

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	104
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 46x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk10dx256vlq10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Relationship between ratings and operating requirements

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

5.2.2 LVD and POR operating requirements

Table 2. v_{DD} supply LVD and POR operating requirement	Table 2.
--	----------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	—	±80	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V _{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	—	±60	_	mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

1. Rising thresholds are falling threshold + hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

14

K10 Sub-Family Data Sheet, Rev. 2, 12/2012.

General5.2.3 Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3\text{mA}$	$V_{DD} - 0.5$	_	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$	$V_{DD} - 0.5$		V	
I _{ОНТ}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3\text{mA}$	—	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{mA}$	—	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	1
l _{IN}	Input leakage current (per pin) at 25°C	_	0.025	μA	1
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	2
R _{PD}	Internal pulldown resistors	20	50	kΩ	3

 Table 4. Voltage and current operating behaviors

1. Measured at VDD=3.6V

2. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.		300	μs	1
	• VLLS1 → RUN	_	112	μs	
	VLLS2 → RUN	_	74	μs	
	• VLLS3 → RUN	_	73	μs	
	• LLS → RUN	_	5.9	μs	
	• VLPS → RUN	_	5.8	μs	
	• STOP \rightarrow RUN	—	5	μs	

Table 5. Power mode transition operating behaviors

1. Normal boot (FTFL_OPT[LPBOOT]=1)

5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 1.8V	—	37	63	mA	
	• @ 3.0V	_	38	64	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					3, 4
	• @ 1.8V	_	46	77	mA	
	• @ 3.0V	_	47	63	mA	
	 @ 25°C @ 125°C 	_	58	79	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled		20	_	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	9	_	mA	5
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	—	1.12		mA	6
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled		1.71		mA	7

Table continues on the next page ...

General

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled		0.77	_	mA	8
I _{DD_STOP}	Stop mode current at 3.0 V				mA	
	• @ –40 to 25°C	—	0.74	1.41	mA	
	• @ 70°C	—	2.45	11.5	mA	
	• @ 105°C	—	6.61	30		
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @40 to 25°C	—	83	435	μΑ	
	• @ 70°C	—	425	2000	μA	
	• @ 105°C	—	1280	4000	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					9
	● @ -40 to 25°C	—	4.58	19.9	μA	
	• @ 70°C	—	30.6	105	μA	
	• @ 105°C	—	137	500	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					9
	• @ –40 to 25°C	—	3.0	23	μΑ	
	• @ 70°C	—	18.6	43	μΑ	
	• @ 105°C	—	84.9	230	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	• @ –40 to 25°C	—	2.2	5.4	μΑ	
	• @ 70°C	—	9.3	35	μΑ	
	• @ 105°C	—	41.4	128	μΑ	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ -40 to 25°C	—	2.1	9	μA	
	• @ 70°C	—	7.6	28	μΑ	
	• @ 105°C	—	33.5	95.5	μA	
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0 V					
	• @ -40 to 25°C	_	0.19	0.22	υA	
	• @ 70°C	_	0.49	0.64	υA	
	• @ 105°C	_	2.2	3.2	μΑ	

Table 6. Power consumption operating behaviors (continued)

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers					10
	• @ 1.8V					
	● @ -40 to 25°C	_	0.57	0.67	μA	
	• @ 70°C	—	0.90	1.2	μA	
	• @ 105°C	_	2.4	3.5	μA	
	• @ 3.0V					
	• @ -40 to 25°C	_	0.67	0.94	μA	
	• @ 70°C	_	1.0	1.4	μA	
	• @ 105°C	—	2.7	3.9	μA	

Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled.
- 3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
- 4. Max values are measured with CPU executing DSP instructions.
- 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.
- 6. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA. For devices with 32 KB of RAM, power consumption is reduced by 3 μA.
- 10. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies.
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

Symbol	Description	Min.	Max.	Unit	Notes
f _{FlexCAN_ERCLK}	FlexCAN external reference clock	—	8	MHz	
fi2S_MCLK	I2S master clock	—	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock	—	4	MHz	

Table 9. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I²C signals.

Table 10. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	16	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	—	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	

Board type	Symbol	Description	144 LQFP	144 MAPBGA	Unit	Notes
_	R _{θJB}	Thermal resistance, junction to board	24	16	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	9	9	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	2	°C/W	4

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.

3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.

4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions – Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug trace timing specifications

Table 12. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	MHz	
T _{wl}	Low pulse width	2	—	ns
T _{wh}	High pulse width	2	—	ns
Tr	Clock and data rise time	—	3	ns
T _f	Clock and data fall time		3	ns
T _s	Data setup	3	—	ns
T _h	Data hold	2	—	ns

6.4.1.2 Flash timing specifications — commands Table 21. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk256k}	 256 KB program/data flash 	—	—	1.7	ms	
t _{rd1sec2k}	Read 1s Section execution time (flash sector)	_		60	μs	1
t _{pgmchk}	Program Check execution time	—		45	μs	1
t _{rdrsrc}	Read Resource execution time	_		30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	
	Erase Flash Block execution time					2
t _{ersblk256k}	256 KB program/data flash	—	122	985	ms	
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
	Program Section execution time					
t _{pgmsec512}	• 512 B flash	—	2.4	—	ms	
t _{pgmsec1k}	• 1 KB flash	—	4.7	—	ms	
t _{pgmsec2k}	• 2 KB flash	—	9.3	—	ms	
t _{rd1all}	Read 1s All Blocks execution time	_	_	1.8	ms	
t _{rdonce}	Read Once execution time	_		25	μs	1
t _{pgmonce}	Program Once execution time		65		μs	
t _{ersall}	Erase All Blocks execution time		250	2000	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	—	30	μs	1
	Swap Control execution time					
t _{swapx01}	 control code 0x01 	—	200	—	μs	
t _{swapx02}	control code 0x02	—	70	150	μs	
t _{swapx04}	control code 0x04	—	70	150	μs	
t _{swapx08}	control code 0x08	—	—	30	μs	
	Program Partition for EEPROM execution time					
t _{pgmpart64k}	64 KB FlexNVM	_	138	—	ms	
t _{pgmpart256k}	256 KB FlexNVM	—	145	—	ms	
	Set FlexRAM Function execution time:					
t _{setramff}	Control Code 0xFF	—	70	—	μs	
t _{setram32k}	32 KB EEPROM backup	—	0.8	1.2	ms	
t _{setram64k}	64 KB EEPROM backup	—	1.3	1.9	ms	
t _{setram256k}	• 256 KB EEPROM backup	—	4.5	5.5	ms	
	Byte-write to FlexRAM	for EEPRON	operation			1
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	—	175	260	μs	3
					•	•

Table continues on the next page ...

2. Specification is valid for all FB_AD[31:0] and FB_TA.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid		13.5	ns	1
FB3	Address, data, and control output hold	0	—	ns	1
FB4	Data and FB_TA input setup	13.7	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and $\overline{FB_TA}$.

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
EIL	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	—	1.715	—	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	_	719	—	mV	

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	≤ 13 bit modes	18.484	_	450	Ksps	7
	rate	No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					
		16 bit modes	37.037		250	Ksps	8
		No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					

Table 29. 16-bit ADC with PGA operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF_OUT)
- 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is R_{PGAD}/2
- 5. The analog source resistance (R_{AS}), external to MCU, should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F_{in}=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

6.6.1.4 16-bit ADC with PGA characteristics with Chop enabled (ADC_PGA[PGACHPb] =0) Table 30. 16-bit ADC with PGA characteristics

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power (ADC_PGA[PGALPb]=0)	_	420	644	μA	2
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\rm PGAD}} \left(\frac{(V_{\rm REFPGA} \times 0.583) - V_{\rm CM}}{({\rm Gain}+1)} \right)$			A	3
		Gain =1, V _{REFPGA} =1.2V, V _{CM} =0.5V	_	1.54	_	μA	
		Gain =64, V_{REFPGA} =1.2V, V_{CM} =0.1V	_	0.57	—	μA	

Table continues on the next page ...

Peripheral operating requirements and behaviors

Figure 17. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements Table 32. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
T _A	Temperature	Operating t range of t	emperature he device	°C	
CL	Output load capacitance	_	100	pF	2
١L	Output load current	_	1	mA	

1. The DAC reference can be selected to be V_{DDA} or the voltage output of the VREF module (VREF_OUT)

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC

6.6.3.2 12-bit DAC operating behaviors Table 33. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	—	—	330	μΑ	
I _{DDA_DACH} P	Supply current — high-speed mode	—	_	1200	μΑ	
tDACLP	Full-scale settling time (0x080 to 0xF7F) — low-power mode	—	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	—	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high-speed mode, no load, DAC set to 0x000	—	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	—	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT		—	±1	LSB	4
V _{OFFSET}	Offset error	—	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} > = 2.4 \text{ V}$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	—	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance load = $3 \text{ k}\Omega$	—	—	250	Ω	
SR	Slew rate -80h \rightarrow F7Fh \rightarrow 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	• Low power (SP _{LP})	0.05	0.12	_		
СТ	Channel to channel cross talk	_	_	-80	dB	
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550	_	—		
	Low power (SP _{LP})	40	_	—		

1. Settling within ±1 LSB

- 2. The INL is measured for 0+100mV to V_{DACR} -100 mV
- 3. The DNL is measured for 0+100 mV to V_{DACR} -100 mV
- 4. The DNL is measured for 0+100mV to $V_{DACR}\mbox{--}100$ mV with $V_{DDA}\mbox{-}2.4V$
- 5. Calculated by a best fit curve from $V_{SS}\text{+}100\mbox{ mV}$ to $V_{DACR}\text{-}100\mbox{ mV}$
- 6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_CO:LPEN = 0), DAC set to 0x800, Temp range from -40C to 105C

Figure 18. Typical INL error vs. digital code

6.8.1 CAN switching specifications

See General switching specifications.

6.8.2 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	$(t_{SCK}/2) + 2$	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	—	8	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	0	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	14	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

 Table 38.
 Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Pinout

144	144 мар	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
LOII	BGA											
36	J3	ADC0_SE16/ CMP1_IN2/	ADC0_SE16/ CMP1_IN2/	ADC0_SE16/ CMP1_IN2/								
		ADC0_SE21	ADC0_SE21	ADC0_SE21								
37	M3	VREF_OUT/	VREF_OUT/	VREF_OUT/								
		CMP0_IN5/	CMP0_IN5/	CMP0_IN5/								
		ADC1_SE18	ADC1_SE18	ADC1_SE18								
38	L3	DAC0_OUT/	DAC0_OUT/	DAC0_OUT/								
		ADC0_SE23	ADC0_SE23	ADC0_SE23								
39	L4	DAC1_OUT/	DAC1_OUT/	DAC1_OUT/								
		CMP0_IN4/ CMP2_IN3/	CMP0_IN4/ CMP2_IN3/	CMP0_IN4/ CMP2_IN3/								
		ADC1_SE23	ADC1_SE23	ADC1_SE23								
40	M7	XTAL32	XTAL32	XTAL32				-				
41	M6	EXTAL32	EXTAL32	EXTAL32								
42	L6	VBAT	VBAT	VBAT								
43	-	VDD	VDD	VDD								
44	-	VSS	VSS	VSS								
45	M4	PTE24	ADC0_SE17	ADC0_SE17	PTE24	CAN1_TX	UART4_TX			EWM_OUT_b		
46	K5	PTE25	ADC0_SE18	ADC0_SE18	PTE25	CAN1_RX	UART4_RX			EWM_IN		
47	K4	PTE26	DISABLED		PIE26		b			RIC_CLKOUI		
48	J4	PTE27	DISABLED		PTE27		UART4_RTS_ b					
49	H4	PTE28	DISABLED		PTE28							
50	J5	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTAO	UARTO_CTS_ b/ UARTO_COL_ b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
51	J6	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UART0_RX	FTM0_CH6				JTAG_TDI	EZP_DI
52	K6	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UARTO_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
53	K7	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UARTO_RTS_ b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
54	L7	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
55	M8	PTA5	DISABLED		PTA5		FTM0_CH2		CMP2_OUT	I2S0_TX_ BCLK	JTAG_TRST_ b	
56	E7	VDD	VDD	VDD								
57	G7	VSS	VSS	VSS								
58	J7	PTA6	DISABLED		PTA6		FTM0_CH3				TRACE_ CLKOUT	
59	J8	PTA7	ADC0_SE10	ADC0_SE10	PTA7		FTM0_CH4				TRACE_D3	

Pinout

144 LOFP	144 Map	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
	BGA											
60	K8	PTA8	ADC0_SE11	ADC0_SE11	PTA8		FTM1_CH0			FTM1_QD_ PHA	TRACE_D2	
61	L8	PTA9	DISABLED		PTA9		FTM1_CH1			FTM1_QD_ PHB	TRACE_D1	
62	M9	PTA10	DISABLED		PTA10		FTM2_CH0			FTM2_QD_ PHA	TRACE_D0	
63	L9	PTA11	DISABLED		PTA11		FTM2_CH1			FTM2_QD_ PHB		
64	K9	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0			I2S0_TXD0	FTM1_QD_ PHA	
65	J9	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1			I2S0_TX_FS	FTM1_QD_ PHB	
66	L10	PTA14	DISABLED		PTA14	SPI0_PCS0	UART0_TX			I2S0_RX_ BCLK	12S0_TXD1	
67	L11	PTA15	DISABLED		PTA15	SPI0_SCK	UART0_RX			I2S0_RXD0		
68	K10	PTA16	DISABLED		PTA16	SPI0_SOUT	UARTO_CTS_			I2S0_RX_FS	I2S0_RXD1	
							b/ UART0_COL_ b					
69	K11	PTA17	ADC1_SE17	ADC1_SE17	PTA17	SPI0_SIN	UART0_RTS_ b			I2S0_MCLK		
70	E8	VDD	VDD	VDD								
71	G8	VSS	VSS	VSS								
72	M12	PTA18	EXTAL0	EXTALO	PTA18		FTM0_FLT2	FTM_CLKIN0				
73	M11	PTA19	XTALO	XTALO	PTA19		FTM1_FLT0	FTM_CLKIN1		LPTMR0_ ALT1		
74	L12	RESET_b	RESET_b	RESET_b								
75	K12	PTA24	DISABLED		PTA24					FB_A29		
76	J12	PTA25	DISABLED		PTA25					FB_A28		
77	J11	PTA26	DISABLED		PTA26					FB_A27		
78	J10	PTA27	DISABLED		PTA27					FB_A26		
79	H12	PTA28	DISABLED		PTA28					FB_A25		
80	H11	PTA29	DISABLED		PTA29					FB_A24		
81	H10	PTB0/ LLWU_P5	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	PTB0/ LLWU_P5	I2C0_SCL	FTM1_CH0			FTM1_QD_ PHA		
82	H9	PTB1	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	PTB1	I2C0_SDA	FTM1_CH1			FTM1_QD_ PHB		
83	G12	PTB2	ADC0_SE12/ TSI0_CH7	ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	UARTO_RTS_ b			FTM0_FLT3		
84	G11	PTB3	ADC0_SE13/ TSI0_CH8	ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	UART0_CTS_ b/ UART0_COL_ b			FTM0_FLT0		
85	G10	PTB4	ADC1_SE10	ADC1_SE10	PTB4					FTM1_FLT0		

Figure 31. K10 144 LQFP Pinout Diagram