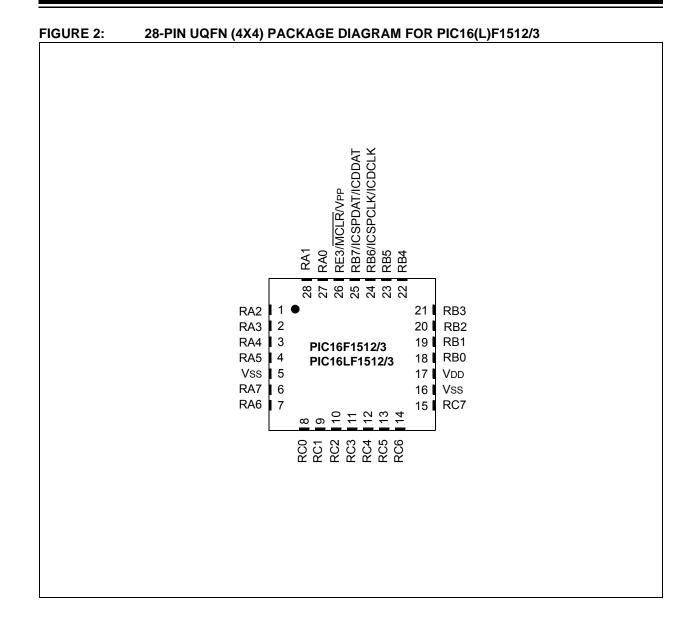
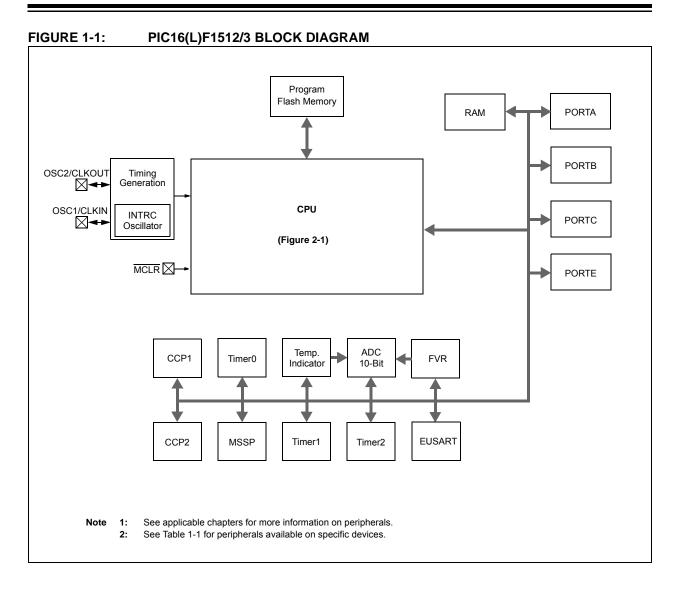


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1513-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

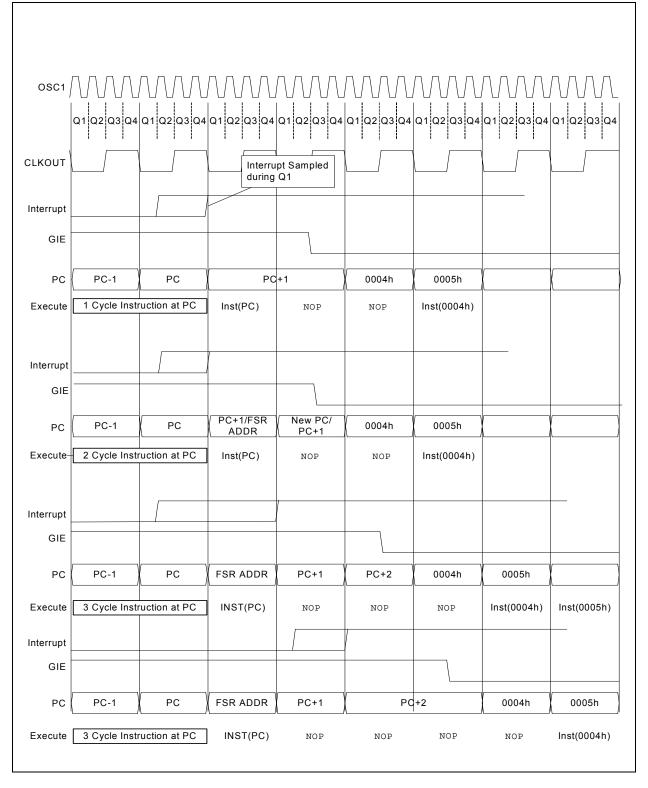

$INTOSC \longrightarrow for the second seco$

FIGURE 5-8: TWO-SPEED START-UP

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 8.0 "Power-Down Mode (Sleep)" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA			ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	104
APFCON	_	_	—	_	_	—	SSSEL	CCP2SEL	101
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	104
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		159
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	103
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	103

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_		FCMEN	IESO	CLKOUTEN	BOREN<1:0.>		_	37
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>	FOSC<2:0>			37

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

12.3 PORTB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-7). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 12-6) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

The TRISB register (Register 12-7) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

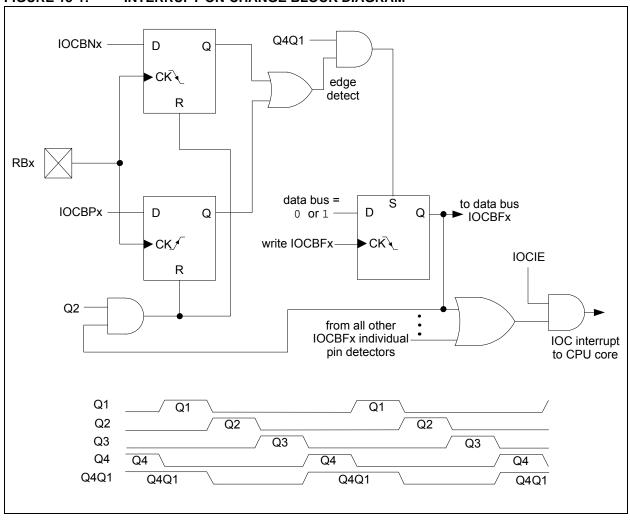
12.3.1 ANSELB REGISTER

The ANSELB register (Register 12-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

12.3.2 PORTB FUNCTIONS AND OUTPUT PRIORITIES


Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-5.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in Table 12-5.

Pin Name	Function Priority ⁽¹⁾
RB0	RB0
RB1	RB1
RB2	RB2
RB3	CCP2 RB3
RB4	RB4
RB5	RB5
RB6	ICDCLK RB6
RB7	ICDDAT RB7

TABLE 12-5: PORTB OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

TABLE 15-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVF	R<1:0>	120

Legend: Shaded cells are unused by the temperature indicator module.

REGISTER		R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ADFM	N/W-0/0	ADCS<2:0>	R/W-0/U	0-0	0-0		EF<1:0>
bit 7		AD00 \2.02					bit C
Legend:							
R = Readab	ole bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is un	changed	x = Bit is unknow	wn	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is s	et	'0' = Bit is cleare	ed				
bit 7 bit 6-4	1 = Right-ju loaded 0 = Left-jus loaded ADCS<2:0: 000 = FOS0 001 = FOS0	stified. Six Least Si /2 /8	ignificant bi	ts of ADRESL a			
	100 = Fos 101 = Fos 110 = Fos	(clock supplied from c/4 c/16					
bit 3-2	Unimpleme	ented: Read as '0'					
bit 1-0	00 = VREF 01 = Reser 10 = VREF	:0>: A/D Positive \ is connected to Vol ved is connected to ext is connected to inte	o ernal VREF+	- pin ⁽¹⁾		ule ⁽¹⁾	
		the FVR or the VRE e specification exist					

REGISTER 16-2: ADCON1: A/D CONTROL REGISTER 1

REGISTER 16-3: ADRES0H: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

					/	-		
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
			ADRE	S<9:2>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bi	it	U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Res				
'1' = Bit is set		'0' = Bit is clear	ed					

bit 7-0 **ADRES<9:2>:** ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 16-4: ADRESOL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | S<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits

Lower two bits of 10-bit conversion result

bit 5-0 Reserved: Do not use.

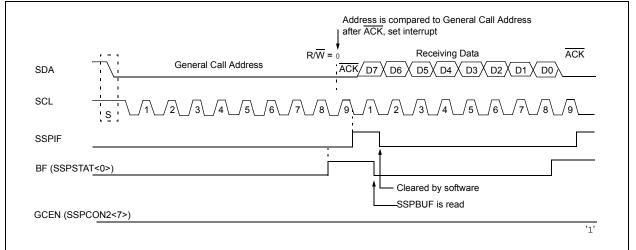
TABLE 10-3. SOMMART OF REGISTERS ASSOCIATED WITH ADD										
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ADCON0	—		CHS<4:0>					ADON	130	
ADCON1	ADFM		ADCS<2:0> —				ADPRE	131		
ADRES0H	A/D Result I	Register High							132, 133	
ADRES0L	A/D Result I	Register Low							132, 133	
ANSELA	—	_	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	104	
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	108	
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	_	111	
CCP1CON	_	—	DC1E	<1:0>		CCP1	M<3:0>		236	
CCP2CON	_	_	DC2E	<1:0>		CCP2	M<3:0>		236	
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	—	—	ADFV	۲<1:0>	120	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	69	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	70	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	72	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	103	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	107	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	110	
									t	

TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: — = unimplemented read as '0'. Shaded cells are not used for ADC module.

20.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.


The general call address is a reserved address in the I²C protocol, defined as address 0x00. When the GCEN bit of the SSPCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave

software can read SSPBUF and respond. Figure 20-23 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-Bit mode.

If the AHEN bit of the SSPCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

FIGURE 20-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

20.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 20-6) is available in I²C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

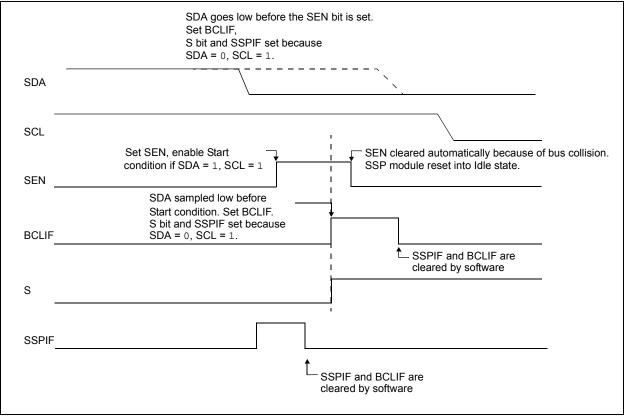
20.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 20-32).
- b) SCL is sampled low before SDA is asserted low (Figure 20-33).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:


- · the Start condition is aborted,
- · the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 20-32).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 20-34). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

20.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Register 20-7). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

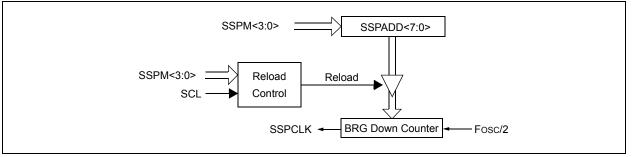

An internal signal "Reload" in Figure 20-39 triggers the value from SSPADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 20-1 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

EQUATION 20-1: BRG CLOCK FREQUENCY

$$FCLOCK = \frac{FOSC}{(SSPADD + 1)(4)}$$

FIGURE 20-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 20-1: MSSP CLOCK RATE W/BRG

Fosc	Fosc Fcy BRG Value		FCLOCK (2 Rollovers of BRG)
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

REGISTER R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN				
bit 7	1 012	COL	BOLIT	00/111	OBOBL	7.01214	bit (
Legend:											
R = Readab		W = Writable		•	mented bit, read						
u = Bit is un	0		x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res								
'1' = Bit is se	et	'0' = Bit is cle	eared								
bit 7	ACKTIM: Ac	ACKTIM: Acknowledge Time Status bit (I ² C mode only) ⁽³⁾									
					e, set on 8 [™] fal g edge of SCL c		CL clock				
bit 6	PCIE: Stop (Condition Interr	upt Enable bit (I ² C Slave mo	de only)						
		nterrupt on dete ection interrupt									
bit 5	SCIE: Start (Condition Interr	upt Enable bit (I ² C Slave mo	de only)						
		nterrupt on dete ection interrupt			ditions						
bit 4	BOEN: Buffe	er Overwrite Er	able bit								
	In SPI Slave										
					te is shifted in i						
		PCON1 register			STAT register a	fready set, 55					
	<u>In I²C Maste</u>	<u>r mode and SF</u> is ignored.			pulled						
	<u>In I²C Slave</u>	mode:									
	of th	BUF is updated the SSPOV bit o BUF is only up	nly if the BF bit	= 0.	received addres	s/data byte, ign	oring the stat				
bit 3		A Hold Time Se									
	1 = Minimum	n of 300 ns hold n of 100 ns hold	time on SDA	after the falling							
bit 2					C Slave mode o	only)					
		g edge of SCL, R2 register is se			e module is outp	outting a high st	ate, the BCLI				
		lave bus collisi		led							
bit 1		ess Hold Enab	-								
		ng the 8th fallin N1 register will			hing received a be held low.	iddress byte; C	CKP bit of th				
	0 = Address	holding is disa	bled								
bit 0	DHEN: Data	Hold Enable b	it (I ² C Slave m	ode only)							
	of the S	g the 8th falling SPCON1 regis ding is disabled	ter and SCL is		data byte; slave	hardware clea	irs the CKP b				
	or daisy-chained										
	-				dition detection	-					

REGISTER 20-5: SSPCON3: SSP CONTROL REGISTER 3

2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.

3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

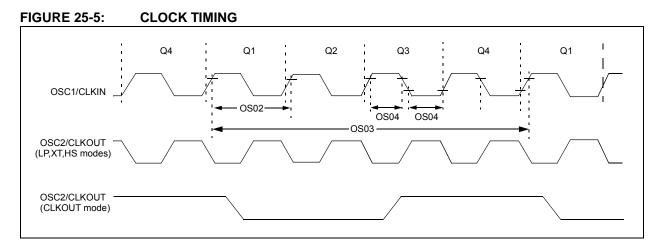
GOTO	Unconditional Branch							
Syntax:	[<i>label</i>] GOTO k							
Operands:	$0 \leq k \leq 2047$							
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>							
Status Affected:	None							
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.							

INCFSZ	Increment f, Skip if 0					
Syntax:	[<i>label</i>] INCFSZ f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.					

IORLW	Inclusive OR literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z				
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f					
Syntax:	[<i>label</i>] IORWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) .OR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					


25.0 ELECTRICAL SPECIFICATIONS

25.1 Absolute Maximum Ratings^(†)

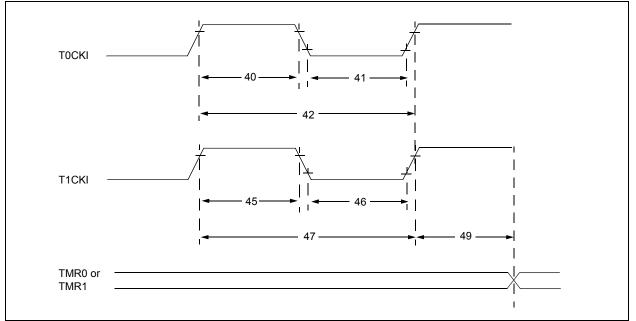
Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1512/3	0.3V to +6.5V
PIC16LF1512/3	-0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins	0.3V to (VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
-40°C \leq Ta \leq +85°C \ldots	340 mA
$-40^{\circ}C \leq TA \leq +125^{\circ}C$	140 mA
on VDD pin ⁽¹⁾	
-40°C \leq Ta \leq +85°C \ldots	255 mA
$-40^{\circ}C \leq TA \leq +125^{\circ}C$	105 mA
on any I/O pin	±25 mA
Clamp current, Ik (VPIN < 0 or VPIN > VDD)	±20 mA

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Section 25.4 "Thermal Considerations" to calculate device specifications.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

TABLE 25-6: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	EC Oscillator mode (low)
			DC	_	4	MHz	EC Oscillator mode (medium)
			DC	_	20	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾	—	32.768		kHz	LP Oscillator mode
			0.1	_	4	MHz	XT Oscillator mode
			1	_	4	MHz	HS Oscillator mode
			1	_	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	_	4	MHz	RC Oscillator mode, VDD > 2.0V
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	8	μS	LP Oscillator mode
			250	_	×	ns	XT Oscillator mode
			50	_	×	ns	HS Oscillator mode
			50	_	×	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5		μS	LP Oscillator mode
			250	_	10,000	ns	XT Oscillator mode
			50	_	1,000	ns	HS Oscillator mode
			250	_	_	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	125	_	DC	ns	Tcy = Fosc/4
OS04*	TosH,	External CLKIN High,	2	_		μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	8	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	×	ns	XT oscillator
			0	—	×	ns	HS oscillator


Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 25-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 25-10: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standa	rd Operating	g Conditions (u	Inless otherwi	se stated)					
Param No.	Sym.		Characterist	ic	Min.	Тур†	Max.	Units	Conditions
40* TT0H T0CKI H		T0CKI High I	Pulse Width No Prescaler		0.5 Tcy + 20	—	_	ns	
		With Pres- caler		10	—	—	ns		
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	—	—	ns	
			With Pres- caler		10	—	—	ns	
42*	T⊤0P	T0CKI Period	ł	·	Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
		Time	Synchronous, with Prescaler		15	—	—	ns	
			Asynchronous		30	_	_	ns	
46*	T⊤1L	T1L T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	—	ns	
			Synchronous, with Prescaler		15	_	—	ns	
			Asynchronous		30	_	—	ns	
47* TT1P		T1CKI Input Synchronous Period			Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous	6	60	_	_	ns	
48	FT1	Range	scillator Input Frequency abled by setting bit T1OSCEN)		32.4	32.76 8	33.1	kHz	
49*	TCKEZT- MR1	Delay from E Increment	xternal Clock E	2 Tosc		7 Tosc		Timers in Sync mode	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.