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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC16(L)F1512/3
TABLE 1: 28-PIN ALLOCATION TABLE (PIC16(L)F1512/3)
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RA0 2 27 AN0 — — — SS(2) — — —

RA1 3 28 AN1 — — — — — — —

RA2 4 1 AN2 — — — — — — —

RA3 5 2 AN3/VREF+ — — — — — — —

RA4 6 3 — T0CKI — — — — — —

RA5 7 4 AN4 — — — SS(1) — — VCAP

RA6 10 7 — — — — — — — OSC2/CLKOUT

RA7 9 6 — — — — — — — OSC1/CLKIN

RB0 21 18 AN12 — — — — INT/IOC Y —

RB1 22 19 AN10 — — — — IOC Y —

RB2 23 20 AN8 — — — — IOC Y —

RB3 24 21 AN9 — CCP2(2) — — IOC Y —

RB4 25 22 AN11
ADOUT

— — — — IOC Y —

RB5 26 23 AN13 T1G — — — IOC Y —

RB6 27 24 ADGRDA — — — — IOC Y ICSPCLK/ICDCLK

RB7 28 25 ADGRDB — — — — IOC Y ICSPDAT/ICDDAT

RC0 11 8 — SOSCO/T1CKI — — — — — —

RC1 12 9 — SOSCI CCP2(1) — — — — —

RC2 13 10 AN14 — CCP1 — — — — —

RC3 14 11 AN15 — — — SCK/SCL — — —

RC4 15 12 AN16 — — — SDI/SDA — — —

RC5 16 13 AN17 — — — SDO — — —

RC6 17 14 AN18 — — TX/CK — — — —

RC7 18 15 AN19 — — RX/DT — — — —

RE3 1 26 — — — — — — Y MCLR/VPP

VDD 20 17 — — — — — — — —

VSS 8,19 5,16 — — — — — — — —

NC — — — — — — — — — —

Note 1: Peripheral pin location selected using APFCON register. Default location.
2: Peripheral pin location selected using APFCON register. Alternate location.
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11.2.2 FLASH MEMORY UNLOCK 
SEQUENCE

The unlock sequence is a mechanism that protects the
Flash program memory from unintended self-write
programming or erasing. The sequence must be
executed and completed without interruption to
successfully complete any of the following operations:

• Row Erase

• Load program memory write latches

• Write of program memory write latches to 
program memory

• Write of program memory write latches to User 
IDs

The unlock sequence consists of the following steps:

1. Write 55h to PMCON2

2. Write AAh to PMCON2

3. Set the WR bit in PMCON1

4. NOP instruction

5. NOP instruction

Once the WR bit is set, the processor will always force
two NOP instructions. When an Erase Row or Program
Row operation is being performed, the processor will stall
internal operations (typical 2 ms), until the operation is
complete and then resume with the next instruction.
When the operation is loading the program memory write
latches, the processor will always force the two NOP
instructions and continue uninterrupted with the next
instruction.

Since the unlock sequence must not be interrupted,
global interrupts should be disabled prior to the unlock
sequence and re-enabled after the unlock sequence is
completed.

FIGURE 11-3: FLASH PROGRAM 
MEMORY UNLOCK 
SEQUENCE FLOWCHART 

Write 055h to 
PMCON2

Start 
Unlock Sequence

Write 0AAh to
PMCON2

Initiate
Write or Erase operation 

(WR = 1)

Instruction Fetched ignored
NOP execution forced

End
 Unlock Sequence

Instruction Fetched ignored
NOP execution forced
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11.6 Flash Program Memory Control Registers

                          

             

             

REGISTER 11-2: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

PMDAT<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 11-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER
U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u

— — PMDAT<13:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-4: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

PMADR<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PMADR<7:0>: Specifies the Least Significant bits for program memory address 

REGISTER 11-5: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER
U-1 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— PMADR<14:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 Unimplemented: Read as ‘1’

bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address
 2012-2016 Microchip Technology Inc. DS40001624D-page 97
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REGISTER 11-6: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER
U-1(1) R/W-0/0 R/W-0/0 R/W/HC-0/0 R/W/HC-x/q(2) R/W-0/0 R/S/HC-0/0 R/S/HC-0/0

— CFGS LWLO FREE WRERR WREN WR RD

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware

bit 7 Unimplemented: Read as ‘1’

bit 6 CFGS: Configuration Select bit
1 = Access Configuration, User ID and Device ID Registers
0 = Access Flash program memory

bit 5 LWLO: Load Write Latches Only bit(3)

1 = Only the addressed program memory write latch is loaded/updated on the next WR command
0 = The addressed program memory write latch is loaded/updated and a write of all program memory write latches

will be initiated on the next WR command

bit 4 FREE: Program Flash Erase Enable bit 
1 = Performs an erase operation on the next WR command (hardware cleared upon completion)
0 = Performs a write operation on the next WR command

bit 3 WRERR: Program/Erase Error Flag bit
1 = Condition indicates an improper program or erase sequence attempt or termination (bit is set automatically

on any set attempt (write ‘1’) of the WR bit).
0 = The program or erase operation completed normally.

bit 2 WREN: Program/Erase Enable bit
1 = Allows program/erase cycles
0 = Inhibits programming/erasing of program Flash

bit 1 WR: Write Control bit
1 = Initiates a program Flash program/erase operation. 

The operation is self-timed and the bit is cleared by hardware once operation is complete. 
The WR bit can only be set (not cleared) in software.

0 = Program/erase operation to the Flash is complete and inactive.

bit 0 RD: Read Control bit
1 = Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD bit can only be set

(not cleared) in software.
0 = Does not initiate a program Flash read.

Note 1: Unimplemented bit, read as ‘1’.
2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1).
3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).
DS40001624D-page 98  2012-2016 Microchip Technology Inc.
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TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

ANSELA — — ANSA5 — ANSA3 ANSA2 ANSA1 ANSA0 104

APFCON — — — — — — SSSEL CCP2SEL 101

LATA LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0 104

OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 159

PORTA RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 103

TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 103

Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0
Register 
on Page

CONFIG1
13:8 — FCMEN IESO CLKOUTEN BOREN<1:0.> —

37
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by PORTA.
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REGISTER 16-13: AADACQ: HARDWARE CVD ACQUISITION TIME CONTROL REGISTER
U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— ADACQ<6:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 Unimplemented: Read as ‘0’

bit 6-0 ADACQ<6:0>: Acquisition/Charge Share Time Select bits(1)

111 1111 = Acquisition/charge share for 127 instruction cycles
111 1110 = Acquisition/charge share for 126 instruction cycles

 •
 •
 •

000 0001 = Acquisition/charge share for one instruction cycle (FOSC/4)
000 0000 = ADC Acquisition/charge share time is disabled

Note 1: When the FRC clock is selected as the conversion clock source, it is also the clock used for the 
pre-charge and acquisition times.

REGISTER 16-14: AADGRD: HARDWARE CVD GUARD RING CONTROL REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 U-0

GRDBOE(2) GRDAOE(2) GRDPOL(1,2) — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other 
Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 GRDBOE: Guard Ring B Output Enable bit(2)

1 = ADC guard ring output is enabled to ADGRDB pin. Its corresponding TRISx bit must be clear.
0 = No ADC guard ring function to this pin is enabled

bit 6 GRDAOE: Guard Ring A Output Enable bit(2)

1 = ADC Guard Ring Output is enabled to ADGRDA pin. Its corresponding TRISx, x bit must be clear.
0 = No ADC Guard Ring function is enabled

bit 5 GRDPOL: Guard Ring Polarity selection bit(1,2)

1 = ADC guard ring outputs start as digital high during pre-charge stage
0 = ADC guard ring outputs start as digital low during pre-charge stage

bit 4-0 Unimplemented: Read as ‘0’

Note 1: When the ADDSEN = 1 and ADIPEN = 1; the polarity of this output is inverted for the second conversion 
time. The stored bit value does not change.

2: Guard Ring outputs are maintained while ADON = 1. The ADGRDA output switches polarity at the start of 
the acquisition time.
DS40001624D-page 152  2012-2016 Microchip Technology Inc.
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20.0 MASTER SYNCHRONOUS 
SERIAL PORT (MSSP) 
MODULE

20.1 Master SSP (MSSP) Module 
Overview

The Master Synchronous Serial Port (MSSP) module is
a serial interface useful for communicating with other
peripheral or microcontroller devices. These peripheral
devices may be Serial EEPROMs, shift registers,
display drivers, A/D converters, etc. The MSSP module
can operate in one of two modes:

• Serial Peripheral Interface (SPI)

• Inter-Integrated Circuit (I2C)

The SPI interface supports the following modes and
features:

• Master mode

• Slave mode

• Clock Parity

• Slave Select Synchronization (Slave mode only)

• Daisy-chain connection of slave devices

Figure 20-1 is a block diagram of the SPI interface
module.

FIGURE 20-1: MSSP BLOCK DIAGRAM (SPI MODE)
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20.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as
external clock pulses appear on SCK. When the last
bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock
line must match the proper Idle state. The clock line can
be observed by reading the SCK pin. The Idle state is
determined by the CKP bit of the SSPCON1 register.

While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times as
specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive
data. The shift register is clocked from the SCK pin
input and when a byte is received, the device will
generate an interrupt. If enabled, the device will
wake-up from Sleep.

20.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a
daisy-chain configuration. The first slave output is
connected to the second slave input, the second slave
output is connected to the third slave input, and so on.
The final slave output is connected to the master input.
Each slave sends out, during a second group of clock
pulses, an exact copy of what was received during the
first group of clock pulses. The whole chain acts as
one large communication shift register. The
daisy-chain feature only requires a single Slave Select
line from the master device.

Figure 20-7 shows the block diagram of a typical
daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent
byte on the bus is required by the slave. Setting the
BOEN bit of the SSPCON3 register will enable writes
to the SSPBUF register, even if the previous byte has
not been read. This allows the software to ignore data
that may not apply to it.

20.2.5 SLAVE SELECT 
SYNCHRONIZATION

The Slave Select can also be used to synchronize
communication. The Slave Select line is held high until
the master device is ready to communicate. When the
Slave Select line is pulled low, the slave knows that a
new transmission is starting. 

If the slave fails to receive the communication properly,
it will be reset at the end of the transmission, when the
Slave Select line returns to a high state. The slave is
then ready to receive a new transmission when the
Slave Select line is pulled low again. If the Slave Select
line is not used, there is a risk that the slave will
eventually become out of sync with the master. If the
slave misses a bit, it will always be one bit off in future
transmissions. Use of the Slave Select line allows the
slave and master to align themselves at the beginning
of each transmission.

The SS pin allows a Synchronous Slave mode. The
SPI must be in Slave mode with SS pin control enabled
(SSPCON1<3:0> = 0100). 

When the SS pin is low, transmission and reception are
enabled and the SDO pin is driven. 

When the SS pin goes high, the SDO pin is no longer
driven, even if in the middle of a transmitted byte and
becomes a floating output. External pull-up/pull-down
resistors may be desirable depending on the
application.    

When the SPI module resets, the bit counter is forced
to ‘0’. This can be done by either forcing the SS pin to
a high level or clearing the SSPEN bit.

Note 1: When the SPI is in Slave mode with SS pin
control enabled (SSPCON1<3:0> =
0100), the SPI module will reset if the SS
pin is set to VDD.

2: When the SPI is used in Slave mode with
CKE set; the user must enable SS pin
control.

3: While operated in SPI Slave mode the
SMP bit of the SSPSTAT register must
remain clear.
DS40001624D-page 182  2012-2016 Microchip Technology Inc.
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20.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPSTAT register is set. The received address is
loaded into the SSPBUF register, and an ACK pulse is
sent by the slave on the ninth bit. 

Following the ACK, slave hardware clears the CKP bit
and the SCL pin is held low (see Section 20.5.6
“Clock Stretching” for more detail). By stretching the
clock, the master will be unable to assert another clock
pulse until the slave is done preparing the transmit
data. 

The transmit data must be loaded into the SSPBUF
register which also loads the SSPSR register. Then the
SCL pin should be released by setting the CKP bit of
the SSPCON1 register. The eight data bits are shifted
out on the falling edge of the SCL input. This ensures
that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on
the rising edge of the ninth SCL input pulse. This ACK
value is copied to the ACKSTAT bit of the SSPCON2
register. If ACKSTAT is set (not ACK), then the data
transfer is complete. In this case, when the not ACK is
latched by the slave, the slave goes Idle and waits for
another occurrence of the Start bit. If the SDA line was
low (ACK), the next transmit data must be loaded into
the SSPBUF register. Again, the SCL pin must be
released by setting bit CKP.

An MSSP interrupt is generated for each data transfer
byte. The SSPIF bit must be cleared by software and
the SSPSTAT register is used to determine the status
of the byte. The SSPIF bit is set on the falling edge of
the ninth clock pulse.

20.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting
data out on the SDA line. If a bus collision is detected
and the SBCDE bit of the SSPCON3 register is set, the
BCLIF bit of the PIR register is set. Once a bus collision
is detected, the slave goes Idle and waits to be
addressed again. User software can use the BCLIF bit
to handle a slave bus collision.

20.5.3.2 7-bit Transmission

A master device can transmit a read request to a
slave, and then clock data out of the slave. The list
below outlines what software for a slave will need to
do to accomplish a standard transmission.
Figure 20-17 can be used as a reference to this list.

1. Master sends a Start condition on SDA and
SCL.

2. S bit of SSPSTAT is set; SSPIF is set if interrupt
on Start detect is enabled.

3. Matching address with R/W bit set is received by
the Slave setting SSPIF bit.

4. Slave hardware generates an ACK and sets
SSPIF.

5. SSPIF bit is cleared by user.

6. Software reads the received address from SSP-
BUF, clearing BF.

7. R/W is set so CKP was automatically cleared
after the ACK.

8. The slave software loads the transmit data into
SSPBUF.

9. CKP bit is set releasing SCL, allowing the
master to clock the data out of the slave.

10. SSPIF is set after the ACK response from the
master is loaded into the ACKSTAT register.

11. SSPIF bit is cleared.

12. The slave software checks the ACKSTAT bit to
see if the master wants to clock out more data.

13. Steps 9-13 are repeated for each transmitted
byte.

14. If the master sends a not ACK; the clock is not
held, but SSPIF is still set.

15. The master sends a Restart condition or a Stop.

16. The slave is no longer addressed.

Note 1: If the master ACKs the clock will be
stretched.

2: ACKSTAT is the only bit updated on the
rising edge of SCL (9th) rather than the
falling.
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20.5.3.3 7-bit Transmission with Address 
Hold Enabled

Setting the AHEN bit of the SSPCON3 register
enables additional clock stretching and interrupt
generation after the 8th falling edge of a received
matching address. Once a matching address has
been clocked in, CKP is cleared and the SSPIF
interrupt is set.

Figure 20-18 displays a standard waveform of a 7-bit
Address Slave Transmission with AHEN enabled.

1. Bus starts Idle.

2. Master sends Start condition; the S bit of
SSPSTAT is set; SSPIF is set if interrupt on Start
detect is enabled.

3. Master sends matching address with R/W bit
set. After the 8th falling edge of the SCL line the
CKP bit is cleared and SSPIF interrupt is
generated.

4. Slave software clears SSPIF.

5. Slave software reads ACKTIM bit of SSPCON3
register, and R/W and D/A of the SSPSTAT
register to determine the source of the interrupt.

6. Slave reads the address value from the
SSPBUF register clearing the BF bit.

7. Slave software decides from this information if it
wishes to ACK or not ACK and sets ACKDT bit
of the SSPCON2 register accordingly.

8. Slave sets the CKP bit releasing SCL.

9. Master clocks in the ACK value from the slave.

10. Slave hardware automatically clears the CKP bit
and sets SSPIF after the ACK if the R/W bit is
set.

11. Slave software clears SSPIF.

12. Slave loads value to transmit to the master into
SSPBUF setting the BF bit.

13. Slave sets CKP bit releasing the clock.

14. Master clocks out the data from the slave and
sends an ACK value on the 9th SCL pulse.

15. Slave hardware copies the ACK value into the
ACKSTAT bit of the SSPCON2 register.

16. Steps 10-15 are repeated for each byte
transmitted to the master from the slave.

17. If the master sends a not ACK the slave
releases the bus allowing the master to send a
Stop and end the communication.

Note: SSPBUF cannot be loaded until after the
ACK.

Note: Master must send a not ACK on the last byte
to ensure that the slave releases the SCL
line to receive a Stop.
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20.5.4 SLAVE MODE 10-BIT ADDRESS 
RECEPTION

This section describes a standard sequence of events
for the MSSP module configured as an I2C slave in
10-bit Addressing mode. 

Figure 20-19 is used as a visual reference for this
description.

This is a step by step process of what must be done by
slave software to accomplish I2C communication.

1. Bus starts Idle.

2. Master sends Start condition; S bit of SSPSTAT
is set; SSPIF is set if interrupt on Start detect is
enabled.

3. Master sends matching high address with R/W
bit clear; UA bit of the SSPSTAT register is set.

4. Slave sends ACK and SSPIF is set.

5. Software clears the SSPIF bit.

6. Software reads received address from SSPBUF
clearing the BF flag.

7. Slave loads low address into SSPADD,
releasing SCL.

8. Master sends matching low address byte to the
slave; UA bit is set.

9. Slave sends ACK and SSPIF is set.

10. Slave clears SSPIF.

11. Slave reads the received matching address
from SSPBUF clearing BF.

12. Slave loads high address into SSPADD.

13. Master clocks a data byte to the slave and
clocks out the slaves ACK on the 9th SCL pulse;
SSPIF is set.

14. If SEN bit of SSPCON2 is set, CKP is cleared by
hardware and the clock is stretched.

15. Slave clears SSPIF.

16. Slave reads the received byte from SSPBUF
clearing BF.

17. If SEN is set the slave sets CKP to release the
SCL.

18. Steps 13-17 repeat for each received byte.

19. Master sends Stop to end the transmission.

20.5.5 10-BIT ADDRESSING WITH 
ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or
DHEN set is the same as with 7-bit modes. The only
difference is the need to update the SSPADD register
using the UA bit. All functionality, specifically when the
CKP bit is cleared and SCL line is held low are the
same. Figure 20-20 can be used as a reference of a
slave in 10-bit addressing with AHEN set. 

Figure 20-21 shows a standard waveform for a slave
transmitter in 10-bit Addressing mode.

Note: Updates to the SSPADD register are not
allowed until after the ACK sequence.

Note: If the low address does not match, SSPIF
and UA are still set so that the slave
software can set SSPADD back to the high
address. BF is not set because there is no
match. CKP is unaffected.
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FIGURE 20-31: STOP CONDITION RECEIVE OR TRANSMIT MODE       

20.6.10 SLEEP OPERATION

While in Sleep mode, the I2C slave module can receive
addresses or data and when an address match or
complete byte transfer occurs, wake the processor
from Sleep (if the MSSP interrupt is enabled).

20.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the
current transfer.

20.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the
detection of the Start and Stop conditions allows the
determination of when the bus is free. The Stop (P) and
Start (S) bits are cleared from a Reset or when the
MSSP module is disabled. Control of the I2C bus may
be taken when the P bit of the SSPSTAT register is set,
or the bus is Idle, with both the S and P bits clear. When
the bus is busy, enabling the SSP interrupt will gener-
ate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be
monitored for arbitration to see if the signal level is the
expected output level. This check is performed by
hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

• Address Transfer 

• Data Transfer

• A Start Condition 

• A Repeated Start Condition

• An Acknowledge Condition

20.6.13 MULTI -MASTER COMMUNICATION, 
BUS COLLISION AND BUS 
ARBITRATION

Multi-Master mode support is achieved by bus arbitra-
tion. When the master outputs address/data bits onto
the SDA pin, arbitration takes place when the master
outputs a ‘1’ on SDA, by letting SDA float high and
another master asserts a ‘0’. When the SCL pin floats
high, data should be stable. If the expected data on
SDA is a ‘1’ and the data sampled on the SDA pin is ‘0’,
then a bus collision has taken place. The master will set
the Bus Collision Interrupt Flag, BCLIF and reset the
I2C port to its Idle state (Figure 20-31).

If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDA and SCL lines are deasserted and the
SSPBUF can be written to. When the user services the
bus collision Interrupt Service Routine and if the I2C
bus is free, the user can resume communication by
asserting a Start condition. 

If a Start, Repeated Start, Stop or Acknowledge
condition was in progress when the bus collision
occurred, the condition is aborted, the SDA and SCL
lines are deasserted and the respective control bits in
the SSPCON2 register are cleared. When the user
services the bus collision Interrupt Service Routine and
if the I2C bus is free, the user can resume
communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL
pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of
data at the first data bit, regardless of where the
transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the
detection of Start and Stop conditions allows the
determination of when the bus is free. Control of the I2C
bus can be taken when the P bit is set in the SSPSTAT
register, or the bus is Idle and the S and P bits are
cleared.

SCL

SDA

SDA asserted low before rising edge of clock

Write to SSPCON2,
set PEN

Falling edge of

SCL = 1 for TBRG, followed by SDA = 1 for TBRG

9th clock

SCL brought high after TBRG

Note: TBRG = one Baud Rate Generator period.

TBRG TBRG

after SDA sampled high. P bit (SSPSTAT<4>) is set. 

TBRG

to setup Stop condition

ACK

P

TBRG

PEN bit (SSPCON2<2>) is cleared by
   hardware and the SSPIF bit is set
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20.6.13.1 Bus Collision During a Start 
Condition

During a Start condition, a bus collision occurs if:

a) SDA or SCL are sampled low at the beginning of
the Start condition (Figure 20-32).

b) SCL is sampled low before SDA is asserted low
(Figure 20-33).

During a Start condition, both the SDA and the SCL
pins are monitored. 

If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:

• the Start condition is aborted, 

• the BCLIF flag is set and

•  the MSSP module is reset to its Idle state 
(Figure 20-32). 

The Start condition begins with the SDA and SCL pins
deasserted. When the SDA pin is sampled high, the
Baud Rate Generator is loaded and counts down. If the
SCL pin is sampled low while SDA is high, a bus
collision occurs because it is assumed that another
master is attempting to drive a data ‘1’ during the Start
condition. 

If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 20-34). If, however, a ‘1’ is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The Baud Rate Generator is then reloaded and
counts down to zero; if the SCL pin is sampled as ‘0’
during this time, a bus collision does not occur. At the
end of the BRG count, the SCL pin is asserted low.      

FIGURE 20-33: BUS COLLISION DURING START CONDITION (SDA ONLY)      

Note: The reason that bus collision is not a
factor during a Start condition is that no
two bus masters can assert a Start
condition at the exact same time.
Therefore, one master will always assert
SDA before the other. This condition does
not cause a bus collision because the two
masters must be allowed to arbitrate the
first address following the Start condition.
If the address is the same, arbitration
must be allowed to continue into the data
portion, Repeated Start or Stop
conditions.

SDA

SCL

SEN

SDA sampled low before 

SDA goes low before the SEN bit is set.

S bit and SSPIF set because

SSP module reset into Idle state.
SEN cleared automatically because of bus collision. 

S bit and SSPIF set because

Set SEN, enable Start
condition if SDA = 1, SCL = 1

SDA = 0, SCL = 1.

BCLIF

S

SSPIF

SDA = 0, SCL = 1.

SSPIF and BCLIF are
cleared by software

SSPIF and BCLIF are
cleared by software

Set BCLIF,

Start condition. Set BCLIF.
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22.2 Clock Accuracy with 
Asynchronous Operation

The factory calibrates the internal oscillator block
output (INTOSC). However, the INTOSC frequency
may drift as VDD or temperature changes, and this
directly affects the asynchronous baud rate. 

The Auto-Baud Detect feature (see 22.4.1
“Auto-Baud Detect”) can be used to compensate for
changes in the INTOSC frequency.

There may not be fine enough resolution when
adjusting the Baud Rate Generator to compensate for
a gradual change in the peripheral clock frequency.
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22.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection
and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the
BRG is reversed. Rather than the BRG clocking the
incoming RX signal, the RX signal is timing the BRG.
The Baud Rate Generator is used to time the period of
a received 55h (ASCII “U”) which is the Sync character
for the LIN bus. The unique feature of this character is
that it has five rising edges including the Stop bit edge. 

Setting the ABDEN bit of the BAUDCON register starts
the auto-baud calibration sequence (Figure 22-6).
While the ABD sequence takes place, the EUSART
state machine is held in Idle. On the first rising edge of
the receive line, after the Start bit, the SPBRG begins
counting up using the BRG counter clock as shown in
Table 22-5. The fifth rising edge will occur on the RX pin
at the end of the eighth bit period. At that time, an
accumulated value totaling the proper BRG period is
left in the SPBRGH, SPBRGL register pair, the ABDEN
bit is automatically cleared and the RCIF interrupt flag
is set. The value in the RCREG needs to be read to
clear the RCIF interrupt. RCREG content should be
discarded. When calibrating for modes that do not use
the SPBRGH register the user can verify that the
SPBRGL register did not overflow by checking for 00h
in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16
and BRGH bits as shown in Table 22-5. During ABD,
both the SPBRGH and SPBRGL registers are used as
a 16-bit counter, independent of the BRG16 bit setting.
While calibrating the baud rate period, the SPBRGH

and SPBRGL registers are clocked at 1/8th the BRG
base clock rate. The resulting byte measurement is the
average bit time when clocked at full speed.  

TABLE 22-5: BRG COUNTER CLOCK RATES

FIGURE 22-6: AUTOMATIC BAUD RATE CALIBRATION

Note 1: If the WUE bit is set with the ABDEN bit,
auto-baud detection will occur on the byte
following the Break character (see
Section 22.4.3 “Auto-Wake-up on
Break”).

2: It is up to the user to determine that the
incoming character baud rate is within the
range of the selected BRG clock source.
Some combinations of oscillator frequency
and EUSART baud rates are not possible.

3: During the auto-baud process, the
auto-baud counter starts counting at 1.
Upon completion of the auto-baud
sequence, to achieve maximum accuracy,
subtract 1 from the SPBRGH:SPBRGL
register pair.

BRG16 BRGH
BRG Base 

Clock
BRG ABD 

Clock

0 0 FOSC/64 FOSC/512

0 1 FOSC/16 FOSC/128

1 0 FOSC/16 FOSC/128

1 1 FOSC/4 FOSC/32

Note: During the ABD sequence, SPBRGL and
SPBRGH registers are both used as a
16-bit counter, independent of BRG16
setting.

BRG Value

RX pin

ABDEN bit

RCIF bit

bit 0 bit 1

(Interrupt)

Read
RCREG

BRG Clock

Start

Auto ClearedSet by User

XXXXh 0000h

Edge #1

bit 2 bit 3
Edge #2

bit 4 bit 5
Edge #3

bit 6 bit 7
Edge #4

Stop bit

Edge #5

001Ch

Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.

SPBRGL XXh 1Ch

SPBRGH XXh 00h

RCIDL
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SWAPF Swap Nibbles in f

Syntax: [ label ] SWAPF f,d

Operands: 0  f  127
d  [0,1]

Operation: (f<3:0>)  (destination<7:4>),
(f<7:4>)  (destination<3:0>)

Status Affected: None

Description: The upper and lower nibbles of regis-
ter ‘f’ are exchanged. If ‘d’ is ‘0’, the 
result is placed in the W register. If ‘d’ 
is ‘1’, the result is placed in register ‘f’.

TRIS Load TRIS Register with W

Syntax: [ label ]   TRIS f 

Operands: 5  f  7

Operation: (W)  TRIS register ‘f’

Status Affected: None

Description: Move data from W register to TRIS 
register.
When ‘f’ = 5, TRISA is loaded.
When ‘f’ = 6, TRISB is loaded.
When ‘f’ = 7, TRISC is loaded.

XORLW Exclusive OR literal with W

Syntax: [ label ] XORLW   k

Operands: 0 k 255

Operation: (W) .XOR. k W)

Status Affected: Z

Description: The contents of the W register are 
XOR’ed with the 8-bit literal ‘k’. The 
result is placed in the W register.

XORWF Exclusive OR W with f

Syntax: [ label ] XORWF    f,d

Operands: 0  f  127
d  [0,1]

Operation: (W) .XOR. (f) destination)

Status Affected: Z

Description: Exclusive OR the contents of the W 
register with register ‘f’. If ‘d’ is ‘0’, the 
result is stored in the W register. If ‘d’ 
is ‘1’, the result is stored back in 
register ‘f’.
 2012-2016 Microchip Technology Inc. DS40001624D-page 281



PIC16(L)F1512/3
 

TABLE 25-3: POWER-DOWN CURRENTS (IPD)(1,2,4)

PIC16LF1512/3 Standard Operating Conditions (unless otherwise stated)

PIC16F1512/3

Param
No.

Device Characteristics Min. Typ†
Max.

+85°C
Max.

+125°C
Units

Conditions

VDD Note

D022 — 0.02 1.0 8.0 A 1.8 WDT, BOR, FVR, and SOSC
disabled, all Peripherals Inactive— 0.03 2.0 9.0 A 3.0

D022 — 0.20 3.0 11 A 2.3 WDT, BOR, FVR, and SOSC
disabled, all Peripherals Inactive— 0.30 4.0 12 A 3.0

— 0.40 6 15 A 5.0

D023 — 0.30 6 14 A 1.8 LPWDT Current

— 0.60 7 17 A 3.0

D023 — 0.50 6 15 A 2.3 LPWDT Current

— 0.77 7 20 A 3.0

— 0.85 8 22 A 5.0

D023A — 10 28 30 A 1.8 FVR current

— 12 30 33 A 3.0

D023A — 18 33 35 A 2.3 FVR current

— 19 36 37 A 3.0

— 20 37 45 A 5.0

D024 — 8.0 17 20 A 3.0 BOR Current

D024 — 8 17 30 A 3.0 BOR Current

— 9 20 40 A 5.0

D024A — 0.80 4 8 A 3.0 LPBOR Current

D024A — 0.30 4 14 A 3.0 LPBOR Current

— 0.45 8 17 A 5.0

D025 — 0.6 5 9 A 1.8 SOSC Current

— 2.5 8.5 12 A 3.0

D025 — 1 6 10 A 2.3 SOSC Current

— 2.2 8.5 20 A 3.0

— 5.5 15 25 A 5.0

D026 — 0.1 1.5 9 A 1.8 A/D Current (Note 3), 
no conversion in progress— 0.2 2.7 10 A 3.0

D026 — 0.3 4 11 A 2.3 A/D Current (Note 3), 
no conversion in progress— 0.35 5 13 A 3.0

— 0.45 8 16 A 5.0

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are 

not tested.
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is 

enabled. The peripheral  current can be determined by subtracting the base IDD or IPD current from this limit. Max 
values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with 
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.
4: Specification for PIC16F1512/3 devices assumes that Low-Power Sleep mode is selected, when available, via the 

VREGCON register (see Section 8.2.2 “Peripheral Usage in Sleep” and Register 8-1). 
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FIGURE 26-31: IPD BASE, LOW-POWER SLEEP MODE, PIC16LF1512/3 ONLY

FIGURE 26-32: IPD BASE, LOW-POWER SLEEP MODE, PIC16F1512/3 ONLY
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FIGURE 26-45: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V, PIC16LF1512/3 ONLY

FIGURE 26-46: VOL vs. IOL OVER TEMPERATURE, VDD = 1.8V, PIC16LF1512/3 ONLY
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27.0 DEVELOPMENT SUPPORT

The PIC® microcontrollers (MCU) and dsPIC® digital
signal controllers (DSC) are supported with a full range
of software and hardware development tools:

• Integrated Development Environment

- MPLAB® X IDE Software

• Compilers/Assemblers/Linkers

- MPLAB XC Compiler 

- MPASMTM Assembler

- MPLINKTM Object Linker/
MPLIBTM Object Librarian

- MPLAB Assembler/Linker/Librarian for
Various Device Families

• Simulators

- MPLAB X SIM Software Simulator

• Emulators

- MPLAB REAL ICE™ In-Circuit Emulator

• In-Circuit Debuggers/Programmers

- MPLAB ICD 3

- PICkit™ 3 

• Device Programmers

- MPLAB PM3 Device Programmer

• Low-Cost Demonstration/Development Boards, 
Evaluation Kits and Starter Kits

• Third-party development tools

27.1 MPLAB X Integrated Development 
Environment Software

The MPLAB X IDE is a single, unified graphical user
interface for Microchip and third-party software, and
hardware development tool that runs on Windows®,
Linux and Mac OS® X. Based on the NetBeans IDE,
MPLAB X IDE is an entirely new IDE with a host of free
software components and plug-ins for high-
performance application development and debugging.
Moving between tools and upgrading from software
simulators to hardware debugging and programming
tools is simple with the seamless user interface.

With complete project management, visual call graphs,
a configurable watch window and a feature-rich editor
that includes code completion and context menus,
MPLAB X IDE is flexible and friendly enough for new
users. With the ability to support multiple tools on
multiple projects with simultaneous debugging, MPLAB
X IDE is also suitable for the needs of experienced
users.

Feature-Rich Editor:

• Color syntax highlighting

• Smart code completion makes suggestions and 
provides hints as you type

• Automatic code formatting based on user-defined 
rules

• Live parsing

User-Friendly, Customizable Interface:

• Fully customizable interface: toolbars, toolbar 
buttons, windows, window placement, etc.

• Call graph window

Project-Based Workspaces:

• Multiple projects

• Multiple tools

• Multiple configurations

• Simultaneous debugging sessions

File History and Bug Tracking:

• Local file history feature

• Built-in support for Bugzilla issue tracker
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