

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	16-Bit
Speed	8MHz
Connectivity	CANbus, LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	8
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 16
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	A/D 8x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-SQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/maxq7665batm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ABSOLUTE MAXIMUM RATINGS

DV _{DD} to DGND, AGND, or GNDIO	0.3V to +4V
DGND to GNDIO or AGND	0.3V to +0.3V
DVDDIO to DGND, AGND, or GNDIO	0.3V to +6V
AV _{DD} to DGND, AGND, or GNDIO	0.3V to +6V
Digital Inputs/Outputs to DGND, AGND, o	r GNDIO
0.5	$3V \text{ to } (DV_{DDIO} + 0.3V)$
Analog Inputs/Outputs to DGND, AGND, o	or GNDIO
	$0.3V \text{ to } (AV_{DD} + 0.3V)$
RESET, XIN, XOUT to DGND, AGND, or G	INDIO
	$0.3V \text{ to } (DV_{DD} + 0.3V)$

Continuous Current into Any Pin	±50mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
48-Pin TQFN (derate 40mW/°C above +70°C)	3200mW
Operating Temperature Range40	0°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range65	5°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(AV_{DD} = DV_{DDIO} = +5.0V, DV_{DD} = +3.3V, f_{SYSCLK} = 8MHz, V_{REFDAC} = V_{REFADC} = +5V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C.$) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS				
POWER REQUIRMENTS										
		Safe mode (RC/2 = 3.8MHz)	2.7	3.3	3.6					
Supply Voltage Depge	DVDD	Normal mode	3.0	3.3	3.6	V				
Supply voltage hange	AV _{DD}		4.75	5.0	5.25	v				
	DVDDIO		4.75	5.0	5.25					
AVen Supply Current		Shutdown (Note 2)		0.1	10	μA				
AVDD Supply Current	IAVDD	All analog functions enabled		6.7	8	mA				
		ADC enabled, f _{ADC} = 1ksps, f _{SYSCLK} = 8MHz		4.2						
		ADC enabled, $f_{ADC} = 500$ ksps, $f_{SYSCLK} = 8$ MHz	1890							
Analog Module Subfunction		DAC enabled (zero scale)		305		μA				
Incremental Supply Current		Internal temperature sensor enabled		502						
		Additional current when one or more of the ADC, DAC, and/or temperature sensor is enabled (only counted once)		128						
		PGA enabled	4.5			mA				
		CPU in stop mode, all peripherals disabled		3	20	μA				
DV _{DD} Supply Current	IDVDD	High-speed mode (Note 3)		28						
		Flash erase or write mode	35 50		ШA					
		DV _{DD} supervisor and brownout monitor		2						
DV _{DD} Module Subfunction Incremental Supply Current		HF crystal oscillator 150			μA					
		Internal RC oscillator	200							
		All digital I/Os static at GND or DV_{DDIO}			10	μA				
	טועעעיי	(Note 4)			1000	μΑ				

ELECTRICAL CHARACTERISTICS (continued)

 $(AV_{DD} = DV_{DDIO} = +5.0V, DV_{DD} = +3.3V, f_{SYSCLK} = 8MHz, V_{REFDAC} = V_{REFADC} = +5V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIC	ONS	MIN	TYP MAX	UNITS
Spurious-Free Dynamic Range	SFDR	PGA gain = 1V/V			-91	dB
Conversion Clock Frequency	f ADCCLK	fsysclk = 8MHz		0.5	8.0	MHz
		PGA gain = 1V/V, RSOURG	CE≤1kΩ		500	
Sample Rate	f SAMPLE	Any PGA gain setting > 1 $5k\Omega$	V/V, R _{SOURCE} ≤		142	ksps
Conversion Time	t CONV	t _{ACQ} plus 13 ADCCLK cy	cles at 8MHz		t _{ACQ} + 1.625	μs
Channel/Gain Select Plus		PGA gain = 1V/V, R _{SOUR}	CE≤1kΩ		2	
Conversion Time		Any PGA gain setting, RS	OURCE ≤ 5 k Ω		7	μs
		PGA gain = 1V/V, R _{SOUR}	$CE \le 1k\Omega$		375	ns
Track-and-Hold Acquisition Time	tacq	Any PGA gain setting > 1 $5k\Omega$	Any PGA gain setting > 1V/V, $R_{SOURCE} \le 5k\Omega$		5	μs
Turn-On Time	t RECOV				5	μs
Aperture Delay					30	ns
Aperture Jitter					50	psp_p
			PGA gain = 1	0	AV _{DD}	
	Unipolar		PGA gain = 2	0	1.6	
			PGA gain = 4	0	0.8	-
		Unipolar mode	PGA gain = 8	0	0.4	
			PGA gain = 16	0	0.2	
			PGA gain = 32	0	0.1	
		Bipolar mode, AIN+ to	PGA gain = 1	-V _{REFADC} /2	+VREFADC /2	
Input-Voltage Range			PGA gain = 2	-VREFADC /4	+VREFADC /4	V
			PGA gain = 4	-V _{REFADC} /8	+VREFADC /8	
		AIN-	PGA gain = 8	-Vrefadc /16	+V _{REFADC} /16	
			PGA gain = 16	-Vrefadc /32	+VREFADC /32	
			PGA gain = 32	-Vrefadc /64	+VREFADC /64	
Absolute Input-Voltage Range				AGND	AV _{DD}	V
Input Leakage Current		AIN15-AIN0			±20	nA
			PGA gain = 1		180	
			PGA gain = 2	140		
			PGA gain = 4	120		
Small-Signal Bandwidth (-3dB)		$V_{IN} \times gain = 100 m V_{P-P}$	PGA gain = 8		100	
			PGA gain = 16		82	
			PGA gain = 32		80	

M/XI/M

ELECTRICAL CHARACTERISTICS (continued)

 $(AV_{DD} = DV_{DDIO} = +5.0V, DV_{DD} = +3.3V, f_{SYSCLK} = 8MHz, V_{REFDAC} = V_{REFADC} = +5V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS
DAC Glitch Impulse		From 7FFh to 800	h		12		nV•s
DAC Power-On Time		Excluding referen		14		μs	
Power-Supply Rejection		AV _{DD} step from +	4.75V to +5.25V		62		μV/V
Output Noise		CL = 200pF			200		μV _{RMS}
EXTERNAL REFERENCE INPUTS	5	•					<u>.</u>
REFADC Input-Voltage Range				1.0	5.0	AV _{DD}	V
REFDAC Input-Voltage Range				0	5.0	AV _{DD}	V
REFDAC Input Impedance					200		kΩ
REFADC Leakage Current		ADC disabled			1		μA
TEMPERATURE SENSOR (Remo	te NPN Tran	sistor 2N3904)					
			$T_A = +25^{\circ}C$		±1		
		Internal diode	$T_A = -30^{\circ}C \text{ to } +85^{\circ}C$		±2		
			$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		±5]
			$T_A = +25^{\circ}C,$ $T_{RJ} = +25^{\circ}C$		±2		
Temperature Error	Exte diffe conf (Not	External diode, differential configuration (Note 6)	$T_A = -30^{\circ}C \text{ to } +85^{\circ}C,$ $T_{RJ} = +25^{\circ}C$		±3		°C
			$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C,$ $T_{RJ} = +25^{\circ}C$		±3		
			$T_A = -30^{\circ}C \text{ to } +85^{\circ}C,$ $T_{RJ} = -30^{\circ}C \text{ to } +85^{\circ}C$		±3		
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C,$ $T_{RJ} = -40^{\circ}C \text{ to } +125^{\circ}C$		±5		
Internal (Die) or External Temperature Measurement Error vs. VREFADC Variation					0.095		°C/mV
External Diada Sourca Current		High level		74.7			
External Diode Source Current		Low level			4		μΑ
External Diode Drive Current Ratio					18.7:1		μΑ/μΑ
Conversion Time		fADCCLK = fSYSCL internal utility ROM	_K = 8MHz, no interrupts, I tempConv		70		μs
Temperature Resolution		12-bit ADC			0.125		°C/LSB
+3.3V LINEAR REGULATOR (CDV	_{OD} = 4.7μF)						
DV _{DDIO} Input-Voltage Range				4.25	5.0	5.25	V
DV _{DD} Output Voltage		REGEN = GNDIO	REGEN = GNDIO		3.4	3.6	V
DV _{DD} Input-Voltage Range		$\overline{\text{REGEN}} = \text{DV}_{\text{DDIC}}$)	3.0		3.6	V
No-Load Quiescent Current		CPU in sleep moo disabled	le; all digital peripherals		15		μA
Output Short-Circuit Current		Short to DGND			110		mA

ELECTRICAL CHARACTERISTICS (continued)

 $(AV_{DD} = DV_{DDIO} = +5.0V, DV_{DD} = +3.3V, f_{SYSCLK} = 8MHz, V_{REFDAC} = V_{REFADC} = +5V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C.$ (Note 1)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	ТҮР	МАХ	UNITS
SUPPLY VOLTAGE SUPERVISOR	RS AND BRC	WNOUT DETECTION					
DV _{DD} Voltage-Supervisor Reset Rising Threshold		Power-on default, DV _{DD} (Note 7)	voltage rising	2.70		2.99	V
		DV _{DD} voltage falling, firmware selectable,	VDBR = 00b (default)	2.70		2.99	
DVDD Voltage-Supervisor Brownout Beset Falling Threshold	VVDBR	measured with CPU	VDBR = 01b	2.77		3.06	V
		active at 8MHz	VDBR = 10b	2.84		3.13	
		(INOTE 8)	VDBR = 11b	2.91		3.20	
Software-Selectable DV _{DD} Voltage-Supervisor Brownout		DV _{DD} voltage falling, firmware selectable,	VDBI = 00b (default)	2.77		3.06	
	VVDBI	measured with CPU	VDBI = 01b	2.84		3.13	V
Interrupt Falling Threshold		active at 8MHz	VDBI = 10b	2.91		3.20	
		(Note 9)	VDBI = 11b	2.99		3.27	
DV _{DDIO} Voltage-Supervisor Brownout Interrupt Threshold		DV _{DDIO} voltage falling, firmware selectable.	VIOBI = 00b (default)	4.25		4.74	
	VVIOBI	measured with CPU active at 8MHz	VIOBI = 01b	4.30		4.79	V
			VIOBI = 10b	4.35		4.84	
		(Note 10)	VIOBI = 11b	4.40		4.89	
Voltage-Supervisor Hysteresis		DV _{DD} , DV _{DDIO}	·		1		%
DV _{DD} Brownout-Interrupt to Brownout Reset Falling Threshold		Voltage difference between V _{VDBI} and V _{VDBR} , time allowing software clean-up before reset asserted, VDBI = 11b and VDBR = 10b		155			mV
		DV _{DD}		1.0		3.6	
Voltage Monitor Range		DV _{DDIO}		0		5.25	V
DV _{DD} Ramp-Up Rate		DV _{DD} must rise faster th between +2.7V and +3.	nan this rate OV	35			mV/ms
RESET Hold Time		After DV _{DD} rises above trip threshold	the V_{VDBR} voltage		16		ms
CAN INTERFACE							
CAN Baud Rate		CANCLK = 8MHz				1	Mbps
CANCLK Mean Frequency Error		50ppm external crystal	error, 8MHz crystal		60		ppm
CANCLK Total Frequency Error		50ppm external crystal of clock divided and meas interval, mean plus peak	error, 8MHz crystal, eured over 500µs < cycle jitter		< 0.5		%
HIGH-FREQUENCY CRYSTAL OS	CILLATOR						
		Using external crystal		7.6		8.12	
		External clock source		7.6		8.12	IVI⊟∠
Crystal Oscillator Startup Time		8MHz crystal			10		ms
External Clock Input Duty Cycle		Ratio high-to-low or low-	to-high	45		55	%

 $(AV_{DD} = DV_{DDIO} = +5.0V, DV_{DD} = +3.3V, f_{ADCCLK} = 8MHz, f_{ADC} = 500kHz, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics

_*/*//XI*/*//

MAXQ7665A-MAXQ7665D

_Typical Operating Characteristics (continued)

(AV_{DD} = DV_{DDIO} = +5.0V, DV_{DD} = +3.3V, f_{ADCCLK} = 8MHz, f_{ADC} = 500kHz, T_A = +25°C, unless otherwise noted.)

13

/N/XI/N

Pin Description

PIN	NAME	FUNCTION
1	AIN11	Analog Input Channel 11. AIN11 is multiplexed to the PGA as a differential input with AIN10.
2	AIN10	Analog Input Channel 10. AIN10 is multiplexed to the PGA as a differential input with AIN11.
3	AIN9	Analog Input Channel 9. AIN9 is multiplexed to the PGA as a differential input with AIN8.
4	AIN8	Analog Input Channel 8. AIN8 is multiplexed to the PGA as a differential input with AIN9.
5, 8	AGND	Analog Ground
6	REFADC	ADC External Reference Input. Connect an external reference voltage between 1V and $\mbox{AV}_{\mbox{DD}}$ to REFADC.
7	REFDAC	DAC External Reference Input. Connect an external reference voltage between 0V and AV_{DD} to REFDAC.
9	AIN7	Analog Input Channel 7. AIN7 is multiplexed to the PGA as a differential input with AIN6.
10	AIN6	Analog Input Channel 6. AIN6 is multiplexed to the PGA as a differential input with AIN7.
11	AIN5	Analog Input Channel 5. AIN5 is multiplexed to the PGA as a differential input with AIN4.
12	AIN4	Analog Input Channel 4. AIN4 is multiplexed to the PGA as a differential input with AIN5.
13	AIN3	Analog Input Channel 3. AIN3 is multiplexed to the PGA as a differential input with AIN2. AIN3–AIN0 have remote temperature sensor capability.
14	AIN2	Analog Input Channel 2. AIN2 is multiplexed to the PGA as a differential input with AIN3. AIN3–AIN0 have remote temperature sensor capability.
15	AIN1	Analog Input Channel 1. AIN1 is multiplexed to the PGA as a differential input with AIN0. AIN3–AIN0 have remote temperature sensor capability.
16	AINO	Analog Input Channel 0. AIN0 is multiplexed to the PGA as a differential input with AIN1. AIN3–AIN0 have remote temperature sensor capability.
17	DACOUT	DAC Buffer Output. DACOUT is the DAC voltage buffer output.
18, 19, 31	DGND	Digital Ground for the Digital Core and Flash
20	CANRXD	CAN Bus Receiver Input. Control area network receiver input.
21	CANTXD	CAN Bus Transmitter Output. Control area network transmitter output.
22	UTX	UART Transmitter Output
23	URX	UART Receiver Input
24	P0.6/T0	Port 0 Bit 6/Timer 0. P0.6 is a general-purpose digital I/O with interrupt/wake-up input capability. T0 is a primary timer/PWM input or output.
25	P0.7/T1	Port 0 Bit 7/Timer 1. P0.7 is a general-purpose digital I/O with interrupt/wake-up input capability. T1 is a primary timer/PWM input or output.
26, 39	DV _{DDIO}	Digital I/O Supply Voltage. Supplies all digital I/O except for XIN, XOUT, and RESET. Bypass DV_{DDIO} to GNDIO with a 0.1µF capacitor placed as close as possible to the device. DV_{DDIO} is also connected to the input of the linear regulator.
27	GNDIO	Digital I/O Ground
28, 29	I.C.	Internal Connection. Connect I.C. to GNDIO or DV _{DDIO} .
30	N.C.	No Connection. No internal connection. Leave N.C. unconnected.
32	P0.0/TDO	Port 0 Data 0/JTAG Serial Test Data Output. P0.0 is a general-purpose digital I/O with interrupt/wake-up capability. TDO is the JTAG serial test, data output.

Pin Description (continued)

PIN	NAME	FUNCTION
33	P0.1/TMS	Port 0 Data 1/JTAG Test Mode Select. P0.1 is a general-purpose digital I/O with interrupt/wake- up capability. TMS is the JTAG test mode, select input.
34	P0.2/TDI	Port 0 Data 2/JTAG Serial Test Data Input. P0.2 is a general-purpose digital I/O with interrupt/wake-up capability. TDI is the JTAG serial test, data input.
35	P0.3/TCK	Port 0 Data 3/JTAG Serial Test Clock Input. P0.3 is a general-purpose digital I/O with interrupt/wake-up capability. TCK is the JTAG serial test, clock input.
36	P0.4/ADCCNV	Port 0 Data 4/ADC Start Conversion Control. P0.4 is a general-purpose digital I/O. ADCCNV is firmware configurable for a rising or falling edge start/convert to trigger ADC conversions.
37	P0.5/DACLOAD	Port 0 Data 5/DAC Data Register Load/Update Input. P0.5 is a general-purpose digital I/O with interrupt/wake-up capability. DACLOAD is firmware configurable for a rising or falling edge to update the DACOUT register.
38	REGEN	Active-Low Linear Regulator Enable Input. Connect $\overline{\text{REGEN}}$ to GNDIO to enable the linear regulator. Connect to DV _{DDIO} to disable the linear regulator.
40	DV _{DD}	Digital Supply Voltage. DV _{DD} supplies the internal digital core and flash memory. DV _{DD} is internally connected to the output of the internal 3.3V linear regulator. Disable the internal regulator to connect DV _{DD} to an external supply. When using the on-chip linear regulator, bypass DV _{DD} to DGND with a 4.7µF ±20% capacitor with a maximum ESR of 0.5 Ω . In addition, bypass DV _{DD} with a 0.1µF capacitor. Place both bypass capacitors as close as possible to the device.
41	RESET	Reset Input and Output. Active-low open-drain input/output with internal $360k\Omega$ pullup to DV _{DD} . Drive low to reset the μ C. RESET is low during power-up reset and during DV _{DD} brownout conditions.
42	XOUT	High-Frequency Crystal Output. Connect an external crystal to XIN and XOUT for normal operation. Leave XOUT unconnected if XIN is driven with an external clock source. XOUT is not driven when using the internal RC oscillator.
43	XIN	High-Frequency Crystal Input. Connect an external crystal or resonator to XIN and XOUT for normal operation, or drive XIN with an external clock source. XIN is not driven when using the internal RC oscillator.
44	AV _{DD}	Analog Supply Voltage Input. Connect AV_{DD} to a +5V supply. Bypass AV_{DD} to AGND with a 0.1µF capacitor placed as close as possible to the device.
45	AIN15	Analog Input Channel 15. AIN15 is multiplexed to the PGA as a differential input with AIN14.
46	AIN14	Analog Input Channel 14. AIN14 is multiplexed to the PGA as a differential input with AIN15.
47	AIN13	Analog Input Channel 13. AIN13 is multiplexed to the PGA as a differential input with AIN12.
48	AIN12	Analog Input Channel 12. AIN12 is multiplexed to the PGA as a differential input with AIN13.
	EP	Exposed Pad. EP is internally connected to AGND. Connect EP to AGND externally.

Figure 5. DV_{DD} Brownout Interrupt Detection

During power-up, RESET is held low once DV_{DD} rises above +1.0V. All internal register bits are set to their default, POR state after DV p exceeds a threshold of approximately +1.2V. This includes the VDBR bits which reset to 00b, resulting in a default, DVDD brownout reset (BOR) threshold in the +2.7V to +2.99V range following POR. Once DVDD rises above this DVDD brownout threshold, the 7.6MHz RC oscillator starts driving the power-up counter, and 8.6ms (typ) later, the RESET pin is released and allowed to go high if nothing external is holding it low. An important system-design consideration at power-up is the DVDD ramp-up rate should be at least 35mV/ms between +2.7V and +3.0V. This ensures RESET is not released before DV_D reaches a minimum flash operating level of +3.0V. After DV_{DD} has reached a valid level and **RESET** is released, the μ C jumps to the reset vector (8000h in the utility ROM), and the desired BOI and BOR threshold values can be set by the user through the VIOBI, VDBI, and VDBR bits.

If a valid DV_{DD} drops below its BOI threshold (set by the VDBI bits), an interrupt is generated. This offers the possibility of limited software cleanup before the DV_{DD} BOR occurs. The amount of cleanup time depends on the VDBI and VDBR brownout threshold bit settings, the size of the DV_{DD} bypass capacitors, and the application-dependent, μ C power management and software cleanup tasks. Note that if the internal, +3.3V linear regulator is being used to provide DV_{DD}, additional software cleanup time is possible by using the DV_{DDIO} brownout monitor as an early warning that the regulator's DV_{DDIO} (+5V) input voltage is falling, and its DV_{DD} (+3.3V) will subsequently drop (unless DV_{DDIO} recovers).

As DV_{DD} continues to fall below the DV_{DD} BOR threshold set by the VDBR bits, the RESET pin is pulled low, μ C and peripheral activity stops, and most, but not all of the register bits are set to their default state. This includes the VDBR bits, which retain their value if DV_{DD} falls below the BOR threshold, but not below the POR threshold.

Once DV_DD has entered BOR, there are a few possible scenarios:

- If DV_{DD} remains below the BOR threshold, the RESET pin remains low, and the μC remains in the reset state.
- If DVDD stops falling before reaching the POR threshold, then begins rising above the BOR threshold, the RESET pin is released, and the µC jumps to the reset vector (8000h in the utility ROM). This is similar to the DVDD power-up case described in the previous scenario, except there is no power-up counter delay and some of the register bits are set to BOR values rather than POR values. See Tables 3 and 5 for the reset behavior of specific bits. In particular, the retained VDBR setting, if higher than the default value of 00b, allows a potentially more robust brownout recovery closer to or above the minimum flash operating level of +3.0V.
- If DV_{DD} falls below the 1.2V POR threshold, all register bits are reset, and any DV_{DD} recovery from that point is identical to the power-up case described above. See Tables 3 and 5 for reset behavior of specific bits.

Refer to the *MAXQ7665/MAXQ7666 User's Guide* for detailed programming information, and a more thorough description of POR and brownout behavior.

Internal 3.3V Linear Regulator

The MAXQ7665A–MAXQ7665D core logic supply, DV_{DD}, can be supplied by a 3.3V external supply or the on-chip 3.3V, 50mA linear regulator. To use the on-chip linear regulator, ensure the DV_{DDIO} supply can support a load of approximately 50mA and connect digital input REGEN to GNDIO. If using an external supply, connect the regulated 3.3V supply to DV_{DD} and connect digital input REGEN to DV_{DDIO}. If the linear regulator is not used, bring up DV_{DDIO} before DV_{DD}.

System Clock Generator

The MAXQ7665A–MAXQ7665D oscillator module is the master clock generator that supplies the system clock for the μ C core and all of the peripheral modules. The high-frequency (HF) oscillator is designed to operate with an 8MHz crystal. Alternatively, the on-chip RC oscillator can be used in applications that do not require precise timing. Due to its RISC design, the

MAXQ7665A–MAXQ7665D execute most instructions in a single SYSCLK period. The oscillator module contains all of the primary clock-generation circuitry. Figure 6 shows a block diagram of the system clock module.

The MAXQ7665A–MAXQ7665D contain many features for generating a master clock signal timing source:

- Internal, fast-starting, 7.6MHz RC oscillator eliminates external crystal
- Internal high-frequency oscillator that can drive an external 8MHz crystal
- External high-frequency clock input (8MHz)
- Selectable internal capacitors for HF crystal oscillator
- Power-up timer
- Power-saving management modes
- Fail-safe modes

Watchdog Timer

The watchdog timer serves as a time-base generator, an event timer, or a system supervisor. The primary function of the watchdog timer is to supervise software execution, watching for stalled or stuck software. The watchdog timer performs a controlled system restart when the μ P fails to write to the watchdog timer register before a selectable timeout interval expires. In some designs, the watchdog timer is also used to implement a real-time operating system (RTOS) in the μ C. When used to implement an RTOS, a watchdog timer typically has four objectives:

- 1) To detect if a system is operating normally
- 2) To detect an infinite loop in any of the tasks
- To detect an arbitration deadlock involving two or more tasks
- 4) To detect if some lower priority tasks are not getting to run because of higher priority tasks

Figure 6. High-Frequency and RC Oscillator Block Diagram

As illustrated in Figure 7, the high-frequency internal RC oscillator (HFRCCLK) drives the watchdog timer through a series of dividers. The divider output is programmable and determines the timeout interval. When enabled, the interrupt flag WDIF is set when a timeout is reached. A system reset then occurs after a time delay (based on the divider ratio).

The watchdog timer functions as the source of both the watchdog interrupt and the watchdog reset. The interrupt timeout has a default divide ratio of 212 of the HFR-

CCLK, with the watchdog reset set to timeout 2⁹ clock cycles later. With the nominal RC oscillator value of 7.6MHz, an interrupt timeout occurs every 539µs, followed by a watchdog reset 67.4µs later. The watchdog timer is reset to the default divide ratio following any reset. Using the WD0 and WD1 bits in the WDCN register, other divide ratios can be selected for longer watchdog interrupt periods. If the WD[1:0] bits are changed before the watchdog interrupt timeout occurs (i.e. before the watchdog reset counter begins), the watchdog timer count is reset. All watchdog timer reset timeouts follow the programmed interrupt timeout 512 source clock cycles later. For more information on the MAXQ7665A-MAXQ7665D watchdog timer, refer to the MAXQ7665/MAXQ7666 User's Guide.

Timer and PWM

The MAXQ7665A-MAXQ7665D include three 16-bit timer channels. Each timer is a type 2 timer implemented in the MAXQ family (see Figure 8). Two of the timers are accessible through I/Os, and one is accessible only through software. Type 2 timers are auto-reload 16-bit timers/counters offering the following functions:

- 8-bit/16-bit timer/counter
- Up/down auto-reload
- Counter function of external pulse
- Capture •
- Compare

Figure 8. Type 2 Timer Functional Diagram

24

CAN Functional Description

The basic functions covered by the CAN controller include the use of 11-bit standard or 29-bit extended acceptance identifiers, as programmed by the μ C for each message center, as shown in Figure 10. The CAN unit provides storage for up to 15 messages, with the standard 8-byte data field, in each message.

Each of the first 14 message centers is programmable in either transmit or receive mode. Message center 15 is designed as a receive-only message center with a buffer FIFO arrangement to help prevent the inadvertent loss of data when the μ C is busy and is not allowed time to retrieve the incoming message prior to the acceptance of a second message into message center 15. Message center 15 also utilizes an independent set of mask registers and identification registers, which are only applied once an incoming message has not been accepted by any of the first 14 message centers. A second filter test is also supported for all message centers (1–15) to allow the CAN controller to use two separate 8-bit media masks and media arbitration fields to verify the contents of the first 2 bytes of data of

Figure 10. CAN 0 Controller Block Diagram

SBUF0 TRANSMIT SHIFT REGISTER

Figure 11b. UART Asynchronous Mode (Mode 1)

detection. Table 1 summarizes the operating characteristics as well as the maximum baud rate of each mode.

JTAG Interface Bus

The joint test action group (JTAG) IEEE 1149.1 standard defines a unique method for in-circuit testing and programming. The MAXQ7665A-MAXQ7665D conform to this standard, implementing an external test access port (TAP) and internal TAP controller for communication with a JTAG bus master, such as an automatic test equipment (ATE) system. For detailed information on

the TAP and TAP controller, refer to IEEE Standard 1149.1 on the IEEE website at http://standards.ieee.org. The JTAG on the MAXQ7665A-MAXQ7665D is used for in-circuit emulation and debug support, but does not support boundary scan test capability.

The TAP controller communicates synchronously with the host system (bus master) through four digital I/O pins: test mode select (TMS), test clock (TCK), test data input (TDI), and test data output (TDO). The internal TAP module consists of several shift registers and a

Table 1.	Operating	Characteristics	and Mo	de Baud	Rate
----------	-----------	------------------------	--------	---------	------

MODE	ТҮРЕ	BAUD CLOCK	START BITS	DATA BITS	STOP BITS	MAX BAUD RATE AT 8MHz
Mode 0	Synchronous	4 or 12 clock	N/A	8	N/A	2Mbps
Mode 1	Asynchronous	Baud generation	1	8	1	250kbps
Mode 2	Asynchronous	32 or 64 clock	1	8 + 1	1	250kbps
Mode 3	Asynchronous	Baud generation	1	8 + 1	1	250kbps

M/IXI/M

the host to the internal TAP module shift registers. Data is transferred LSB first.

- TCK—Serial clock for the test logic.
- TMS—Test mode selection. Test signals received at TMS are sampled at the rising edge of TCK and decoded by the TAP controller to control the test operation.

General-Purpose Digital I/Os

The MAXQ7665A–MAXQ7665D provide eight generalpurpose digital I/Os (GPIOs). All GPIOs have an additional special function (SF), such as a timer input/output, or TAP signal for JTAG communication. For example, the state of pin P0.6/T0 can be programmed to depend on timer channel 0 logic. When programmed as a port, each I/O is configurable for high-impedance or weak pullup to DV_{DDIO}. At powerup, each GPIO is configured as an input with pullups to DV_{DDIO}. Note that at power-up, the JTAG function is enabled and should be turned off before normal operation. In addition, each GPIO can be programmed to cause an interrupt (on falling or rising edges). In stop mode, any interrupt can be used to wake up the device.

The data input/output direction in a port is independently controlled by the port direction register (PD). Each I/O within the port can be individually set as an output or input. The port output register (PO) contains the current state of the logic output buffers. When an I/O is configured as an output, writing to the PO register controls the output logic state. Reading the PO register shows the current state of the output buffers, independent of the data direction. The port input register (PI) is a read-only register that always reflects the logic state of the I/Os. When an I/O is configured as an input, writing to the PO register enables/disables the pull-up resistor. Refer to the *MAXQ7665/MAXQ7666 User's Guide* for more detailed information.

Port Characteristics

The MAXQ7665A–MAXQ7665D contain only one port (P0). It is a bidirectional 8-bit I/O port, which contains the following features:

- Schmitt trigger input circuitry with software-selectable high-impedance or weak pullup to DV_{DDIO}
- Software-selectable push-pull CMOS output drivers capable of sinking and sourcing 1.6mA
- Software-selectable open-drain output drivers capable of sinking 1.6mA
- Falling or rising edge interrupt capability
- All I/Os contain an additional special function, such as a logic input/output for a timer channel. Selecting an I/O for a special function alters the port characteristics of that I/O (refer to the MAXQ7665/MAXQ7666 User's Guide for more details). Figure 13 illustrates the functional blocks of an I/O.

Figure 13. Digital I/O Circuitry

Power Management

Power consumption reaches its minimum in stop mode. In this mode, the external oscillator, internal RC oscillator, system clock, and all processing activity is halted. Stop mode is exited when an enabled external interrupt input is triggered or an external reset signal is applied to RESET. Upon exiting stop mode, the μ C can choose to wait for the external high-frequency crystal to complete its warmup period, or it can start execution immediately from its internal RC oscillator while the warmup period completes.

-	T	•					
REGISTER			MODULE	NAME (BASE S	PECIFIER)		
INDEX	AP (8h)	A (9h)	PFX (Bh)	IP (Ch)	SP (Dh)	DPC (Eh)	DP (Fh)
0h	AP	A[0]	PFX[0]	IP	_	—	_
1h	APC	A[1]	PFX[1]	—	SP	—	—
2h	—	A[2]	PFX[2]	_	IV	—	—
3h	—	A[3]	PFX[3]	_	_	OFFS	DP0
4h	PSF	A[4]	PFX[4]	_	_	DPC	
5h	IC	A[5]	PFX[5]	_	_	GR	
6h	IMR	A[6]	PFX[6]		LC0	GRL	—
7h		A[7]	PFX[7]	_	LC1	BP	DP1
8h	SC	A[8]		—	—	GRS	—
9h		A[9]	_	_	_	GRH	
Ah		A[10]	_		_	GRXL	—
Bh	IIR	A[11]	_	_	_	FP	
Ch		A[12]	_	—	—	—	—
Dh		A[13]	_	—	_	—	_
Eh	CKCN	A[14]			_		
Fh	WDCN	A[15]	_	_	_	—	_

Table 2. System Register Map

Note: Names that appear in italics indicate that all bits of a register are read-only. Names that appear in bold indicate that a register is 16 bits wide.

									Had							
	15	14	13	12	:	10	6		7	9	5	4	e	2	-	0
							I		T2RH0.7	T2RH0.6	T2RH0.5	T2RH0.4	T2RH0.3	T2RH0.2	T2RH0.1	T2RH0.0
(IVIZ, ZII)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CH0									T2CH0.7	T2CH0.6	T2CH0.5	T2CH0.4	T2CH0.3	T2CH0.2	T2CH0.1	T2CH0.0
(M2, 3h) TOCNA1	0	0	0	0	0	0	0	0	0	0 TOOED		0	0	0 0	0	0 COEN
(M2. 4h)	0	c	c	c	c	0	c	0	0	D CC		0		0	200	0 0
T2H1	-	-	-	-	-	>	-	-	T2H1.7	T2H1.6	T2H1.5	T2H1.4	T2H1.3	T2H1.2	T2H1.1	T2H1.0
(M2, 5h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2RH1									T2RH1.7	T2RH1.6	T2RH1.5	T2RH1.4	T2RH1.3	T2RH1.2	T2RH1.1	T2RH1.0
(M2, 6h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CH1									T2CH1.7	T2CH1.6	T2CH1.5	T2CH1.4	T2CH1.3	T2CH1.2	T2CH1.1	T2CH1.0
(M2, 7h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(AD Bb)	0	0	0	0	0	0	0	0	EI2L	0	0	0	1F2	IF2L	1002	1C2L
(MZ, 8U) T2V/0	U T2\/N 15	U T9\/0.14	U T2\/0.13	U T2\/N 12	U T2\/N 11	U T9\/0.10	U T2V/N Q	U T2\/0 R	U T9\/07	U T9\/0.6	U T2\/N.F	U T9\/0.4	U T9\/N 3	U T9\/N 9	U T9\/N 1	U T2\/0.0
(M2. 9h)	0.0	1007	0	0	0	0 0	0	0.00	0	0.002	0	0	0	0	0	0
T2R0	T2R0.15	T2R0.14	T2R0.13	T2R0.12	T2R0.11	T2R0.10	T2R0.9	T2R0.8	T2R0.7	T2R0.6	T2R0.5	T2R0.4	T2R0.3	T2R0.2	T2R0.1	T2R0.0
(M2, Ah)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2C0	T2C0.15	T2C0.14	T2C0.13	T2C0.12	T2C0.11	T2C0.10	T2C0.9	T2C0.8	T2C0.7	T2C0.6	T2C0.5	T2C0.4	T2C0.3	T2C0.2	T2C0.1	T2C0.0
(M2, Bh)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(M2 Ch)	0						0		E I ZL					D L		UZL U
T2V1	T2V1.15	T2V1.14	T2V1.13	T2V1.12	T2V1.11	T2V1.10	T2V1.9	T2V1.8	T2V1.7	T2V1.6	T2V1.5	T2V1.4	T2V1.3	T2V1.2	T2V1.1	T2V1.0
(M2, Dh)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2R1	T2R1.15	T2R1.14	T2R1.13	T2R1.12	T2R1.11	T2R1.10	T2R1.9	T2R1.8	T2R1.7	T2R1.6	T2R1.5	T2R1.4	T2R1.3	T2R1.2	T2R1.1	T2R1.0
(M2, Eh)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2C1	12C1.15	12C1.14	12C1.13	12C1.12	12C1.11	12C1.10	12C1.9	12C1.8	12C1.7	12C1.6	12C1.5	12C1.4	12C1.3	12C1.2	12C1.1	12C1.0
T2CFG0	>	-	-	-	>	>	-	-	-	TPDIV2	T2DIV1		TPMD	CCF1	CCFD	CT2
(M2, 10h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CFG1										T2DIV2	T2DIV1	T2DIV0	T2MD	CCF1	CCF0	С/Т2
(M2, 11b)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ICDT0	ICDT0.15	ICDT0.14	ICDT0.13	ICDT0.12	ICDT0.11	ICDT0.10	ICDT0.9	ICDT0.8	ICDT0.7	ICDT0.6	ICDT0.5	ICDT0.4	ICDT0.3	ICDT0.2	ICDT0.1	ICDT0.0
(IVIZ, 101) ICDT1	ICDT1.15	ICDT1.14	ICDT1.13	ICDT1.12	ICDT1.11	ICDT1.10	ICDT1.9	ICDT1.8	ICDT1.7	ICDT1.6	ICDT1.5	ICDT1.4	ICDT1.3	ICDT1.2	ICDT1.1	ICDT1.0
(M2, 19h)	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB
ICDC									DME		REGE		CMD3	CMD2	CMD1	CMD0
(MZ, 1Ah)	0	0	0	0	0	0	0	0	NN	0	NO	0	NU Food	DWD	DW	NU V
(M2, 1Bh)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 Г	0
ICDB					Ι		I		ICDB.7	ICDB.6	ICDB.5	ICDB.4	ICDB.3	ICDB.2	ICDB.1	ICDB.0
(M2, 1Ch)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ICDA	ICDA. 15	ICDA. 14	ICDA. 13	ICDA.12	ICDA.11	ICDA.10	ICDA.9	ICDA.8	ICDA.7	ICDA.6	ICDA.5	ICDA.4	ICDA.3	ICDA.2	ICDA.1	ICDA.0
(UUL , 2M	0	0	0	0	0	0				0	0	0	0	0	0	
(M2, 1Eh)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2CNA2									ET2	T2OE0	T2POL0	TR2L	TR2	CPRL2	SS2	G2EN
(M3, 0h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
T2H2									T2H2.7	T2H2.6	T2H2.5	T2H2.4	T2H2.3	T2H2.2	T2H2.1	T2H2.0
(M3, 1h) TODI IO	0	0	0	0	0	0	0	0		0						0
(M3. 2h)	c	C	0	0	c	c	c	c		0.217N2	0.217121	120112.4 D	0	0	0	0
T2CH2	,	,	,	,	,	,	,	,	T2CH2.7	T2CH2.6	T2CH2.5	T2CH2.4	T2CH2.3	T2CH2.2	T2CH2.1	T2CH2.0
(M3, 3h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
]]]]				

Table 5. Peripheral Register Bit Functions and Reset Values (continued)

MAXQ7665A-MAXQ7665D

16-Bit RISC Microcontroller-Based Smart Data-Acquisition Systems

MAXQ7665A-MAXQ7665D

REGISTER								REGISTER	BIT							
	15	14	13	12	11	10	6	8	7	9	5	4	3	2	٦	
(M3 8h)									ET2L				TF2	TF2L	TCC2	L
(inc. (p.i.i.)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
T2V2	12V2.15	12V2.14	12V2.13	12V2.12	12V2.11	12V2.10	12V2.9	12V2.8	12V2.7	12V2.6	12V2.5	12V2.4	12V2.3	12V2.2	12V2.1	
(M3, 9h) T2R2	0 T2R2.15	0 T2R2.14	0 T2R2.13	0 T2R2.12	0 T2R2.11	0 T2R2.10	0 T2R2.9	0 T2R2.8	0 T2R2.7	0 T2R2.6	0 T2R2.5	0 T2R2.4	0 T2R2.3	0 T2R2.2	0 T2R2.1	T
(M3, Ah)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
T2C2	T2C2.15	T2C2.14	T2C2.13	T2C2.12	T2C2.11	T2C2.10	T2C2.9	T2C2.8	T2C2.7	T2C2.6	T2C2.5	T2C2.4	T2C2.3	T2C2.2	T2C2.1	CL
(M3, Dh) Tarrera		0	0	0	0	0	0	0	0	0 T9DIW9				0	0 UUU	
(M3, 10h)	c	0	c	c	c	c	c	c	c	0	0					
COC	- I	-	-	-	-	-	-	•	ERIE	STIE	PDE	SIESTA	CRST	AUTOB	ERCS	S
(M4, 0h)	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	
COS									BSS	EC96/128	WKS	RXS	TXS	ER2	ER1	
(M4, 1h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
CUIR (M4 2h)		<		c				c								=
COTE	>	>	-	>	>	>	>	>	COTE.7	COTE.6	COTE.5	COTE.4	COTE.3	COTE.2	COTE.1	0
(M4, 3h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CORE									CORE.7	CORE.6	CORE:5	CORE.4	CORE.3	CORE.2	CORE.1	C
(M4, 4h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
COH	0	0	0	0	<	0	0	<	CANUBA	INCDEC	AID	CUBPH/	CUBPH6	<	COBIE	
CODP	CODP 15		0	0	0	0		U CODP 8		CODPA	0 UUU	CODP 4	0	0	CODP 1	C
(M4, 6h)	0	t . 0	0	0	0	0.000	6: IDDD	0 0	0	0	0	t. 0	0	4: IDUO	0	,
CODB	CODB.15	C0DB.14	CODB.13	CODB.12	CODB.11	CODB.10	CODB.9	CODB.8	CODB.7	CODB.6	CODB.5	CODB.4	CODB.3	C0DB.2	CODB.1	0
(M4, 7h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CORMS	0	CORMS. 15	CORMS.14	CORMS.13	CORMS.12	CORMS.11	CORMS.10	CORMS.9	CORMS.8	CORMS.7	CORMS.6	CORMS.5	CORMS.4	CORMS.3	CORMS.2	8
COTMA	⊃	U COTMA.15	U COTMA.14	COTMA. 13	U COTMA.12	COTMA.11	U COTMA.10	U COTMA.9	U COTMA.8	COTMA.7	U COTMA.6	COTMA.5	U COTMA.4	U COTMA.3	U COTMA.2	ŏ
(M4, 9h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
COM1C					Ι			Ι	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	-
M4, 11h)	0	0	0	0	0	0	0	0	0	οĒ	0	0	0	0	0	
UUMEU M4. 12h)	0	0	0	0	0	0	0	0		0						
COM3C	-		.	-	-	-		-	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	
M4, 13h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
COM4C	0	0	0	0	0	0	0	0	MSRDY		EBI	NIRQ	EXTRO	MTRQ	ROW/TIH	
COM5C	-	>	-	-	-	>	-	>	MSRDY	o II	o IR	NTRO	EXTRO	MTRO	U ROW/TIH	
M4, 15h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
COM6C	I	I		I				Ι	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	
M4, 16h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
COM7C	0	0	0	0	0	0	0	0	MSRDY		ERI	NING 0	EXIRO	MIRQ	HII/WOH	
COMAC	>	>	-	-	-	>	-	-	MSRDY	0 ILd		NTRO	U FXTRO	MTRO	U BOW/TIH	
M4. 18h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
COM9C									MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	
M4, 19h)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
COM10C	•	•	•	•	•	•	•	•	MSRDY	ĒTI	ERI	INTRO	EXTRQ	MTRQ	ROW/TIH	
M4, 1Ah)	0	0	0	0	0	0	0	0	0 MCDUV	0	0 0		0 EVTEO	0 MTPO	0	
M4, 1Bh)	0	0	c	c	0	0	c	c		- C) D D	0	_
COM12C	,	,	,	,	,	,	,	·	MSRDY	ĔTI	, ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	Ľ
M4, 1Ch)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ш
COM13C									MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	
M4, 1Dh)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

16-Bit RISC Microcontroller-Based

Smart Data-Acquisition Systems

Table 5. Peripheral Register Bit Functions and Reset Values (continued)

	1	ROW/TIH DTUP	0	ROW/TIH DTUP	0	VDBR1 VDBR0	s S	DACE ADCE	0	ADCS1 ADCS0	0		0	DACI.1 DACI.0	0	2 DACO.1 DACO.0	0	2 ADCD.1 ADCD.0	0	TSO.1 TSO.0	0	ADCIE —	-	/ ADCRY	0	RCE HFE	
	2	MTRQ	0	MTRQ	0	VDBI0	0		0	ADCS2	0		0	DACI.2	0	DACO.2	0	ADCD.2	0	TSO.2	0	AORIE	0	ADCOV	0	EXTHF	
	3	EXTRQ	0	EXTRQ	0	VDB11	0	PGAE	0	ADCBY	0		0	DACI.3	0	DACO.3	0	ADCD.3	0	TSO.3	0		0		0		
	4	INTRQ	0	INTRQ	0	VIOBIO	0	TSE	0	ADCASD	0	DACLD0	0	DACI.4	0	DACO.4	0	ADCD.4	0	TSO.4	0	DVBIE	0	DVBI	0		
	2	ERI	0	ERI	0	VIOBI1	0	PGG0	0	I	0	DACLD1	0	DACI.5	0	DACO.5	0	ADCD.5	0	TSO.5	0	VIOBIE	0	VIOBI	0	ADCCD0	
	9	ETI	0	ETI	0	I	0	PGG1	0	ADCDUL	0	DACLD2	0	DACI.6	0	DACO.6	0	ADCD.6	0	TSO.6	0	HFFIE	0	HFFINT	0	ADCCD1	
R BIT	2	MSRDY	0	MSRDY	0	I	0	PGG2	0	I	0	Ι	0	DACI.7	0	DACO.7	0	ADCD.7	0	TSO.7	0		0		0	ADCCD2	
REGISTEF	8		0		0	I	0		0	I	0		0	DACI.8	0	DACO.8	0	ADCD.8	0	TSO.8	0		0		0	HFIC0	
	6		0		0	I	0		0	ADCBIP	0	Ι	0	DACI.9	0	DACO.9	0	ADCD.9	0	TSO.9	0	Ι	0		0	HFIC1	
	10		0		0		0	VDPE		ADCDIF	0		0	DACI.10	0	DACO.10	0	ADCD.10	0	TSO.10	0		0		0	HFOC0	
	11		0		0		0	VDBE	0	ADCMX0	0		0	DACI.11	0	DACO.11	0	ADCD.11	0	TSO.11	0		0	ХНFRY	0	HFOC1	
	12	-	0	-	0		0	VIBE	0	ADCMX1	0	-	0	-	0		0		0	TSO.12	0	-	0		0		
	13		0		0		0	I	0	ADCMX2	0	I	0	I	0		0		0	TSO.13	0	I	0		0		
	14		0		0		0	I	0	ADCMX3	0	I	0	I	0		0		0	TSO.14	0	I	0	DVLVL	0		
	15		0		0		0		0	ADCMX4	0		0		0		0		0	TSO.15	0		0	VIOLVL	0		
REGISTER	011100		(INI4, IEN)	COM15C	(M4, 1Fh)	VMC	(M5, 0h)	APE	(M5, 1h)	ACNT	(M5, 2h)	DCNT	(M5, 3h)	DACI	(M5, 4h)	DACO	(M5, 6h)	ADCD	(M5, 8h)	TSO	(M5, 9h)	AIE	(M5, Ah)	ASR	(M5, Bh)	OSCC	

Table 5. Peripheral Register Bit Functions and Reset Values (continued)

Bits indicated by "—" are unused.

Bits indicated by "ST" reflect the input signal state.

Bits indicated by "DB" have read/write access only in background or debug mode. These bits are cleared after a POR. Bits indicated by "S" are only affected by a POR and not by other forms of reset. These bits are set to 0 after a POR. Bits indicated by "DW" are only written to in debug mode. These bits are cleared after a POR.

The OSCC register is cleared to 0002h after a POR and is not affected by other forms of reset

16-Bit RISC Microcontroller-Based Smart Data-Acquisition Systems

MAXQ7665A-MAXQ7665D

PART	PIN-PACKAGE	FLASH SIZE (KB)
MAXQ7665AATM+**	48 TQFN-EP*	128 (64K x 16)
MAXQ7665BATM+	48 TQFN-EP*	64 (32K x 16)
MAXQ7665CATM+**	48 TQFN-EP*	48 (24K x 16)
MAXQ7665DATM+**	48 TQFN-EP*	32 (16K x 16)

Ordering Information

+Devices are only available in lead(Pb)-free packaging.

*EP = Exposed pad.

**Future Product—contact factory for availability.

Note: All devices are specified for operation over the -40°C to +125°C automotive temperature range.

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
48 TQFN-EP	T4877MK+6	<u>21-0199</u>