

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LVD, POR, PWM, WDT
Number of I/O	5
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7fliteu09b3

ST7FLITE0

8-BIT MCU WITH SINGLE VOLTAGE FLASH MEMORY, DATA EEPROM, ADC, TIMERS, SPI

DATA BRIEFING

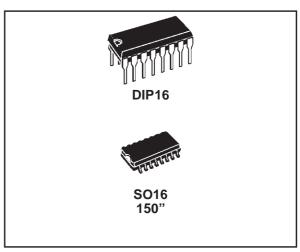
Memories

- 1.5K bytes single voltage Flash Program memory with read-out protection, In-Circuit Programming and In-Application Programming (ICP and IAP). 10K write/erase cycles guaranteed
- 128 bytes RAM
- 128 bytes data EEPROM with read-out protection. 300K write/erase cycles guaranteed

■ Clock, Reset and Supply Management

- 3-level low voltage supervisor (LVD) and auxiliary voltage detector (AVD) for safe power-on/off procedures
- Clock sources: internal 1MHz RC 1% oscillator or external clock
- Optional PLL x4 or x8 for 4 or 8 MHz internal clock
- Four Power Saving Modes: Halt, Active-Halt, Wait and Slow

■ Interrupt Management


- 10 interrupt vectors plus TRAP and RESET
- 4 external interrupt lines (on 4 vectors)

■ I/O Ports

- 13 multifunctional bidirectional I/O lines
- 9 alternate function lines
- 6 high sink outputs

■ 2 Timers

- One 8-bit Lite Timer with prescaler including: watchdog, 1 realtime base and 1 input capture.
- One 12-bit Auto-reload Timer with output compare function and PWM

■ 1 Communication Interface

SPI synchronous serial interface

A/D Converter

- 8-bit resolution for 0 to V_{DD}
- Fixed gain Op-amp for 11-bit resolution in 0 to 250 mV range (@ 5V V_{DD})
- 5 input channels

■ Instruction Set

- 8-bit data manipulation
- 63 basic instructions
- 17 main addressing modes
- 8 x 8 unsigned multiply instruction
- True bit manipulation

Development Tools

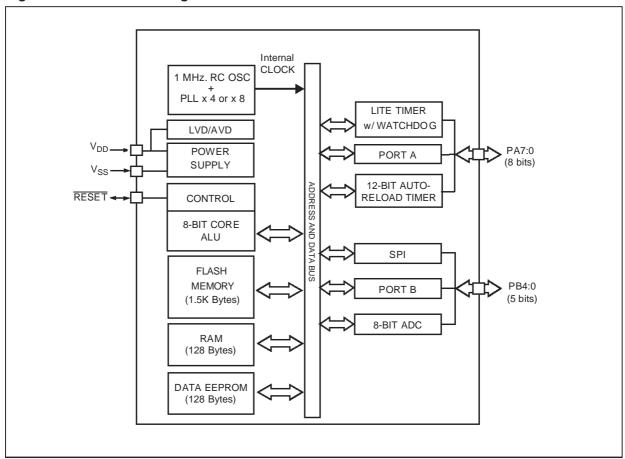
- Full hardware/software development package

Device Summary

Features	ST7FLite09	ST7FLite05				
Program memory - bytes	1.5K Flash 1.5K Flash					
RAM (stack) - bytes	128 (64)	128 (64)				
Data EEPROM - bytes	128					
Peripherals	Lite Timer w/ Watchdog, Autoreload Timer w/ 1 PWM, SPI, 8-bit ADC w/ Op-Amp					
Operating Supply	2.4V to 5.5V					
CPU Frequency	1MHz RC 1% + PLLx4/8MHz					
Operating Temperature	-40°C to +85°C					
Packages	SO16 150", DIP16	SO16 150", DIP16				

Rev. 2.1

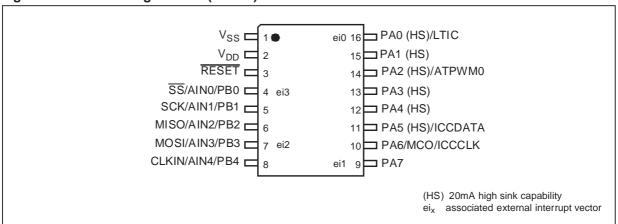
1 INTRODUCTION


The ST7FLITE0 is a member of the ST7 microcontroller family. All ST7 devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set.

The ST7FLITE0 features FLASH memory with byte-by-byte In-Circuit Programming (ICP) and In-Application Programming (IAP) capability.

Under software control, the ST7FLITE0 device can be placed in WAIT, SLOW, or HALT mode, reducing power consumption when the application is in idle or standby state.

The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.


Figure 1. General Block Diagram

57

2 PIN DESCRIPTION

Figure 2. 16-Pin Package Pinout (150mil)

ST7FLITE0

PIN DESCRIPTION (Cont'd)

Legend / Abbreviations for Table 1:

Type: I = input, O = output, S = supply

In/Output level: C= CMOS 0.15V_{DD}/0.85V_{DD} with input trigger

 $C_T = CMOS \ 0.3V_{DD}/0.7V_{DD}$ with input trigger

Output level: HS = 20mA high sink (on N-buffer only)

Port and control configuration:

Input: float = floating, wpu = weak pull-up, int = interrupt ¹⁾, ana = analog

- Output: OD = open drain $^{2)}$, PP = push-pull

The RESET configuration of each pin is shown in bold which is valid as long as the device is in reset state.

Table 1. Device Pin Description

	Pin Name	Type	Level Port / Conti			trol		Main				
Pin n°			Input	Output	Input Out			put	- Main Function	Alternate Function		
"					float	mdw	int	ana	OO	РР	(after reset)	
1	V _{SS}	S									Ground	
2	V_{DD}	S									Main power	supply
3	RESET	I/O	C _T			Х			Х		Top priority r	non maskable interrupt (active low)
4	PB0/AIN0/SS	I/O	C _T		Х	ei	i3		Х	Х	Port B0	ADC Analog Input 0 or SPI Slave Select (active low)
5	PB1/AIN1/SCK	I/O	C _T		Х	Х			Х	Х	Port B1	ADC Analog Input 1 or SPI Serial Clock
6	PB2/AIN2/MISO	I/O	C) _T	Х	Х			Х	Х	Port B2	ADC Analog Input 2 or SPI Master In/ Slave Out Data
7	PB3/AIN3/MOSI	I/O	C _T		Х	ei	i2		Х	Х	Port B3	ADC Analog Input 3 or SPI Master Out / Slave In Data
8	PB4/AIN4/CLKIN	I/O	C _T		Х	Х			Х	Х	Port B4	ADC Analog Input 4 or External clock input
9	PA7	1/0	C _T		Х	ei	i1		Х	Х	Port A7	
10	PA6 /MCO/ICCCLK	I/O	СТ		Х	Х			Х	Х	Port A6	Main Clock Output/In Circuit Communication Clock
11	PA5/ ICCDATA	I/O	C _T	HS	Х	Х			Х	Х	Port A5	In Circuit Communication Data
12	PA4	I/O	C_{T}	HS	Х	Х			Х	Х	Port A4	
13	PA3	I/O	C _T	HS	Х	Х			Х	Х	Port A3	
14	PA2/ATPWM0	I/O	СТ	HS	Х	Х			Х	Х	Port A2	Auto-Reload Timer PWM0
15	PA1	I/O	СТ	HS	Х	Х			Х	Х	Port A1	
16	PA0/LTIC	I/O	C_{T}	HS	Х	ei	i0		Х	Х	Port A0	Lite Timer Input Capture

Note:

4/6

In the interrupt input column, " ei_x " defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.

3 PACKAGE CHARACTERISTICS

3.1 PACKAGE MECHANICAL DATA

Figure 3. 16-Pin Plastic Dual In-Line Package, 300-mil Width

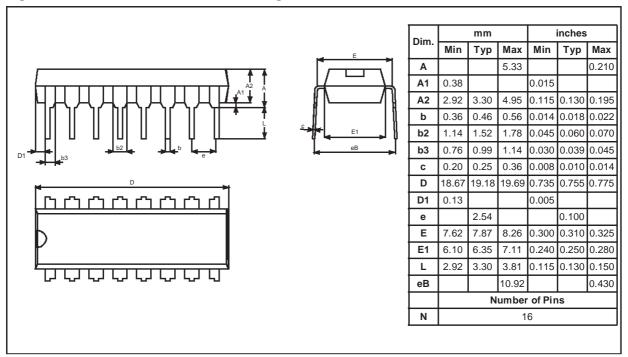
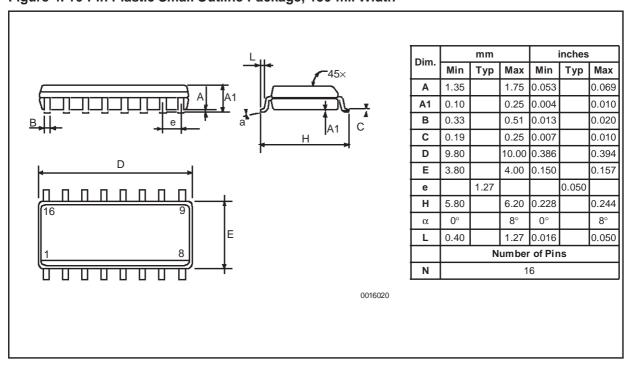



Figure 4. 16-Pin Plastic Small Outline Package, 150-mil Width

NI	otes:	
N	ULDE.	
	olos.	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

©2002 STMicroelectronics - All Rights Reserved.

Purchase of I²C Components by STMicroelectronics conveys a license under the Philips I²C Patent. Rights to use these components in an I²C system is granted provided that the system conforms to the I²C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com

