     | GPFI  | GPFU       | 00    | 0            |       |
|                |       |       |       |       |          |       |      |      |                | U     |       | 0     | U          | 0     | U            |       |
| IC             |       |       |       |       |          |       |      |      | 0              |       | 0     |       |            | 0     | 0            | 1GE   |
|                |       |       |       |       |          |       |      |      | IMS            | _     | IM5   | IM4   | IM3        | IM2   | IM1          | IMO   |
| IMR            |       |       |       |       |          |       |      |      | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
|                |       |       |       |       |          |       |      |      | TAP            | _     | CDA1  | CDA0  | UPA        | ROD   | PWL          | _     |
| SC             |       |       |       |       |          |       |      |      | 1              | 0     | 0     | 0     | 0          | 0     | s*           | 0     |
|                |       |       |       |       |          |       |      |      | IIS            | _     | 115   | 4     | 113        | 112   | 1            | 110   |
| шк             |       |       |       |       |          |       |      |      | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| CKCN           |       |       |       |       |          |       |      |      | XT             | _     | RGMD  | STOP  | SWB        | _     | _            | CD0   |
| CKCN           |       |       |       |       |          |       |      |      | s*             | 0     | s*    | 0     | 0          | 0     | 0            | 1     |
| WDCN           |       |       |       |       |          |       |      |      | POR            | EWDI  | WD1   | WD0   | WDIF       | WTRF  | EWT          | RWT   |
| WEON           |       |       |       |       |          |       |      |      | S*             | s*    | 0     | 0     | 0          | s*    | s*           | 0     |
| A[n] (0.,15)   |       | 1     | 1     |       | 1        |       |      | A[n  | ] (16 Bits)    | 1     |       | 1     | 1          | r     |              | T     |
|                | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| PFX[n] (015)   |       | 0     | _     |       | <u>^</u> |       | 0    | PFX[ | n] (16 Bits    | )     | 0     | _     | 0          |       |              |       |
|                | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| IP             | 1     | 0     | 0     | 0     | 0        | 0     | 0    | IP   | (16 Bits)      | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
|                |       | 0     | 0     | 0     | 0        | 0     | 0    | 0    | U              | 0     | 0     | 0     | U          |       | 1 Pito)      | 0     |
| SP             |       |       |       |       |          |       |      | _    |                |       |       |       | 1          | 3F (4 | + DILS)<br>1 | 1     |
|                | 0     | 0     | 0     | 0     | 0        | 0     | 0    | IV   | (16 Bits)      | 0     | 0     | U     | 1          | 1     | 1            |       |
| IV             | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
|                | -     | -     | -     | -     | Ţ        |       | -    | LCIO | )] (16 Bits)   | -     | -     | -     | -          | -     |              |       |
| LC[0]          | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| 1.0[4]         |       |       |       |       |          |       |      | LC[1 | ] (16 Bits)    |       |       |       |            |       |              |       |
| LC[1]          | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| OFFR           |       |       |       |       |          |       |      |      |                |       |       | OFFS  | (8 Bits)   |       |              |       |
| UFF3           |       |       |       |       |          |       |      |      | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| DPC            | _     | _     | —     | _     | _        | —     | —    | _    | _              | _     | —     | WBS2  | WBS1       | WBS0  | SDPS1        | SDPS0 |
| 510            | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 1     | 1          | 1     | 0            | 0     |
| GR             | GR.15 | GR.14 | GR.13 | GR.12 | GR.11    | GR.10 | GR.9 | GR.8 | GR.7           | GR.6  | GR.5  | GR.4  | GR.3       | GR.2  | GR.1         | GR.0  |
|                | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| GRL            |       |       |       |       |          |       |      |      | GR.7           | GR.6  | GR.5  | GR.4  | GR.3       | GR.2  | GR.1         | GR.0  |
|                |       |       |       |       |          |       |      |      | U<br>(10 Dite) | U     | 0     | U     | U          | 0     | 0            | 0     |
| BP             | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    |                | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
|                | CP 7  | CRE   | CRE   | CR 4  | CR2      | CRA   | CP 1 | CRO  | CP 15          | CR 14 | CP 12 | CR 12 | 0<br>CR 11 | CR 10 | CRA          | C P O |
| GRS            | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 011.0 |
|                | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | GR 15          | GR 14 | GR 13 | GR 12 | GR 11      | GR 10 | GB 9         | GB 8  |
| GRH            |       |       |       |       |          |       |      |      | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
|                | GB.7  | GB.7  | GB.7  | GB.7  | GB.7     | GB.7  | GB.7 | GB.7 | GB.7           | GR.6  | GR.5  | GR.4  | GR.3       | GB.2  | GR.1         | GR.0  |
| GRXL           | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
|                | -     | -     |       | -     | -        |       | -    | FP   | (16 Bits)      |       | -     |       | -          | -     |              |       |
| н <sup>р</sup> | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
| DDIAL          | 1     |       |       |       |          |       |      | DP[0 | )] (16 Bits)   |       |       |       |            |       |              |       |
|                | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |
|                |       |       |       |       |          |       |      | DP[  | 1] (16 Bits)   |       |       |       |            |       |              |       |
|                | 0     | 0     | 0     | 0     | 0        | 0     | 0    | 0    | 0              | 0     | 0     | 0     | 0          | 0     | 0            | 0     |

### Table 3. System Register Bit Functions and Reset Values

\*Bits indicated by an "s" are only affected by a POR and not by other forms of reset. These bits are set to 0 after a POR. Refer to the MAXQ7665/MAXQ7666 User's Guide for more information.

### **Table 4. Peripheral Register Map**

| REGISTER |         |          | MODULE NAME ( | BASE SPECIFIER | )       |         |
|----------|---------|----------|---------------|----------------|---------|---------|
| INDEX    | M0 (0h) | M1 (1h)  | M2 (2h)       | M3 (3h)        | M4 (4h) | M5 (5h) |
| 0h       | PO0     | MCNT     | T2CNA0        | T2CNA2         | COC     | VMC     |
| 1h       |         | MA       | T2H0          | T2H2           | COS     | APE     |
| 2h       |         | MB       | T2RH0         | T2RH2          | COIR    | ACNT    |
| 3h       | EIFO    | MC2      | T2CH0         | T2CH2          | COTE    | DCNT    |
| 4h       |         | MC1      | T2CNA1        | _              | CORE    | DACI    |
| 5h       | _       | MC0      | T2H1          | _              | COR     |         |
| 6h       |         | _        | T2RH1         | _              | CODP    | DACO    |
| 7h       | SBUF0   | _        | T2CH1         | _              | CODB    |         |
| 8h       | PI0     | _        | T2BNB0        | T2CNB2         | CORMS   | ADCD    |
| 9h       |         | _        | T2V0          | T2V2           | СОТМА   | TSO     |
| Ah       | _       | FCNTL    | T2R0          | T2R2           | _       | AIE     |
| Bh       | EIE0    | FDATA    | T2C0          | T2C2           | _       | ASR     |
| Ch       | _       | MC1R     | T2CNB1        | _              | _       | OSCC    |
| Dh       | _       | MC0R     | T2V1          | _              | _       | _       |
| Eh       | _       | _        | T2R1          | _              | _       | _       |
| Fh       | _       | _        | T2C1          | _              | _       |         |
| 10h      | PD0     | _        | T2CFG0        | T2CFG2         | _       | _       |
| 11h      | —       | —        | T2CFG1        | —              | C0M1C   | —       |
| 12h      | _       | _        | _             | _              | C0M2C   | —       |
| 13h      | EIES0   | —        | —             | —              | COM3C   | —       |
| 14h      | —       | —        | —             | —              | C0M4C   | —       |
| 15h      | _       | _        | _             | —              | C0M5C   | —       |
| 16h      | —       | —        | _             | —              | C0M6C   | —       |
| 17h      | —       | —        | —             | —              | C0M7C   | —       |
| 18h      | —       | —        | ICDT0         | —              | C0M8C   | —       |
| 19h      | _       | _        | ICDT1         | _              | C0M9C   |         |
| 1Ah      |         |          | ICDC          |                | C0M10C  |         |
| 1Bh      |         | _        | ICDF          | _              | C0M11C  |         |
| 1Ch      |         | Reserved | ICDB          |                | C0M12C  |         |
| 1Dh      | SCON0   | _        | ICDA          | _              | C0M13C  |         |
| 1Eh      | SMD0    |          | ICDD          |                | C0M14C  |         |
| 1Fh      | PR0     | _        | _             | _              | C0M15C  |         |

Note: Names that appear in bold indicate that the register is read-only.

### MAXQ7665A-MAXQ7665D

| REGISTER  |          |          |          |          |          |          |         | REGISTER | ВП      |         |         |             |         |         |         |         |
|-----------|----------|----------|----------|----------|----------|----------|---------|----------|---------|---------|---------|-------------|---------|---------|---------|---------|
|           | 15       | 14       | 13       | 12       | ÷        | 10       | 6       | 8        | 7       | 9       | 5       | 4           | 3       | 2       | -       | 0       |
| (MO OH)   | I        |          |          |          |          |          |         |          | PO0.7   | PO0.6   | PO0.5   | PO0.4       | PO0.3   | PO0.2   | PO0.1   | PO0.0   |
|           | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | ۲       | 1       | +       | 1           | +       | ۲       | ۲       | +       |
| EIFO      | -        |          |          |          |          |          |         |          | IE7     | IE6     | IE5     | IE4         | IE3     | IE2     | IE1     | IE0     |
| (M0, 3h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| SBUF0     | -        |          |          |          |          |          |         | Ι        | SBUF0.7 | SBUF0.6 | SBUF0.5 | SBUF0.4     | SBUF0.3 | SBUF0.2 | SBUF0.1 | SBUF0.0 |
| (M0, 7h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| PIO       |          |          |          |          |          |          |         |          | P10.7   | PI0.6   | PI0.5   | PI0.4       | P10.3   | P10.2   | PI0.1   | P10.0   |
| (M0, 8h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | ST      | ST      | ST      | ST          | ST      | ST      | ST      | ST      |
| EIEO      |          |          |          |          |          |          |         |          | EX7     | EX6     | EX5     | EX4         | EX3     | EX2     | EX1     | EXO     |
| (M0, Bh)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| PDO       |          |          |          |          |          |          |         |          | PD0.7   | PD0.6   | PD0.5   | PD0.4       | PD0.3   | PD0.2   | PD0.1   | PD0.0   |
| (M0, 10h) | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| EIESO     | Ι        |          | Ι        |          |          |          | Ι       |          | 117     | IT6     | IT5     | IT4         | П3      | 1T2     | IT1     | ITO     |
| (M0, 13h) | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| SCOND     | I        |          | Ι        |          |          |          |         |          | SM0/FE  | SM1     | SM2     | REN         | TB8     | RB8     | F       | Ы       |
| (M0, 1Dh) | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| SMD0      | I        |          | Ι        |          |          |          |         |          |         |         |         |             |         | ESI     | SMOD    | FEDE    |
| (M0, 1Eh) | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| PRO       | PR0.15   | PR0.14   | PR0.13   | PR0.12   | PR0.11   | PR0.10   | PR0.9   | PR0.8    | PR0.7   | PR0.6   | PR0.5   | PR0.4       | PR0.3   | PR0.2   | PR0.1   | PR0.0   |
| (M0, 1Fh) | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| MCNT      | Ι        |          |          |          |          |          |         |          | OF      | MCW     | CLD     | SQU         | OPCS    | MSUB    | MMAC    | SUS     |
| (M1, 0h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| MA        | MA.15    | MA. 14   | MA.13    | MA.12    | MA.11    | MA.10    | MA.9    | MA.8     | MA.7    | MA.6    | MA.5    | MA.4        | MA.3    | MA.2    | MA.1    | MA.0    |
| (M1, 1h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| MB        | MB.15    | MB.14    | MB.13    | MB.12    | MB.11    | MB.10    | MB.9    | MB.8     | MB.7    | MB.6    | MB.5    | MB.4        | MB.3    | MB.2    | MB.1    | MB.0    |
| (M1, 2h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| MC2       | MC2.15   | MC2.14   | MC2.13   | MC2.12   | MC2.11   | MC2.10   | MC2.9   | MC2.8    | MC2.7   | MC2.6   | MC2.5   | MC2.4       | MC2.3   | MC2.2   | MC2.1   | MC2.0   |
| (M1, 3h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| MC1       | MC1.15   | MC1.14   | MC1.13   | MC1.12   | MC1.11   | MC1.10   | MC1.9   | MC1.8    | MC1.7   | MC1.6   | MC1.5   | MC1.4       | MC1.3   | MC1.2   | MC1.1   | MC1.0   |
| (M1, 4h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| MC0       | MC0.15   | MC0.14   | MC0.13   | MC0.12   | MC0.11   | MC0.10   | MC0.9   | MC0.8    | MC0.7   | MC0.6   | MC0.5   | MC0.4       | MC0.3   | MC0.2   | MC0.1   | MC0.0   |
| (M1, 5h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| FCNTL     | Ι        |          |          |          |          |          |         |          | FBUSY   | FERR    | FINE    | FBYP        | DQ5     | FC2     | FC1     |         |
| (M1, Ah)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        |         | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| FDATA     | FDATA.15 | FDATA.14 | FDATA.13 | FDATA.12 | FDATA.11 | FDATA.10 | FDATA.9 | FDATA.8  | FDATA.7 | FDATA.6 | FDATA.5 | FDATA.4     | FDATA.3 | FDATA.2 | FDATA.1 | FDATA.0 |
| (M1, Bh)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| MC1R      | MC1R.15  | MC1R.14  | MC1R.13  | MC1R.12  | MC1R.11  | MC1R.10  | MC1R.9  | MC1R.8   | MC1R.7  | MC1R.6  | MC1R.5  | MC1R.4      | MC1R.3  | MC1R.2  | MC1R.1  | MC1R.0  |
| (M1, Ch)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| MCOR      | MCOR.15  | MC0R.14  | MC0R.13  | MC0R.12  | MC0R.11  | MCOR.10  | MC0R.9  | MC0R.8   | MC0R.7  | MCOR.6  | MCOR.5  | MC0R.4      | MCOR.3  | MC0R.2  | MCOR.1  | MCOR.0  |
| (M1, Dh)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| T2CNA0    |          |          |          | I        |          |          |         |          | ET2     | T20E0   | T2POL0  | <b>TR2L</b> | TR2     | CPRL2   | SS2     | G2EN    |
| (M2, 0h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| T2H0      | I        |          |          | Ι        |          |          |         |          | T2H0.7  | T2H0.6  | T2H0.5  | T2H0.4      | T2H0.3  | T2H0.2  | T2H0.1  | T2H0.0  |
| (M2, 1h)  | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0       | 0       | 0       | 0       |

**16-Bit RISC Microcontroller-Based** 

**Smart Data-Acquisition Systems** 

## Table 5. Peripheral Register Bit Functions and Reset Values

|          | 1         | ROW/TIH DTUP | 0          | ROW/TIH DTUP | 0         | VDBR1 VDBR0 | s<br>S   | DACE ADCE | 0        | ADCS1 ADCS0 | 0        |        | 0        | DACI.1 DACI.0 | 0        | 2 DACO.1 DACO.0 | 0        | 2 ADCD.1 ADCD.0 | 0        | TSO.1 TSO.0 | 0 0      | ADCIE — | 0        | / ADCRY | 0 0      | RCE HFE |  |
|----------|-----------|--------------|------------|--------------|-----------|-------------|----------|-----------|----------|-------------|----------|--------|----------|---------------|----------|-----------------|----------|-----------------|----------|-------------|----------|---------|----------|---------|----------|---------|--|
|          | 2         | MTRQ         | 0          | MTRQ         | 0         | VDBI0       | 0        |           | 0        | ADCS2       | 0        |        | 0        | DACI.2        | 0        | DACO.2          | 0        | ADCD.2          | 0        | TSO.2       | 0        | AORIE   | 0        | ADCOV   | 0        | EXTHF   |  |
|          | 3         | EXTRQ        | 0          | EXTRQ        | 0         | VDB11       | 0        | PGAE      | 0        | ADCBY       | 0        |        | 0        | DACI.3        | 0        | DACO.3          | 0        | ADCD.3          | 0        | TSO.3       | 0        |         | 0        |         | 0        |         |  |
|          | 4         | INTRQ        | 0          | INTRQ        | 0         | VIOBIO      | 0        | TSE       | 0        | ADCASD      | 0        | DACLD0 | 0        | DACI.4        | 0        | DACO.4          | 0        | ADCD.4          | 0        | TSO.4       | 0        | DVBIE   | 0        | DVBI    | 0        | I       |  |
|          | 2         | ERI          | 0          | ERI          | 0         | VIOBI1      | 0        | PGG0      | 0        | I           | 0        | DACLD1 | 0        | DACI.5        | 0        | DACO.5          | 0        | ADCD.5          | 0        | TSO.5       | 0        | VIOBIE  | 0        | VIOBI   | 0        | ADCCD0  |  |
|          | 9         | ETI          | 0          | ETI          | 0         | I           | 0        | PGG1      | 0        | ADCDUL      | 0        | DACLD2 | 0        | DACI.6        | 0        | DACO.6          | 0        | ADCD.6          | 0        | TSO.6       | 0        | HFFIE   | 0        | HFFINT  | 0        | ADCCD1  |  |
| I BIT    | 7         | MSRDY        | 0          | MSRDY        | 0         | I           | 0        | PGG2      | 0        | I           | 0        |        | 0        | DACI.7        | 0        | DACO.7          | 0        | ADCD.7          | 0        | TSO.7       | 0        |         | 0        |         | 0        | ADCCD2  |  |
| REGISTEF | 8         |              | 0          |              | 0         |             | 0        | -         | 0        | I           | 0        | -      | 0        | DACI.8        | 0        | DACO.8          | 0        | ADCD.8          | 0        | TSO.8       | 0        | -       | 0        | -       | 0        | HFIC0   |  |
|          | 6         | -            | 0          | -            | 0         | I           | 0        |           | 0        | ADCBIP      | 0        | I      | 0        | DACI.9        | 0        | DACO.9          | 0        | ADCD.9          | 0        | TSO.9       | 0        | Ι       | 0        |         | 0        | HFIC1   |  |
|          | 10        | -            | 0          | -            | 0         | I           | 0        | VDPE      | +        | ADCDIF      | 0        |        | 0        | DACI.10       | 0        | DACO.10         | 0        | ADCD.10         | 0        | TSO.10      | 0        | -       | 0        |         | 0        | HFOC0   |  |
|          | 11        |              | 0          |              | 0         |             | 0        | VDBE      | 0        | ADCMX0      | 0        |        | 0        | DACI.11       | 0        | DACO.11         | 0        | ADCD.11         | 0        | TSO.11      | 0        |         | 0        | ХНFRY   | 0        | HFOC1   |  |
|          | 12        |              | 0          |              | 0         | I           | 0        | VIBE      | 0        | ADCMX1      | 0        |        | 0        |               | 0        |                 | 0        |                 | 0        | TSO.12      | 0        |         | 0        |         | 0        |         |  |
|          | 13        |              | 0          |              | 0         |             | 0        |           | 0        | ADCMX2      | 0        |        | 0        |               | 0        |                 | 0        |                 | 0        | TSO.13      | 0        |         | 0        |         | 0        |         |  |
|          | 14        |              | 0          |              | 0         |             | 0        |           | 0        | ADCMX3      | 0        |        | 0        |               | 0        |                 | 0        |                 | 0        | TSO.14      | 0        |         | 0        | DVLVL   | 0        |         |  |
|          | 15        |              | 0          |              | 0         |             | 0        |           | 0        | ADCMX4      | 0        |        | 0        |               | 0        |                 | 0        |                 | 0        | TSO.15      | 0        |         | 0        | VIOLVL  | 0        |         |  |
| REGISTER | 0, 1, 100 |              | (MI4, IEN) | COM15C       | (M4, 1Fh) | VMC         | (M5, 0h) | APE       | (M5, 1h) | ACNT        | (M5, 2h) | DCNT   | (M5, 3h) | DACI          | (M5, 4h) | DACO            | (M5, 6h) | ADCD            | (M5, 8h) | TSO         | (M5, 9h) | AIE     | (M5, Ah) | ASR     | (M5, Bh) | OSCC    |  |

# Table 5. Peripheral Register Bit Functions and Reset Values (continued)

Bits indicated by "—" are unused.

Bits indicated by "ST" reflect the input signal state.

Bits indicated by "DB" have read/write access only in background or debug mode. These bits are cleared after a POR. Bits indicated by "S" are only affected by a POR and not by other forms of reset. These bits are set to 0 after a POR. Bits indicated by "DW" are only written to in debug mode. These bits are cleared after a POR.

The OSCC register is cleared to 0002h after a POR and is not affected by other forms of reset

**16-Bit RISC Microcontroller-Based Smart Data-Acquisition Systems** 

### 

MAXQ7665A-MAXQ7665D



**Typical Operating Circuit** 

### **Revision History**

| REVISION<br>NUMBER | REVISION<br>DATE | DESCRIPTION                    | PAGES<br>CHANGED                           |
|--------------------|------------------|--------------------------------|--------------------------------------------|
| 0                  | 3/08             | Initial release                | —                                          |
| 1                  | 10/08            | Restricted minimum clock speed | 1, 2, 5, 6, 7, 9, 14,<br>23, 35–38, 40, 44 |

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 \_\_\_\_

is a registered trademark of Maxim Integrated Products, Inc.

\_\_\_\_\_ 47