

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1513t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

10		7
2.0	Enhanced Mid-range CPU	11
3.0	Memory Organization	13
4.0	Device Configuration	35
5.0	Oscillator Module (With Fail-Safe Clock Monitor)	41
6.0	Resets	. 56
7.0	Interrupts	
8.0	Power-Down Mode (Sleep)	75
9.0	Low Dropout (LDO) Voltage Regulator	79
10.0	Watchdog Timer (WDT)	80
11.0	Flash Program Memory Control	84
12.0	I/O Ports	100
13.0	Interrupt-On-Change	115
14.0	Fixed Voltage Reference (FVR)	119
15.0	Temperature Indicator Module	121
16.0	Analog-to-Digital Converter (ADC) Module	123
17.0	Timer0 Module	157
18.0	Timer1 Module with Gate Control	160
19.0	Timer2 Module	171
20.0	Master Synchronous Serial Port (MSSP) Module	175
21.0	Capture/Compare/PWM Modules	228
22.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	237
23.0	In-Circuit Serial Programming™ (ICSP™)	266
24.0	Instruction Set Summary	268
25.0	Electrical Specifications	282
26.0	DC and AC Characteristics Graphs and Charts	312
27.0	Development Support	343
28.0	Packaging Information	347
The M	Microchip Website	359
Custo	omer Change Notification Service	359
Custo	omer Support	359
Produ	uct Identification System	360

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- · 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper seven bits of the address define the Bank address and the lower five bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-8.

Addresses	BANKx	
x00h or x80h	INDF0	
x01h or x81h	INDF1	
x02h or x82h	PCL	
x03h or x83h	STATUS	
x04h or x84h	FSR0L	
x05h or x85h	FSR0H	
x06h or x86h	FSR1L	
x07h or x87h	FSR1H	
x08h or x88h	BSR	
x09h or x89h	WREG	
x0Ah or x8Ah	PCLATH	
x0Bh or x8Bh	INTCON	

TABLE 3-2: CORE REGISTERS

FIGURE 5-10: **FSCM TIMING DIAGRAM**

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 8.0 "Power-Down Mode (Sleep)" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (CONTINUED)

ADC Clock	Period (TAD)	Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾		
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾		
Frc	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)		

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.6 μ s for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock Fosc. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 16-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
AADCAP	—	—	_	—	—	A	DDCAP<2:0	>	152		
AADCON0	—			CHS<4:0>			GO/DONE	ADON	147		
AADCON1	ADFM		ADCS<2:0>		—	-	ADPRE	F<1:0>	148		
AADCON2	_	Т	RIGSEL<2:0	>	—		—	—	149		
AADCON3	ADEPPOL	ADIPPOL	ADOLEN	ADOEN	ADOOEN		ADIPEN	ADDSEN	150		
AADGRD	GRDBOE	GRDAOE	GRDPOL		_		—	—	152		
AADPRE	—				ADPRE<6:0>	•		I			
AADRES0H	A/D Result	0 Register Hi	gh						154, 155		
AADRES0L	A/D Result (0 Register Lo	w						154, 155		
AADSTAT	—	_			_	ADCONV	ADST	151			
AADACQ	—				ADACQ<6:0>	>			152		
ANSELA	—	—	ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	104		
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	108		
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	111		
CCP1CON	—	—	DC1B	<1:0>		CCP1I	M<3:0>		236		
CCP2CON	_	_	DC2B	<1:0>		CCP2I	M<3:0>		236		
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_		ADFVI	R<1:0>	120		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	69		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	70		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	72		
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	103		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	107		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	110		

TABLE 16-5: SUMMARY OF REGISTERS ASSOCIATED WITH HARDWARE CVD

Legend: — = unimplemented read as '0'. Shaded cells are not used for ADC module.

18.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

18.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 secondary oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

18.9 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 21.0 "Capture/Compare/PWM Modules".

18.10 CCP Special Event Trigger

When the CCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and FOSC/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see **Section 16.2.5** "**Special Event Trigger**".

FIGURE 18-2: TIMER1 INCREMENTING EDGE

20.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 20-1 shows the block diagram of the MSSP module when operating in SPI Mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 20-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 20-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each SPI clock cycle, a full duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

20.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	104
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2		_	111
APFCON	_					—	SSSEL	CCP2SEL	101
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	69
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	70
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	72
SSPBUF	Synchronou	s Serial Port F	Receive Buffe	er/Transmit Re	egister				179*
SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		224
SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	226
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	224
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	103
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	110

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

Page provides register information.

REGISTER 20-3: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0/	0 R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV	SSPEN	CKP		SSP	M<3:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemen	ted bit, read as '0'		
u = Bit is unch	nanged	x = Bit is unknown	ו	-n/n = Value at P	OR and BOR/Valu	e at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	y hardware	C = User cleared	
bit 7	WCOL: Write Constant Master mode: 1 = A write to 1 0 = No collision Slave mode: 1 = The SSPB 0 = No collision	ollision Detect bit the SSPBUF registe n UF register is written v	r was attempted vhile it is still trans	while the I ² C condit smitting the previous v	tions were not valic word (must be cleare	l for a transmission f ed in software)	o be started
bit 6	SSPOV: Receiv In SPI mode: 1 = A new byte Overflow c SSPBUF r 0 = No overflo In I ² C mode: 1 = A byte is r (must be c 0 = No overflo	e Overflow Indicator e is received while the an only occur in Slav rflow. In Master mode egister (must be clear w received while the S cleared in software). w	bit ⁽¹⁾ SSPBUF registe e mode. In Slave t, the overflow bit red in software). SPBUF register	er is still holding the p mode, the user mus is not set since each is still holding the p	revious data. In cas t read the SSPBUF, new reception (and previous byte. SSP	e of overflow, the dat even if only transmit transmission) is initia OV is a "don't care'	a in SSPSR is lost. ting data, to avoid ted by writing to the ' in Transmit mode
bit 5	SSPEN: Synchr In both modes, v In SPI mode: 1 = Enables se 0 = Disables s $In I^2C mode:$ 1 = Enables th $0 = Disables s$	onous Serial Port Er when enabled, these erial port and configur erial port and config e serial port and config erial port and config	able bit pins must be pr es SCK, SDO, S ures these pins gures the SDA ar ures these pins	operly configured as DI and \overline{SS} as the sound as I/O port pins and SCL pins as the sound sound by the sou	s input or output urce of the serial por purce of the serial p	t pins ⁽²⁾ ort pins ⁽³⁾	
bit 4	CKP: Clock Pola In SPI mode: 1 = Idle state for 0 = Idle state for In I ² C Slave mo SCL release cor 1 = Enable clocd 0 = Holds clock In I ² C Master m Unused in this n	arity Select bit c clock is a high level c clock is a low level <u>de:</u> trol k low (clock stretch). (<u>ode:</u> node	Used to ensure	data setup time.)			
bit 3-0	SSPM<3:0>: Sy 0000 = SPI Mas 0001 = SPI Mas 0010 = SPI Mas 0010 = SPI SIA 0100 = SPI SIA 0101 = SPI SIA 0101 = I ² C SIA 1000 = Reserve 1010 = SPI Mas 1011 = I ² C SIA 1000 = Reserve 1101 = Reserve 1101 = Reserve 1101 = Reserve 1101 = I ² C SIA	richronous Serial Po ster mode, clock = Fo ster mode, clock = Fo ster mode, clock = Fo ster mode, clock = SC ve mode, clock = SC ve mode, clock = SC ve mode, clock = SC ter mode, clock = Fo ster mode, clock = Fo vare controlled Mast ed ve mode, 7-bit addres ve mode, 7-bit addres	rt Mode Select I DSC/4 DSC/16 DSC/64 MR2 output/2 K pin, <u>SS</u> pin co K pin, <u>SS</u> pin co SS DSC / (4 * (SSPAL DSC/(4 * (SSPAL er mode (Slave SS with Start and DSS with Start and	ntrol enabled ntrol disabled, SS c DD+1)) ⁽⁴⁾ DD+1)) ⁽⁵⁾ idle) Stop bit interrupts e d Stop bit interrupts e	an be used as I/O enabled enabled	pin	
Note 1:	In Master mode, the ov When enabled these	verflow bit is not set	since each new	reception (and trans	mission) is initiate	d by writing to the S	SPBUF register.

- 3: When enabled, the SDA and SCL pins must be configured as inputs.
- 4:
- SSPADD values of 0, 1 or 2 are not supported for l^2C mode. SSPADD value of '0' is not supported. Use SSPM = 0000 instead. 5:

21.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 21-4.

EQUATION 21-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse-width value is greater than the period, the assigned PWM pin(s) will remain unchanged.

TABLE 21-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 21-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0			
ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is cle	ared							
bit 7	ABDOVF: Au	ito-Baud Deteo	t Overflow bit							
	Asynchronou	<u>s mode</u> :								
	1 = Auto-bau	d timer overflov	wed							
	0 = Auto-bau	d timer did not	overflow							
	Don't care	<u>mode</u> .								
bit 6	RCIDL: Rece	ive Idle Flag bi	t							
	Asynchronou:	s mode:								
	1 = Receiver	is Idle	ad and the rea		.i.e. er					
	0 = Start bit n Synchronous	mode:	ed and the red	ceiver is receiv	ving					
	Don't care	<u></u> .								
bit 5	Unimplemen	ted: Read as '	0'							
bit 4	SCKP: Synch	nronous Clock	Polarity Select	bit						
	Asynchronou	<u>s mode</u> :								
	1 = Transmit 0 = Transmit	inverted data to non-inverted d	o the TX/CK pi ata to the TX/0	in CK pin						
	Synchronous	mode:		11						
	1 = Data is cl 0 = Data is cl	ocked on rising ocked on falling	g edge of the c g edge of the c	lock clock						
bit 3	BRG16: 16-b	it Baud Rate G	enerator bit							
	1 = 16-bit Ba	ud Rate Gener	ator is used							
h # 0		d Rate Genera	itor is used							
Dit 2		ted: Read as "	0							
DICI										
	1 = Receiver	<u>s moue</u> . is waiting for a	a falling edge	No character	will be received	byte RCIF will	he set WUF			
	will autom	atically clear a	fter RCIF is se	et.		, byte Ron win	De Set. WOL			
	0 = Receiver	is operating no	ormally							
	Synchronous	<u>mode</u> :								
h # 0		Devid Detect	Enchla hit							
	ABDEN: Auto	s mode:	Enable bit							
	1 = Auto-Bau	<u>s mode</u> . Id Detect mode	e is enabled (c	lears when a	ito-baud is com	olete)				
	0 = Auto-Bau	Id Detect mode	e is disabled							
	Synchronous	mode:								
	Don't care									

REGISTER 22-3: BAUDCON: BAUD RATE CONTROL REGISTER

RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	
TX/CK pin		
		·0'
RCIF bit (Interrupt)		
RCREG	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.	

FIGURE 22-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 22-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	249
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	69
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	70
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	72
RCREG			EUS	ART Receiv	e Data Reg	gister			242*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	248
SPBRGL				BRG	<7:0>				250*
SPBRGH				BRG<	:15:8>				250*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	110
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	247

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notos	
		Description		MSb			LSb	Affected	Notes	
		CONTROL OPERA	TIONS							
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk			
BRW	_	Relative Branch with W	2	00	0000	0000	1011			
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk			
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010			
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
RETFIE	k	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
INHERENT OPERATIONS										
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD		
NOP	-	No Operation	1	00	0000	0000	0000			
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010			
RESET	-	Software device Reset	1	00	0000	0000	0001			
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD		
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf			
C-COMPILER OPTIMIZED										
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk			
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3	
		modifier, mm								
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2	
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3	
		modifier, mm								
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2	

TABLE 24-4: PIC16(L)F1512/3 INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

FIGURE 25-3: POR AND POR REARM WITH SLOW RISING VDD

TABLE 25-13: A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
AD130*	Tad	A/D Clock Period	1.0	_	9.0	μs	Tosc-based				
		A/D Internal RC Oscillator Period	1.0	1.6	6.0	μS	ADCS<1:0> = 11 (ADRC mode)				
AD131	Тслу	Conversion Time (not including Acquisition Time) ⁽¹⁾	-	11	-	Tad	Set GO/DONE bit to conversion complete				
AD132*	TACQ	Acquisition Time	_	5.0	_	μS					
*	* These parameters are characterized but not toeted										

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

Note 1: The ADRES register may be read on the following TCY cycle.

FIGURE 25-12: A/D CONVERSION TIMING (NORMAL MODE)

FIGURE 26-55: FVR STABILIZATION PERIOD, PIC16LF1512/3 ONLY

FIGURE 26-57: LFINTOSC FREQUENCY OVER VDD AND TEMPERATURE, PIC16F1512/3 ONLY

