

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1513t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F151X/152X Family Types

	~	>		ash		A	oc						
Device	Data Sheet Inde)	Program Memor Flash (words)	Data SRAM (bytes)	High Endurance Fla (bytes)	(₂₎ SO/I	10-bit (ch)	Advanced Control	Timers (8/16-bit)	EUSART	MSSP (I ² C/SPI)	ССР	Debug ⁽¹⁾	ЧΤХ
PIC16(L)F1512	(1)	2048	128	128	25	17	Y	2/1	1	1	2	I	Y
PIC16(L)F1513	(1)	4096	256	128	25	17	Y	2/1	1	1	2	-	Y
PIC16(L)F1516	(2)	8192	512	128	25	17	Ν	2/1	1	1	2	-	Y
PIC16(L)F1517	(2)	8192	512	128	36	28	Ν	2/1	1	1	2	-	Y
PIC16(L)F1518	(2)	16384	1024	128	25	17	Ν	2/1	1	1	2	- 1	Y
PIC16(L)F1519	(2)	16384	1024	128	36	28	Ν	2/1	1	1	2	Ι	Y
PIC16(L)F1526	(3)	8192	768	128	54	30	Ν	6/3	2	2	10	Ι	Y
PIC16(L)F1527	(3)	16384	1536	128	54	30	Ν	6/3	2	2	10	Ι	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, Requires Debug Header.

2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

1: DS40001624 PIC16(L)F1512/13 Data Sheet, 28-Pin Flash, 8-bit MCUs.

2: DS40001452 PIC16(L)F1516/7/8/9 Data Sheet, 28/40/44-Pin Flash, 8-bit MCUs.

3: DS40001458 PIC16(L)F1526/27 Data Sheet, 64-Pin Flash, 8-bit MCUs.

FIGURE 1: 28-PIN SPDIP, SOIC, SSOP PACKAGE DIAGRAM FOR PIC16(L)F1512/3

TABLE 3-4: PIC16(L)F1513 MEMORY MAP (BANKS 0-7)

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	—	28Ch	—	30Ch	—	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	—	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	—	28Eh	—	30Eh	_	38Eh	—
00Fh	—	08Fh	—	10Fh	—	18Fh	—	20Fh	—	28Fh	—	30Fh	—	38Fh	—
010h	PORTE	090h	TRISE	110h	—	190h		210h	WPUE	290h	—	310h	—	390h	_
011h	PIR1	091h	PIE1	111h	—	191h	PMADRL	211h	SSPBUF	291h	CCPR1L	311h	—	391h	—
012h	PIR2	092h	PIE2	112h	—	192h	PMADRH	212h	SSPADD	292h	CCPR1H	312h	—	392h	—
013h	_	093h	_	113h	_	193h	PMDATL	213h	SSPMSK	293h	CCP1CON	313h	—	393h	—
014h	—	094h	—	114h	—	194h	PMDATH	214h	SSPSTAT	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	—	195h	PMCON1	215h	SSPCON1	295h	—	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSPCON2	296h	—	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	SSPCON3	297h	—	317h	—	397h	—
018h	T1CON	098h	_	118h	—	198h		218h	—	298h	CCPR2L	318h	—	398h	_
019h	T1GCON	099h	OSCCON	119h	—	199h	RCREG	219h	—	299h	CCPR2H	319h	—	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	—	29Ah	CCP2CON	31Ah	—	39Ah	_
01Bh	PR2	09Bh	ADRES0L	11Bh	_	19Bh	SPBRG	21Bh	—	29Bh	—	31Bh	—	39Bh	_
01Ch	T2CON	09Ch	ADRES0H	11Ch	—	19Ch	SPBRGH	21Ch	—	29Ch	_	31Ch	_	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	—
01Eh	_	09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	—	29Eh	—	31Eh	—	39Eh	—
01Fh	—	09Fh	—	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh	—	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General		General		General										
	Purpose		Purpose		Purpose		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Register		Register		Register		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'
	80 Bytes		80 Bytes		80 Bytes										
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h	Common RAM	0F0h		170h		1F0h		270h	Common RAM	2F0h	Common RAM	370h		3F0h	
	(Accesses		(Accesses		(Accesses		(Accesses		(Accesses		(Accesses		(Accesses		(Accesses
	70h – 7Fh)		70h – 7Fh)		70h – 7Fh)		70h – 7Fh)		70h – 7Fh)						
07Fh	, ,	0FFh	,	17Fh	,	1FFh	,	27Fh	,	2FFh	,	37Fh	,	3FFh	,

Legend:= Unimplemented data memory locations, read as '0'.Note1:PIC16F1513 only.

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate the internal system clock sources: the 16 MHz High-Frequency Internal Oscillator and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching"** for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Secondary oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See Section 5.3 "Clock Switching" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- High power, 4-20 MHz (FOSC = 111)
- Medium power, 0.5-4 MHz (FOSC = 110)
- Low power, 0-0.5 MHz (FOSC = 101)

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 5-2:

EXTERNAL CLOCK (EC) MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

8.2 Low-Power Sleep Mode

The PIC16F1512/3 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode. The PIC16F1512/3 allows the user to optimize the operating current in Sleep, depending on the application requirements.

A Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. With this bit set, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The LDO will remain in the Normal Power mode when those peripherals are enabled. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-Out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/interrupt-on-change pins
- Timer1 (with external clock source)
- CCP (Capture mode)

Note:	The PIC16LF1512/3 does not have a configurable Low-Power Sleep mode. PIC16LF1512/3 is an unregulated device
	and is always in the lowest power state
	when in Sleep, with no wake-up time
	penalty. This device has a lower maximum
	VDD and I/O voltage than the
	PIC16F1512/3. See Section 25.0
	"Electrical Specifications" for more
	information.

8.3 Power Control Registers

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—	—	—	—	—	VREGPM	Reserved
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-2	Unimplemented: Read as '0'	
bit 1	VREGPM: Voltage Regulator Power Mode Selection bit	
	1 = Low-Power Sleep mode enabled in Sleep ⁽²⁾	
	Draws lowest current in Sleep, slower wake-up	
	 0 = Normal-Power mode enabled in Sleep⁽²⁾ Draws higher current in Sleep, faster wake-up 	
bit 0	Reserved: Read as '1'. Maintain this bit set.	
Note 1:	PIC16F1512/3 only	

2: See Section 25.0 "Electrical Specifications".

PIC16(L)F1512/3

EXAMPLE 11-1: FLASH PROGRAM MEMORY READ

* This code block will read 1 word of program

- * memory at the memory address:
- PROG_ADDR_HI : PROG_ADDR_LO
- * data will be returned in the variables;
- * PROG_DATA_HI, PROG_DATA_LO

BANKSEL	PMADRL	; Select Bank for PMCON registers
MOVLW	PROG_ADDR_LO	;
MOVWF	PMADRL	; Store LSB of address
MOVLW	PROG_ADDR_HI	;
MOVWL	PMADRH	; Store MSB of address
BCF BSF NOP NOP	PMCON1,CFGS PMCON1,RD	; Do not select Configuration Space ; Initiate read ; Ignored (Figure 11-2) ; Ignored (Figure 11-2)
MOVF	PMDATL,W	; Get LSB of word
MOVWF	PROG_DATA_LO	; Store in user location
MOVF	PMDATH,W	; Get MSB of word
MOVWF	PROG_DATA_HI	; Store in user location

FIGURE 11-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

11.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 11-7: FLASH PROGRAM MEMORY MODIFY FLOWCHART

11.6 Flash Program Memory Control Registers

R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u PMDAT<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other Resets u = Bit is unchanged x = Bit is unknown '1' = Bit is set '0' = Bit is cleared

REGISTER 11-2: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

bit 7-0 **PMDAT<7:0>**: Read/write value for Least Significant bits of program memory

REGISTER 11-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			PMDA	T<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-4: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PMAD | R<7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 PMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 11-5: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—				PMADR<14:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '	0'	
u = Bit is unchange	d	x = Bit is unknow	/n	-n/n = Value at	POR and BOR/Va	lue at all other Re	esets
'1' = Bit is set		'0' = Bit is cleare	d				

bit 7 Unimplemented: Read as '1'

bit 6-0 **PMADR<14:8>**: Specifies the Most Significant bits for program memory address

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	104
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	69
IOCBF	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	117
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	117
IOCBP	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	117
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	103

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

16.6.10 HARDWARE CVD DOUBLE CONVERSION PROCEDURE

This is an example procedure for using hardware CVD to perform a double conversion for differential CVD measurement with active guard drive.

- 1. Configure Port:
 - Enable pin output driver (Refer to the TRIS register).
 - Configure pin output low (Refer to the LAT register).
 - Disable weak pull-up (Refer to the WPU register).
- 2. Configure the ADC module:
 - Select an appropriate ADC conversion clock for your oscillator frequency.
 - Configure voltage reference.
 - · Select ADC input channel.
 - Turn on the ADC module.
- 3. Configure the hardware CVD module:
 - Configure charge polarity and double conversion.
 - Configure pre-charge and acquisition timer.
 - Configure guard ring (optional).
 - Select additional capacitance (optional).
- 4. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt(1)
- Start conversion by setting the GO/DONE bit or by enabling the Special Event Trigger in the ADDCON2 register.
- 6. Wait for the ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit.
 - Waiting for the ADC interrupt (interrupts enabled).
- 7. Read ADC result:
 - Conversion 1 result in ADDRES0H and ADDRES0L
 - Conversion 2 result in ADDRES1H and ADDRES1L
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

EXAMPLE 16-2: HARDWARE CVD DOUBLE CONVERSION

;This code ;for pollin ;clock and	block configung, Vdd and Vs ANO input.	rres the ADC s references, Fosc/16
; ; The Hardw ; double co ; both enal	ware CVD will onversion, Gua oled.	perform an inverted ard A and B drive are
;Conversion	n start & poll	ing for completion
are include	ed.	
;		
BANKSEL	TRISA	
BCF	TRISA,0	;Set RA0 to output
BANKSEL	LATA	
BCF	LATA,0	;RA0 output low
BANKSEL	ANSELA	
BCF	ansela,0	;Set RAO to digital
BANKSEL	WPUA	
BCF	wpua,0	;Disable pull-up on
RA0		
; Initiali:	ze ADC and Har	rdware CVD
BANKSEL	AADCON0	
MOVLW	B'00000001'	;Select channel ANO
MOVWF	AADCON0	
BANKSEL	AADCON1	
MOVLW	B'11010000'	;Vdd and Vss Vref
MOVWF	AADCON1	
BANKSEL	AADCON3	
MOVLW	B'01000011'	;Double and inverted
MOVWF	AADCON3	;ADOUT disabled
BANKSEL	AADPRE	
MOVLW	.10	
MOVWF	AADPRE	;Pre-charge Timer
BANKSEL	AADACQ	
MOVLW	.10	
MOVWF	AADACQ	Acquisition Timer
BANKSEL	AADGRD	
MOVLW	B'11000000'	;Guard on A and B
MOVWF	AADGRD	
BANKSEL	AADCAP	
MOVLW	B'00000000'	
MOVWF	AADCAP	;No additional ;Capacitor
BANKSEL	ADCON0	
BSF	ADCON0, GO	
BTFSC	ADCON0, GO	
GOTO	\$-1	;No, test again
;RESULTS O	F CONVERIONS 1	
BANKSEL AAI	ORESOH	;
MOVF	AADRESOH,W	;Read upper 2 bits
MOVWF	RESULT0H	;store in GPR space
MOVF	AADRESOL,W	;Read lower 8 bits
MOVWF	RESULTOL	;Store in GPR space
;RESULTS O	F CONVERIONS 2	2.
BANKSEL	AADRES1H	;
MOVF	AADRES1H,W	;Read upper 2 bits
MOVWF	RESULT1H	;store in GPR space
MOVF	AADRES1L,W	;Read lower 8 bits
MOVWF	RESULT1L	;Store in GPR space

16.6.11 HARDWARE CVD REGISTER MAPPING

The hardware CVD module is an enhanced expansion of the standard ADC module as stated in **Section 16.0 "Analog-to-Digital Converter (ADC) Module"** and is backward compatible with the other devices in this family. Control of the standard ADC module uses Bank 1 registers, see Table 16-4. This set of registers is mapped into Bank 14 with the control registers for the hardware CVD module. Although this subset of registers has different names, they are identical. Since the registers for the standard ADC are mapped into the Bank 14 address space, any changes to registers in Bank 1 will be reflected in Bank 14 and vice-versa.

TABLE 16-4:HARDWARE CVD REGISTER
MAPPING

[Bank 14 Address]	[Bank 1 Address]
Hardware CVD	ADC
[711h] AADCON0 ⁽¹⁾	[09Dh] ADCON0 ⁽¹⁾
[712h] AADCON1 ⁽¹⁾	[09Eh] ADCON1 ⁽¹⁾
[713h] AADCON2	
[714h] AADCON3	
[715h] AADSTAT	
[716h] AADPRE	
[717h] AADACQ	
[718h] AADGRD	
[719h] AADCAP	
[71Ah] AADRES0L ⁽¹⁾	[09Bh] ADRES0L ⁽¹⁾
[71Bh] AADRES0H ⁽¹⁾	[09Ch] ADRES0H ⁽¹⁾
[71Ch] AADRES1L	
[71Dh] AADRES1H	

Note 1: Register is mapped in Bank 1 and Bank 14, using different names in each bank.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
AADCAP	—	—	— — — ADDCAP<2:0>			152			
AADCON0	_			CHS<4:0>			GO/DONE	ADON	147
AADCON1	ADFM		ADCS<2:0>		_	_	ADPRE	F<1:0>	148
AADCON2	_	Т	RIGSEL<2:0	>	_	—	—	_	149
AADCON3	ADEPPOL	ADIPPOL	ADOLEN	ADOEN	ADOOEN	_	ADIPEN	ADDSEN	150
AADGRD	GRDBOE	GRDAOE	GRDPOL		_	_	—	_	152
AADPRE	—				ADPRE<6:0>	>			151
AADRES0H	A/D Result (0 Register Hi	egister High				154, 155		
AADRES0L	A/D Result (0 Register Lo	egister Low				154, 155		
AADSTAT	—	_			_	ADCONV	ADST	151	
AADACQ	—		ADACQ<6:0>				152		
ANSELA	—	—	ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	104
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	108
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	111
CCP1CON	—	—	DC1B<1:0>		> CCP1M<3:0>			236	
CCP2CON	_	_	DC2B	<1:0>	CCP2		:M<3:0>		236
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVI	R<1:0>	120
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	69
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	70
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	72
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	103
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	107
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	110

TABLE 16-5: SUMMARY OF REGISTERS ASSOCIATED WITH HARDWARE CVD

Legend: — = unimplemented read as '0'. Shaded cells are not used for ADC module.

18.12 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), shown in Register 18-2, is used to control Timer1 gate.

OL T1GTI W = Writa x = Bit is 0' = Bit is 0' = Bit is E: Timer1 Gate ON = 0: is ignored ON = 1: ier1 counting is ier1 counts regatant	M T1GSPM	T <u>1GGO</u> / DONE U = Unimplen -n/n = Value a HC = Bit is cle	T1GVAL nented bit, reac at POR and BO eared by hardw	T1GSS 1 as '0' R/Value at all o rare	S<1:0> bit 0
W = Writa x = Bit is '0' = Bit is CON = 0: is ignored ON = 1: ier1 counting is ier1 counts rega L: Timer1 Gate	able bit unknown s cleared Enable bit controlled by the T	U = Unimplen -n/n = Value a HC = Bit is cle Fimer1 gate func	nented bit, reac it POR and BO eared by hardw	l as '0' R/Value at all (′are	bit 0
W = Writa $x = Bit is$ '0' = Bit is '0' = Bit is E: Timer1 Gate ON = 0: is ignored ON = 1: ier1 counting is ier1 counts regate L: Timer1 Gate	able bit unknown s cleared Enable bit controlled by the T	U = Unimplen -n/n = Value a HC = Bit is cle Fimer1 gate func	nented bit, reac at POR and BO eared by hardw	l as '0' R/Value at all (′are	other Resets
W = Writ: $x = Bit is$ '0' = Bit is E: Timer1 Gate ON = 0: is ignored ON = 1: ier1 counting is ier1 counts rega L: Timer1 Gate	able bit unknown s cleared Enable bit controlled by the T	U = Unimplen -n/n = Value a HC = Bit is cle Fimer1 gate func	nented bit, reac at POR and BO eared by hardw	d as '0' IR/Value at all (<u>′are</u>	other Resets
W = Writ:x = Bit is'0' = Bit isE: Timer1 GateON = 0:is ignoredON = 1:ier1 counting isier1 counts regateL: Timer1 Gate	able bit unknown s cleared Enable bit controlled by the T	U = Unimplen -n/n = Value a HC = Bit is cle	nented bit, reac at POR and BO eared by hardw	d as '0' R/Value at all (/are	other Resets
x = Bit is '0' = Bit is E: Timer1 Gate ON = 0: is ignored ON = 1: ier1 counting is ier1 counts rega L: Timer1 Gate	unknown s cleared Enable bit controlled by the T	-n/n = Value a HC = Bit is cle Fimer1 gate func	at POR and BO eared by hardw	R/Value at all ∉ /are	other Resets
0' = Bit is E : Timer1 Gate <u>ON = 0:</u> is ignored <u>ON = 1:</u> isier1 counting is isier1 counts regated L: Timer1 Gate	Enable bit controlled by the T	HC = Bit is cle	eared by hardw	/are	
E: Timer1 Gate ON = 0: is ignored ON = 1: PON = 1: PO	Enable bit controlled by the T	Timer1 gate fund	tion		
<u>ON = 0.</u> is ignored <u>ON = 1:</u> ier1 counting is ier1 counts rega L: Timer1 Gate	controlled by the T	Timer1 gate fund	tion		
ON = 1: her1 counting is her1 counts rega L: Timer1 Gate	controlled by the I	Timer1 gate fund	tion		
er1 counts rega L: Timer1 Gate	rdless of Timer1 o				
L: Timer1 Gate	0 = Timer1 counts regardless of Timer1 gate function				
T1GPOL: Timer1 Gate Polarity bit					
1 = Timer1 gate is active-high (Timer1 counts when gate is high)					
0 = Timer 1 gate is active-low (Timer 1 counts when gate is low) T1GTM: Timer 1 Gate Teggle Mode bit					
1 = Timer1 Gate Toggle mode is enabled					
0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1 gate flip-flop toggles on every rising edge.					
T1GSPM: Timer1 Gate Single-Pulse Mode bit					
 1 = Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate 0 = Timer1 gate Single-Pulse mode is disabled 					
T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit					
 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started 					
L: Timer1 Gate	Current State bit				
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE).					
<1:0>: Timer1 G	ate Source Selec	t bits			
T1GSS<1:0>: Timer1 Gate Source Select bits 00 = Timer1 gate pin 01 = Timer0 overflow output 10 = Timer2 Match PR2					
	DONE: Timer 1 are 1 gate single- ner 1 gate single- L: Timer 1 Gate 0 so the current stated by Timer 1 G <1:0>: Timer 1 G <1:0>: Timer 1 G mer 1 gate pin mer 0 overflow of mer 2 Match PR 2	WDONE: Timer'l Gate Single-Pulsi ner1 gate single-pulse acquisition ner1 gate single-pulse acquisition L: Timer1 Gate Current State bit es the current state of the Timer1 g ted by Timer1 Gate Enable (TMR <1:0>: Timer1 Gate Source Selec mer1 gate pin mer0 overflow output mer2 Match PR2 eserved	 Acquisition State Single-Pulse Acquisition States aner1 gate single-pulse acquisition is ready, waiting ner1 gate single-pulse acquisition has completed or L: Timer1 Gate Current State bit as the current state of the Timer1 gate that could be ted by Timer1 Gate Enable (TMR1GE). <1:0>: Timer1 Gate Source Select bits mer1 gate pin mer0 overflow output mer2 Match PR2 eserved 	 ADONE: Timer'l Gate Single-Puise Acquisition Status bit her1 gate single-pulse acquisition is ready, waiting for an edge her1 gate single-pulse acquisition has completed or has not been L: Timer1 Gate Current State bit es the current state of the Timer1 gate that could be provided to T ted by Timer1 Gate Enable (TMR1GE). <1:0>: Timer1 Gate Source Select bits mer1 gate pin mer0 overflow output mer2 Match PR2 eserved 	 ADONE: Timer 1 Gate Single-Pulse Acquisition Status bit her1 gate single-pulse acquisition is ready, waiting for an edge her1 gate single-pulse acquisition has completed or has not been started L: Timer1 Gate Current State bit es the current state of the Timer1 gate that could be provided to TMR1H:TMR1L ted by Timer1 Gate Enable (TMR1GE). <1:0>: Timer1 Gate Source Select bits mer1 gate pin mer0 overflow output mer2 Match PR2 eserved

REGISTER 18-2: T1GCON: TIMER1 GATE CONTROL REGISTER

20.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF and is cleared when all eight bits are shifted out.

20.6.6.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

20.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

20.6.6.4 Typical Transmit Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSPIF is set by hardware on completion of the Start.
- 3. SSPIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- 7. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 9. The user loads the SSPBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	69
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	70
PIE2	OSFIE		_		BCLIE			CCP2IE	71
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	72
PIR2	OSFIF	_	—	_	BCLIF		—	CCP2IF	73
SSPADD	ADD<7:0>						227		
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register					179*			
SSPCON1	WCOL	WCOL SSPOV SSPEN CKP SSPM<3:0>			224				
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	225
SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	226
SSPMSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	227
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	223
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	103

TABLE 20-3: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I²C mode. *

Page provides register information.

22.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

22.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 22-5: ASYNCHRONOUS RECEPTION

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, read as	s 'O'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value a	t POR and BOR/\	/alue at all other	Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7	CSRC: Clock S Asynchronous Don't care Synchronous r 1 = Master n	Source Select bit <u>mode</u> : <u>mode</u> : node (clock gene	rated internally	from BRG)			
bit 6	0 = Slave mo TX9: 9-bit Tran 1 = Selects 8 0 = Selects 8	nsmit Enable bit 9-bit transmissior 3-bit transmissior	n 1				
bit 5	TXEN: Transm 1 = Transmit 0 = Transmit	nit Enable bit ⁽¹⁾ enabled disabled					
bit 4	SYNC: EUSAF 1 = Synchron 0 = Asynchro	RT Mode Select I nous mode nous mode	bit				
bit 3	SENDB: Send Asynchronous 1 = Send Syr 0 = Sync Bre Synchronous r Don't care	l Break Characte <u>mode</u> : nc Break on next ak transmission o <u>mode</u> :	r bit transmission (cl completed	eared by hardw	are upon complet	ion)	
bit 2	BRGH: High E Asynchronous 1 = High spee 0 = Low spee Synchronous r Unused in this	Baud Rate Select mode: ed ed <u>node:</u> mode	bit				
bit 1	TRMT: Transm 1 = TSR emp 0 = TSR full	hit Shift Register oty	Status bit				
bit 0	TX9D: Ninth b Can be addres	it of Transmit Da ss/data bit or a pa	ta arity bit.				
Note 1: SI	REN/CREN overrie	des TXEN in Syn	c mode.				

EUSART Control Registers 22.3

PIC16(L)F1512/3

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and \overline{PD} are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRW	Clear W			
Syntax:	[label] CLRW			
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Description:	W register is cleared. Zero bit (Z) is set.			

DECF	Decrement f			
Syntax:	[label] DECF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) - 1 \rightarrow (destination)			
Status Affected:	Z			
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

TABLE 25-7: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%	—	16.0	—	MHz	VDD = 3.0V, TA = 25°C, (Note 2)	
OS09	LFosc	Internal LFINTOSC Frequency	—	_	31	_	kHz	(Note 3)	
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	_	—	5	15	μS		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

2: See Figure 26-58: "HFINTOSC Accuracy Over Temperature, VDD = 1.8V, PIC16LF1512/3 Only", and Figure 26-59: "HFINTOSC Accuracy Over Temperature, $2.3V \le VDD \le 5.5V$ ".

3: See Figure 26-56: "LFINTOSC Frequency over VDD and Temperature, PIC16LF1512/3 Only", and Figure 26-57: "LFINTOSC Frequency over VDD and Temperature, PIC16F1512/3".

FIGURE 25-6: HFINTOSC FREQUENCY ACCURACY OVER VDD AND TEMPERATURE

PIC16(L)F1512/3

FIGURE 26-16: IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC16LF1512/3 ONLY

