

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1512-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1512/3 PINOUT DESCRIPTION (CONTINUED)								
	Name		Function	Input	Output	Description		

Name	Function	Input Type	Output Type	Description
RB7/ICSPDAT/ADGRDB	RB7	TTL	CMOS	General purpose I/O with IOC and WPU.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	·ADGRDB	_	CMOS	Guard Ring output B.
RC0/SOSCO/T1CKI	RC0	ST	CMOS	General purpose I/O.
	SOSCO	_	XTAL	Secondary oscillator connection.
	T1CKI	ST	_	Timer1 clock input.
RC1/SOSCI/CCP2 ⁽¹⁾	RC1	ST	CMOS	General purpose I/O.
	SOSCI	_	XTAL	Secondary oscillator connection.
	CCP2	ST	CMOS	Capture/Compare/PWM 2.
RC2/AN14/CCP1	RC2	ST	CMOS	General purpose I/O.
	AN14	AN	_	A/D Channel 14 input.
	CCP1	ST	CMOS	Capture/Compare/PWM 1.
RC3/AN15/SCK/SCL	RC3	ST	CMOS	General purpose I/O.
	AN15	AN		A/D Channel 15 input.
	SCK	ST	CMOS	SPI clock.
	SCL	l ² C	OD	I ² C clock.
RC4/AN16/SDI/SDA	RC4	ST	CMOS	General purpose I/O.
	AN16	AN		A/D Channel 16 input.
	SDI	ST	_	SPI data input.
	SDA	l ² C	OD	I ² C data input/output.
RC5/AN17/SDO	RC5	ST	CMOS	General purpose I/O.
	AN17	AN	_	A/D Channel 17 input.
	SDO		CMOS	SPI data output.
RC6/AN18/TX/CK	RC6	ST	CMOS	General purpose I/O.
	AN18	AN	_	A/D Channel 18 input.
	TX		CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
RC7/AN19/RX/DT	RC7	ST	CMOS	General purpose I/O.
	AN19	AN	_	A/D Channel 19 input.
	RX	ST	_	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
RE3/MCLR/VPP	RE3	ST	_	General purpose input with WPU.
	MCLR	ST	—	Master Clear with internal pull-up.
	Vpp	HV	—	Programming voltage.
Vdd	Vdd	Power	—	Positive supply.
Vss	Vss	Power	_	Ground reference.

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD
 = Open-Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal
 = Crystal
 Ievels

Note 1: Peripheral pin location selected using APFCON register (Register 12-1). Default location.

2: Peripheral pin location selected using APFCON register (Register 12-1). Alternate location.

REGISTER	4-1: CON	FIGURATION	WORD 1					
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	
		FCMEN	IESO	CLKOUTEN	BOR	EN<1:0>		
		bit 13					bit 8	
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
CP	MCLRE	PWRTE	WD.	TE<1:0>		FOSC<2:0>		
bit 7							bit C	
Legend:								
R = Readable		P = Programma	able bit	U = Unimplemer				
'0' = Bit is cle	ared	'1' = Bit is set		-n = Value when	blank or after	Bulk Erase		
bit 13	1 = Fail-Safe (Safe Clock Monito Clock Monitor is e Clock Monitor is d	nabled					
bit 12	1 = Internal/Ex	External Switcho ternal Switchove	r mode is enab					
bit 11	CLKOUTEN: <u>If FOSC Confi</u> This bit is <u>All other FOSC</u>	Clock Out Enable guration bits are s ignored, CLKOU ⁻ <u>C modes</u> :	bit set to LP, XT, H If function is dis	<u>S modes</u> : abled. Oscillator fu		CLKOUT pin.		
		OUT function is a		ction on the CLKOL CLKOUT pin	Ji pin.			
bit 10-9		: Brown-out Rese						
		bled during operative operative operative operation operatio						
bit 8	Unimplement	ed: Read as '1'						
bit 7	CP: Code Pro							
		nemory code prote nemory code prote						
bit 6	$\frac{\text{MCLRE: MCL}}{\text{If LVP bit = 1:}}$ This bit is $\frac{\text{If LVP bit = 0:}}{1 = \text{MCLR}}$	R/VPP Pin Functio ignored. WPP pin function i	on Select bit s MCLR; Wea <u>k</u>	pull-up enabled.	bled; Weak pul	l-up under control of		
bit 5	PWRTE: Powe 1 = PWRT dis 0 = PWRT er		le bit					
bit 4-3	WDTE<1:0>: Watchdog Timer Enable bit 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register							
bit 2-0	111 = ECH: F 110 = ECM: F 101 = ECL: F 100 = INTOS 011 = EXTRO 010 = HS oso 001 = XT oso	Dscillator Selectio External Clock, Hi External Clock, M External Clock, Lo iC oscillator: I/O fu C oscillator: Extern cillator: High-spee cillator: Crystal/res	gh-Power mod edium-Power n w-Power mode unction on CLK nal RC circuit c d crystal/reson sonator connec	(0-0.5 MHz): devic	device clock su e clock supplie pin ween OSC1 ar and OSC2 pir	upplied to CLKIN pin ed to CLKIN pin nd OSC2 pins ns		

REGISTER 4-1: CONFIGURATION WORD 1

5.6 Oscillator Control Registers

U-0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0				
_		IRCF	<3:0>		_	SCS	<1:0>				
bit 7							bit				
Lonondi											
Legend: R = Reada	bla bit	W = Writable	h it		aantad hit raas						
					nented bit, read						
u = Bit is u	•	x = Bit is unkr		-n/n = value a	at POR and BO	R/value at all o	other Resets				
'1' = Bit is s	set	'0' = Bit is clea	ared								
bit 7	Unimpleme	ented: Read as '	0'								
bit 6-3	-	Internal Oscillat		Select bits							
	1111 = 16		. ,								
	1110 = 8 N	1110 = 8 MHz									
	1101 = 4 N										
	1100 = 2 N										
	1011 = 1 N										
	1010 = 500										
		$1001 = 250 \text{ kHz}^{(1)}$ 1000 = 125 \text{ kHz}^{(1)}									
		0111 = 500 kHz (default upon Reset)									
		0111 = 300 kHz (default upon Reset) 0110 = 250 kHz									
		0101 = 125 kHz									
		0100 = 62.5 kHz									
	001x = 31.	001x = 31.25 kHz									
	000x = 31 kHz LF										
bit 2	Unimpleme	ented: Read as '	0'								
bit 1-0	SCS<1:0>:	SCS<1:0>: System Clock Select bits									
		1x = Internal oscillator block									
		dary oscillator									
	00 = Clock	determined by F	OSC<2:0> in	Configuration W	/ords.						
Note 1:	Duplicate freque	ncv derived from	HFINTOSC.								
		·,									

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BORCON	SBOREN	BORFS	_	_	_			BORRDY	58	
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	62	
STATUS	—	_		TO	PD	Z	DC	С	18	
WDTCON	_	_		V		SWDTEN	82			

TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented, reads as '0'. Shaded cells are not used by Resets.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

8.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

CLKIN ⁽ CLKOUT ⁽	1	Q1 Q2 Q3 Q4		Tost(3)		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4
Interrupt flag	 	1		1	Interrupt Laten	CV ⁽⁴⁾		
	, i			F	I		· · · · · · · · · · · · · · · · · · ·	i i
GIE bit		1 1	Processor in		<u> </u> 	<u> </u>	I I	
(INTCON reg	J.)	1	Sleep	1	1		1	
	-;	;— — — —		·	;— — — —	;— — — —		; — — — ; -
Instruction Flo		1	1	•	1	1	1	
PC	X PC	X PC + 1	X PC	+ 2	X PC + 2	X PC + 2	X 0004h	X 0005h
Instruction Fetched	Inst(PC) = Sleep	Inst(PC + 1)	1 1 1		Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction Executed	Inst(PC - 1)	Sleep	1		Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
Note 1: 2: 3:	External clock. Hig CLKOUT is shown Tost = 1024 Tosc.	here for timing re	ference. not apply to E		nd INTOSC Oscilla	tor modes or Two	-Speed Start-up (s	ee Section 5.4

FIGURE 8-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

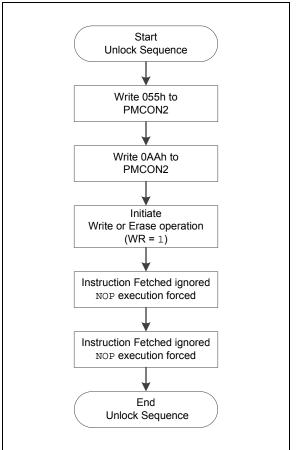
DS40001624D-page 76

11.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:


- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 11-3:

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Prog	ram Memory	/ Control Regist	er 2		
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable b	pit	U = Unimpler	nented bit, read	l as '0'	
S = Bit can only	be set	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ired				

REGISTER 11-7: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	69
PMCON1	_	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	98
PMCON2	Program Memory Control Register 2								99
PMADRL		PMADRL<7:0>							
PMADRH	_			F	MADRH<6:0	>			97
PMDATL		PMDATL<7:0>							97
PMDATH	-	— — РМDATH<5:0>							

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory module.

TABLE 11-3: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	-	_	FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>		07
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>		37		
0015100	13:8		-	LVP	DEBUG	LPBOR	BORV	STVREN		00
CONFIG2	7:0				VCAPEN ⁽¹⁾	_		WRT	<1:0>	38

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

18.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

18.4 Secondary Oscillator

Timer1 uses the low-power secondary oscillator circuit on pins SOSCI and SOSCO. The secondary oscillator is designed to use an external 32.768 kHz crystal.

The secondary oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

18.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 18.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

18.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

18.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

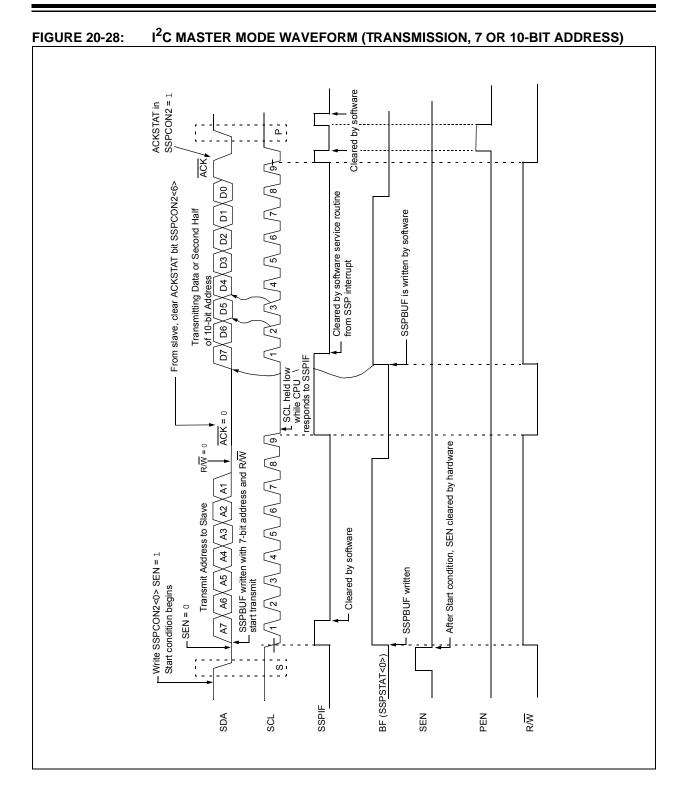
Timer1 gate can also be driven by multiple selectable sources.

18.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 18-3 for timing details.

TABLE 18-3: TIMER1 GATE ENABLE SELECTIONS


T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

18.6.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 18-4: TIMER1 GATE SOURCES

T1GSS	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
10	Timer2 match PR2
11	Reserved

20.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 20-29).

20.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

20.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 20-30).

20.6.9.1 WCOL Status Flag

SSPIF set at the end of Acknowledge sequence

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

Acknowledge sequence starts here, ACKEN automatically cleared write to SSPCON2 ACKEN = 1, ACKDT = 0 – Tbrg → -TBRG SDA ACK D0 SCL 8 9 SSPIF Cleared in SSPIF set at Cleared in software the end of receive

software

FIGURE 20-30: ACKNOWLEDGE SEQUENCE WAVEFORM

Note: TBRG = one Baud Rate Generator period.

21.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains two standard Capture/ Compare/PWM modules (CCP1 and CCP2).

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

21.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 21-4.

EQUATION 21-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse-width value is greater than the period, the assigned PWM pin(s) will remain unchanged.

TABLE 21-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 21-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

21.4 CCP Control Registers

REGISTER 21-3: CCPxCON: CCPx CONTROL REGISTER

REGISTER	21-3: CCP	xCON: CCPx		REGISTER					
U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—	—	DCxE	DCxB<1:0>		CCPx	M<3:0>			
bit 7							bit		
Legend:									
R = Readab	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is un	ichanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Reset					
'1' = Bit is s	et	'0' = Bit is cle	ared						
bit 7-6	Unimpleme	ented: Read as '	0'						
bit 5-4	-	·: PWM Duty Cy		ificant bits					
	<u>Capture mo</u> Unused	ode:	·						
	<u>Compare m</u> Unused	ode:							
	<u>PWM mode</u> These bits a	<u>::</u> are the two LSbs	of the PWM of	duty cycle. The	eight MSbs are	e found in CCP	RxL.		
bit 3-0	CCPxM<3:	0>: CCPx Mode	Select bits						
		0000 = Capture/Compare/PWM off (resets CCPx module)							
	0001 = Res								
	0010 = Cor 0011 = Res	mpare mode: tog served	gie output on	match					
	0100 = Ca	oture mode: ever	y falling edge						
		oture mode: ever							
		oture mode: ever		•					
	0111 = Capture mode: every 16th rising edge								
		mpare mode: set							
		mpare mode: cle							
	1011 = Co	mpare mode: gei mpare mode: Spe mabled)				VD conversion	if A/D modul		
	11xx = PV	VM mode							

22.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive
	FIFO have framing errors, repeated reads
	of the RCREG will not clear the FERR bit.

22.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register.

22.1.2.6 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

22.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

22.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDxCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPxBRGH:SPx-BRGL register pair. The overflow condition will set the RCIF flag. The counter continues to count until the fifth rising edge is detected on the RX pin. The RCIDL bit will remain false ('0') until the fifth rising edge at which time the RCIDL bit will be set. If the RCREG is read after the overflow occurs but before the fifth rising edge then the fifth rising edge will set the RCIF again.

Terminating the auto-baud process early to clear an overflow condition will prevent proper detection of the sync character fifth rising edge. If any falling edges of the sync character have not yet occurred when the ABDEN bit is cleared then those will be falsely detected as start bits. The following steps are recommended to clear the overflow condition:

- 1. Read RCREG to clear RCIF.
- 2. If RCIDL is zero then wait for RCIF and repeat step 1.
- 3. Clear the ABDOVF bit.

22.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 22-7), and asynchronously if the device is in Sleep mode (Figure 22-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

22.4.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

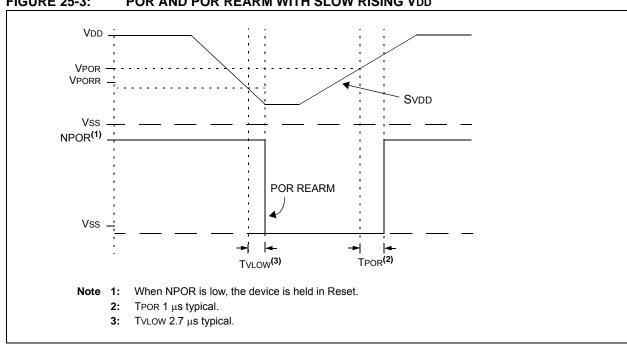
When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

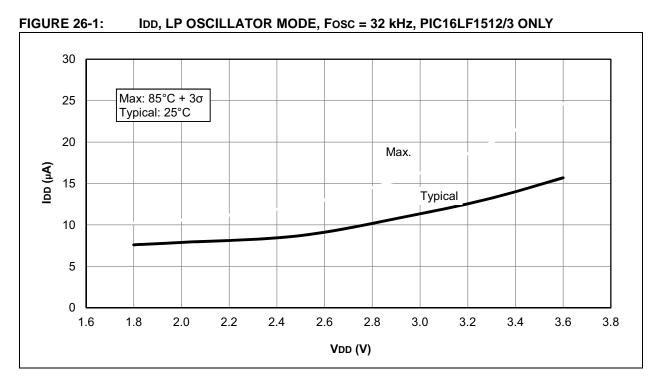
Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

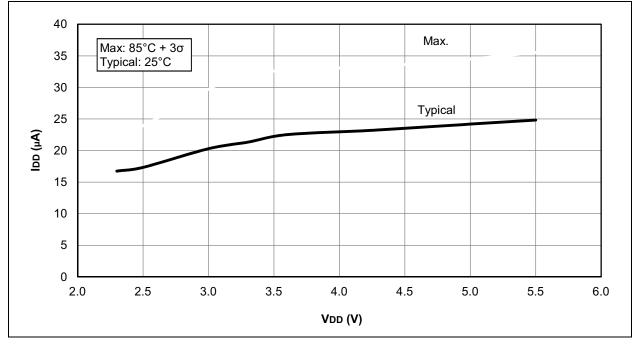
WUE Bit


The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.


FIGURE 24-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register	erope 76	rations
OPCODE	d	f (FILE #)
d = 0 for destination d = 1 for destination f = 7-bit file register a	f	SS
Bit-oriented file register 13 10 9	opera 7	ntions 6 0
· · · · ·	(BIT #	1
b = 3-bit bit address f = 7-bit file register a	addres	ss
Literal and control opera	ations	
General		
13 OPCODE	8 7	0 k (literal)
		k (literal)
k = 8-bit immediate v	/alue	
CALL and GOTO instruction	ns only	/
13 11 10		0
OPCODE	k	(literal)
k = 11-bit immediate	value	
MOVLP instruction only 13	7	6 0
OPCODE		k (literal)
k = 7-bit immediate v	(alua	in (intereal)
MOVLB instruction only	alue	
13		5 4 0
OPCODE		k (literal)
k = 5-bit immediate v	alue	
BRA instruction only 13 9	8	0
OPCODE		k (literal)
k = 9-bit immediate	value	
FSR Offset instructions		
	76	5 0
OPCODE	n	k (literal)
n = appropriate FSR k = 6-bit immediate	value	
		3210
k = 6-bit immediate		3 2 1 0 n m (mode)
k = 6-bit immediate	S	
k = 6-bit immediate FSR Increment instructions 13 OPCODE n = appropriate FSR	S	


PIC16(L)F1512/3

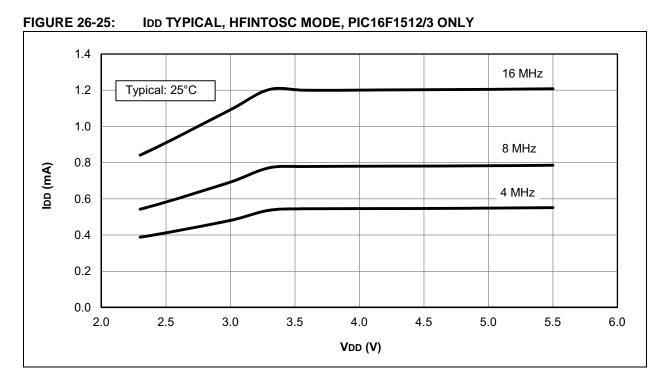
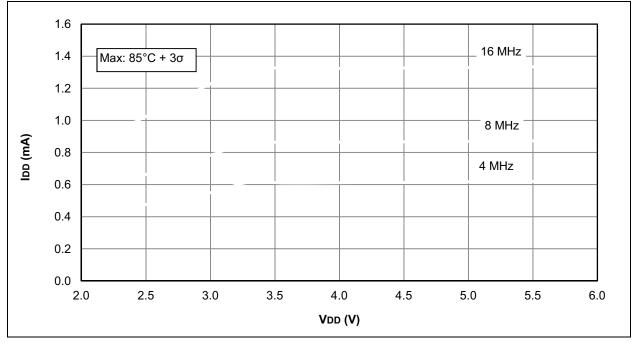
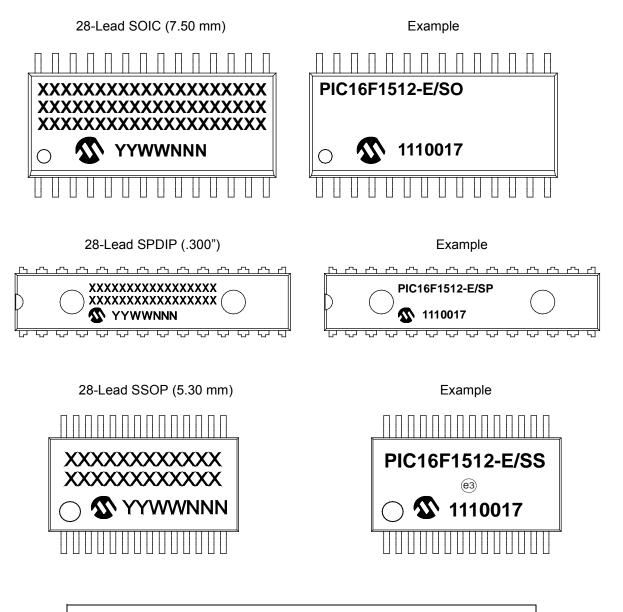


FIGURE 25-3: POR AND POR REARM WITH SLOW RISING VDD





28.0 PACKAGING INFORMATION

28.1 Package Marking Information

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			