

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1512t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLI	= 1:	. 4	20-PIN ALL	UCATION TAI			512/3)			
0/1	28-Pin SPDIP, SOIC, SSOP	28-Pin UQFN	AD	Timers	ССР	EUSART	MSSP	Interrupt	Pull-up	Basic
RA0	2	27	AN0	_	-	_	SS ⁽²⁾	_	_	_
RA1	3	28	AN1	—		—	_	_	_	_
RA2	4	1	AN2	_		_	_	_		_
RA3	5	2	AN3/VREF+	—	_	—	—	—	_	—
RA4	6	3	_	TOCKI	_	—	—	—	_	—
RA5	7	4	AN4			_	SS ⁽¹⁾	_	_	VCAP
RA6	10	7	_	—		_	_	—	_	OSC2/CLKOUT
RA7	9	6				_	_	—	_	OSC1/CLKIN
RB0	21	18	AN12	—		_	—	INT/IOC	Y	—
RB1	22	19	AN10		_	—	_	IOC	Y	
RB2	23	20	AN8	_	_	—	—	IOC	Y	_
RB3	24	21	AN9	_	CCP2 ⁽²⁾	—	—	IOC	Y	
RB4	25	22	AN11 ADOUT	—	—	—	—	IOC	Y	_
RB5	26	23	AN13	T1G			_	IOC	Y	—
RB6	27	24	ADGRDA	—		_	—	IOC	Y	ICSPCLK/ICDCLK
RB7	28	25	ADGRDB		_	—	_	IOC	Y	ICSPDAT/ICDDAT
RC0	11	8	—	SOSCO/T1CKI	_	—	—	—	—	_
RC1	12	9	_	SOSCI	CCP2 ⁽¹⁾	—	—	—		
RC2	13	10	AN14	_	CCP1	—	—	—	_	—
RC3	14	11	AN15	—	_	—	SCK/SCL	—	_	—
RC4	15	12	AN16	_	_	—	SDI/SDA	—	_	—
RC5	16	13	AN17	—	_	—	SDO	—	_	—
RC6	17	14	AN18	_	_	TX/CK	—	—	_	—
RC7	18	15	AN19	—	_	RX/DT		_	_	—
RE3	1	26			_			—	Y	MCLR/VPP
VDD	20	17	—	—	—	—	—	—	—	_
Vss	8,19	5,16		_	—		—	—	_	
NC	_	_	_	_	_		_	_	_	_

TABLE 1:28-PIN ALLOCATION TABLE (PIC16(L)F1512/3)

Note 1: Peripheral pin location selected using APFCON register. Default location.

2: Peripheral pin location selected using APFCON register. Alternate location.

TABLE 3-3: PIC16(L)F1512 MEMORY MAP (BANKS 0-7)

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	_	28Ch	_	30Ch	_	38Ch	
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	_	30Dh	_	38Dh	
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	—	28Eh	—	30Eh	—	38Eh	—
00Fh	—	08Fh	_	10Fh	_	18Fh	_	20Fh	_	28Fh	—	30Fh	—	38Fh	—
010h	PORTE	090h	TRISE	110h	_	190h	_	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	_	191h	PMADRL	211h	SSPBUF	291h	CCPR1L	311h	—	391h	_
012h	PIR2	092h	PIE2	112h	_	192h	PMADRH	212h	SSPADD	292h	CCPR1H	312h	_	392h	_
013h	—	093h	—	113h	—	193h	PMDATL	213h	SSPMSK	293h	CCP1CON	313h	—	393h	—
014h	_	094h	—	114h	_	194h	PMDATH	214h	SSPSTAT	294h	—	314h	_	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	_	195h	PMCON1	215h	SSPCON1	295h	—	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSPCON2	296h	—	316h	_	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	SSPCON3	297h	—	317h	_	397h	_
018h	T1CON	098h	—	118h	_	198h	—	218h	_	298h	CCPR2L	318h	_	398h	_
019h	T1GCON	099h	OSCCON	119h	_	199h	RCREG	219h	—	299h	CCPR2H	319h	_	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	_	29Ah	CCP2CON	31Ah	_	39Ah	_
01Bh	PR2	09Bh	ADRES0L	11Bh	_	19Bh	SPBRGL	21Bh	_	29Bh	—	31Bh	_	39Bh	_
01Ch	T2CON	09Ch	ADRES0H	11Ch	_	19Ch	SPBRGH	21Ch	_	29Ch	—	31Ch	_	39Ch	_
01Dh	_	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	_	39Dh	_
01Eh	_	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh	—	29Eh	—	31Eh	_	39Eh	_
01Fh	_	09Fh	—	11Fh	_	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh	_	39Fh	_
020h	General Purpose	0A0h 0BFh	General Purpose Register 32 Bytes	120h	Unimplemented	1A0h	Unimplemented	220h	Unimplemented	2A0h	Unimplemented	320h	Unimplemented	3A0h	Unimplemented
06Fh	Register 80 Bytes	0C0h 0EFh	Unimplemented Read as '0'	16Fh	Read as '0'	1EFh	Read as '0'	26Fh	Read as '0'	2EFh	Read as '0'	36Fh	Read as '0'	3EFh	Read as '0'
070h 07Fh	Common RAM	0F0h 0FFh	Common RAM (Accesses 70h – 7Fh)	170h 17Fh	Common RAM (Accesses 70h – 7Fh)	1F0h 1FFh	Common RAM (Accesses 70h – 7Fh)	270h 27Fh	Common RAM (Accesses 70h – 7Fh)	2F0h 2FFh	Common RAM (Accesses 70h – 7Fh)	370h 37Fh	Common RAM (Accesses 70h – 7Fh)	3F0h 3FFh	Common RAM (Accesses 70h – 7Fh)

Legend:= Unimplemented data memory locations, read as '0'.Note1:PIC16F1512 only.

6.1 **Power-on Reset (POR)**

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

6.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note *AN607, "Power-up Trouble Shooting"* (DS00607).

6.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- BOR is always on
- BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 6-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 6-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	Х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
1.0	v	Awake	Active	Waits for BOB roady (BOBBDY = 1)
IU	A	Sleep	Disabled	Waits for BOR leady (BORRD1 – 1)
01	1	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
UL	0	X	Disabled	Bogins immediately (BORDOV
0 0	X	X	Disabled	- Degins inimediately (BORRDT - X)

TABLE 6-1: BOR OPERATING MODES

Note 1: In these specific cases, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device startup is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

	-	-		_		-	<u>.</u>	-	-
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	BORFS		_	—	_	—	BORRDY	58
PCON	STKOVF	STKUNF		RWDT	RMCLR	RI	POR	BOR	62
STATUS	—	—	-	TO	PD	Z	DC	С	18
WDTCON	—	—		V	VDTPS<4:0	>		SWDTEN	82

TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented, reads as '0'. Shaded cells are not used by Resets.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	104
APFCON	—	—	_	—	—	—	SSSEL	CCP2SEL	101
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	104
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			159
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	103
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	103

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_		IESO	CLKOUTEN	BOREN<1:0.>		—	07
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>	FOSC<2:0>			37

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

						11.0	11.0
FK/ VV- 1/ 1	rt/ VV- 1/ 1	r/w-1/1	FK/ VV- 1/ 1	FK/ VV- 1/ 1	FK/ VV- 1/ 1	0-0	0-0
ANSC7	ANSC6	ANSC3	ANSC3	ANSC3	ANSC2	_	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-14: ANSELC: PORTC ANALOG SELECT REGISTER

bit 7-2	 ANSC<7:0>: Analog Select between Analog or Digital Function on pins RC<7:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 1-0	Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	108
APFCON	—	—	—	—	—	—	SSSEL	CCP2SEL	101
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	107
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	107
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	107

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

TABLE 15-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	—		ADFVI	R<1:0>	120

Legend: Shaded cells are unused by the temperature indicator module.

16.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.
	or not the ABO interrupt to enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

16.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

FIGURE 16-3: 10-BIT A/D CONVERSION RESULT FORMAT

16.3 ADC Register Definitions

The following registers are used to control the operation of the ADC.

REGISTER 16-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
			CHS<4:0>			GO/DONE	ADON				
bit 7							bit 0				
Legend:											
R = Read	able bit	W = Writable bi	it	U = Unimpleme	ented bit, read as	s 'O'					
u = Bit is ι	unchanged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is	set	'0' = Bit is clear	red								
bit 7	Unimplement	ed: Read as '0'									
bit 6-2	CHS<4:0>: Ar 11111 = FVR 1110 = Res 11101 = Tem 1100 = Res 1001 = VRE 1000 = Res 0010 = Res 0011 = AN1 1000 = AN1 1000 = AN1 0111 = AN1 0110 = AN1 0110 = AN1 0110 = AN1	halog Channel Se (Fixed Voltage F erved. No channe perature Indicato erved. No channe FH (ADC Negative FH (ADC Positive erved. No channe 9 8 7 6 5 4 3 2	lect bits Reference) Buffe el connected. r ⁽²⁾ . el connected. e Reference) ⁽³⁾ el connected.	er 1 Output ⁽¹⁾							
	01011 = AN1 01010 = AN1 01001 = AN9 01000 = AN8 00111 = Res 00101 = Res 00101 = Res 00101 = AN3 00010 = AN2 00010 = AN1 00001 = AN1	1 0 erved. No channe erved. No channe erved. No channe ; ;	el connected. El connected. El connected.								
bit 1	GO/DONE: A/ 1 = A/D conve This bit is a 0 = A/D conve	D Conversion Sta rsion cycle in pro- automatically clea rsion completed/r	atus bit gress. Setting th ared by hardwar not in progress	nis bit starts an A re when the A/D c	/D conversion cy conversion has co	cle. ompleted.					
bit 0	ADON: ADC E 1 = ADC is ena 0 = ADC is dis	Enable bit abled abled and consur	mes no operatir	ng current							
Note 1: 2:	See Section 14.0 " See Section 15.0 "	Fixed Voltage Re Temperature Ind	eference (FVR) licator Module	" for more inform " for more inform	ation. ation.						

3: Conversion results for the VREFH selection may contain errors due to noise.

FIGURE 18-4: TIMER1 GATE TOGGLE MODE

19.1 Timer2 Operation

The clock input to the Timer2 modules is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see **Section 19.2** "**Timer2 Interrupt**").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMR2 register
- · a write to the T2CON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

19.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2-to-PR2 match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

19.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the CCP module, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in **Section 20.0 "Master Synchronous Serial Port (MSSP) Module"**

19.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

20.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 20-29).

20.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

20.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 20-30).

20.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 20-30: ACKNOWLEDGE SEQUENCE WAVEFORM Acknowledge sequence starts here, write to SSPCON2 ACKEN

REGISTER 20-3: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0/	0 R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV	SSPEN	CKP		SSF	M<3:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemer	nted bit, read as '0'		
u = Bit is unch	nanged	x = Bit is unknow	ו	-n/n = Value at P	OR and BOR/Valu	e at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	y hardware	C = User cleared	
bit 7	WCOL: Write Co <u>Master mode:</u> 1 = A write to 1 0 = No collisio <u>Slave mode:</u> 1 = The SSPB	ollision Detect bit the SSPBUF registe n UF register is written v	r was attempted vhile it is still trans	while the I ² C condit smitting the previous v	tions were not valio word (must be cleare	l for a transmission t ed in software)	o be started
bit 6	SSPOV: Receiv In SPI mode: 1 = A new byte Overflow c SSPBUF m 0 = No overflo In I ² C mode: 1 = A byte is m (must be c 0 = No overflo	e Overflow Indicator e is received while the an only occur in Slav, rflow. In Master mode egister (must be clear w received while the S leared in software). w	bit ⁽¹⁾ SSPBUF registe e mode. In Slave t, the overflow bit red in software). SPBUF register	er is still holding the p mode, the user mus is not set since each is still holding the p	revious data. In cas t read the SSPBUF new reception (and previous byte. SSP	e of overflow, the dat even if only transmit transmission) is initia OV is a "don't care"	a in SSPSR is lost. ting data, to avoid ted by writing to the ' in Transmit mode
bit 5	SSPEN: Synchr In both modes, v In SPI mode: 1 = Enables se 0 = Disables s $In I^2C mode:$ 1 = Enables th $0 = Disables s$	onous Serial Port Er when enabled, these grial port and configur erial port and config e serial port and config erial port and config	able bit pins must be pr es SCK, SDO, S ures these pins gures the SDA a ures these pins	operly configured at DI and \overline{SS} as the sou as I/O port pins nd SCL pins as the so as I/O port pins	s input or output urce of the serial po purce of the serial p	rt pins ⁽²⁾ ort pins ⁽³⁾	
bit 4	CKP: Clock Pola In SPI mode: 1 = Idle state for 0 = Idle state for In I ² C Slave mo SCL release cor 1 = Enable clock 0 = Holds clock In I ² C Master m Unused in this n	arity Select bit clock is a high level clock is a low level <u>de:</u> trol (low (clock stretch). (<u>ode:</u> node	Used to ensure	data setup time.)			
bit 3-0	SSPM<3:0>: Sy 0000 = SPI Mas 0001 = SPI Mas 0010 = SPI Mas 0010 = SPI SIA 0100 = SPI SIA 0101 = SPI SIA 0110 = I ² C SIA 1000 = Reserve 1010 = SPI Mas 1011 = I ² C SIA 1000 = Reserve 1101 = Reserve 1101 = Reserve 1101 = Reserve 1101 = I ² C SIA	nchronous Serial Pc ster mode, clock = Fo ster mode, clock = Fo ster mode, clock = Co e mode, clock = SC we mode, clock = SC we mode, clock = SC e mode, clock = SC ter mode, clock = Fo d ster mode, clock = Fo ware controlled Mast d d e mode, 7-bit addres e mode, 7-bit addres	rt Mode Select I DSC/4 DSC/16 DSC/64 MR2 output/2 K pin, <u>SS</u> pin co K pin, <u>SS</u> pin co SS DSC / (4 * (SSPAL DSC/(4 * (SSPAL er mode (Slave SS with Start and DSS with Start and	oits ntrol enabled ntrol disabled, SS c DD+1))(⁴⁾ DD+1))(⁵⁾ idle) Stop bit interrupts e d Stop bit interrupts e	an be used as I/O enabled enabled	pin	
Note 1:	In Master mode, the ov When enabled these	verflow bit is not set	since each new	reception (and trans	mission) is initiate	d by writing to the S	SPBUF register.

- 3: When enabled, the SDA and SCL pins must be configured as inputs.
- 4:
- SSPADD values of 0, 1 or 2 are not supported for l^2C mode. SSPADD value of '0' is not supported. Use SSPM = 0000 instead. 5:

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
			MSK	<7:0>							
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'							
u = Bit is unc	u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set	t	'0' = Bit is cle	ared								
bit 7-1	MSK<7:1>: 1 = The rec 0 = The rec	Mask bits eived address b eived address b	it n is compai it n is not use	red to SSPADD ed to detect I ² C	<n> to detect l² address match</n>	² C address mat	tch				
bit 0 MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):											

REGISTER 20-6: SSPMSK: SSP MASK REGISTER

t O	MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSPADD<0> to detect I ² C address match
	0 = The received address bit 0 is not used to detect I ² C address match

REGISTER 20-7: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

				-		\ = =	,
R/W-0/0	R/W-0/0						
			ADD<	<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits				
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc				

I²C Slave mode, 7-bit address:

The bit is ignored.

<u>10-Bit Slave mode — Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address
bit 0	Not used: Unused in this mode. Bit state is a "don't care".

21.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:

- 1. Disable the CCPx pin output driver by setting the associated TRIS bit.
- 2. Load the PR2 register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIRx register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer prescale value.
 - Enable the Timer by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output pin:
 - Wait until the Timer overflows and the TMR2IF bit of the PIR1 register is set. See Note below.
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.
 - **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

21.3.3 TIMER2 TIMER RESOURCE

The PWM standard mode makes use of the 8-bit Timer2 timer resources to specify the PWM period.

21.3.4 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 21-1.

EQUATION 21-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note: The Timer postscaler (see Section 19.1 "Timer2 Operation") is not used in the determination of the PWM frequency.

21.3.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 21-2 is used to calculate the PWM pulse width.

Equation 21-3 is used to calculate the PWM duty cycle ratio.

EQUATION 21-2: PULSE WIDTH

Pulse Width =
$$(CCPRxL:CCPxCON < 5:4>)$$
 •

TOSC • (TMR2 Prescale Value)

EQUATION 21-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PR2 + 1)}$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 21-4).

FIGURE 25-3: POR AND POR REARM WITH SLOW RISING VDD

TABLE 25-4: I/O PORTS (CONTINUED)

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	Capacitive Loading Specs on Output Pins								
D101*	COSC2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101A*	Сю	All I/O pins	_	_	50	pF			
*	Those n	aramatara ara abaraatarizad but	not tostad						

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

Standard Operating Conditions (unless otherwise stated)										
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions			
SP70*	TssL2scH, TssL2scL	$\overline{SSx}\downarrow$ to SCKx \downarrow or SCKx \uparrow input		2.25	—	—	Тсү			
SP71*	TscH	SCKx input high time (Slave mode)		Tcy + 20	_	_	ns			
SP72*	TscL	SCKx input low time (Slave mode)		Tcy + 20		_	ns			
SP73*	TDIV2SCH, TDIV2SCL	Setup time of SDIx data input to SCF	Kx edge	100	—	—	ns			
SP74*	TscH2diL, TscL2diL	Hold time of SDIx data input to SCKx edge		100	—	—	ns			
SP75*	TDOR	SDO data output rise time	3.0-5.5V	—	10	25	ns			
			1.8-5.5V	—	25	50	ns			
SP76*	TDOF	SDOx data output fall time		—	10	25	ns			
SP77*	TssH2doZ	SSx↑ to SDOx output high-impedance	ce	10		50	ns			
SP78*	TscR	SCKx output rise time	3.0-5.5V	—	10	25	ns			
		(Master mode)	1.8-5.5V	—	25	50	ns			
SP79*	TscF	SCKx output fall time (Master mode)		—	10	25	ns			
SP80*	TscH2doV,	SDOx data output valid after SCKx	3.0-5.5V	—		50	ns			
	TscL2DoV	edge	1.8-5.5V	—	_	145	ns			
SP81*	TDOV2scH, TDOV2scL	SDOx data output setup to SCKx edge		Тсу	—	—	ns			
SP82*	TssL2doV	SDOx data output valid after $\overline{SS}\downarrow$ edge		—	_	50	ns			
SP83*	TscH2ssH, TscL2ssH	SSx ↑ after SCKx edge		1.5Tcy + 40	—	—	ns			

TABLE 25-17: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 25-20: I²C BUS START/STOP BITS TIMING

