

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga006t-i-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2		Pin Number				
Function	64-Pin	80-Pin	100-Pin	I/O	Input Buffer	Description
AN0	16	20	25	1	ANA	A/D Analog Inputs.
AN1	15	19	24	I	ANA	
AN2	14	18	23	1	ANA	
AN3	13	17	22	I	ANA	
AN4	12	16	21	I	ANA	
AN5	11	15	20	I	ANA	
AN6	17	21	26	I	ANA	
AN7	18	22	27	I	ANA	
AN8	21	27	32	I	ANA	-
AN9	22	28	33	I	ANA	-
AN10	23	29	34	I	ANA	-
AN11	24	30	35	I	ANA	
AN12	27	33	41	I	ANA	-
AN13	28	34	42	I	ANA	1
AN14	29	35	43	I	ANA	1
AN15	30	36	44	I	ANA	
AVdd	19	25	30	Р	_	Positive Supply for Analog Modules.
AVss	20	26	31	Р	_	Ground Reference for Analog Modules.
BCLK1	35	38	48	0	_	UART1 IrDA [®] Baud Clock.
BCLK2	29	35	39	0	_	UART2 IrDA [®] Baud Clock.
C1IN-	12	16	21	I	ANA	Comparator 1 Negative Input.
C1IN+	11	15	20	I	ANA	Comparator 1 Positive Input.
C10UT	21	27	32	0	_	Comparator 1 Output.
C2IN-	14	18	23	I	ANA	Comparator 2 Negative Input.
C2IN+	13	17	22	I	ANA	Comparator 2 Positive Input.
C2OUT	22	28	33	0	_	Comparator 2 Output.
CLKI	39	49	63	I	ANA	Main Clock Input Connection.
CLKO	40	50	64	0	_	System Clock Output.
CN0	48	60	74	I	ST	Interrupt-on-Change Inputs.
CN1	47	59	73	I	ST	
CN2	16	20	25	I	ST	
CN3	15	19	24	I	ST	
CN4	14	18	23	I	ST]
CN5	13	17	22	I	ST]
CN6	12	16	21	I	ST	
CN7	11	15	20	I	ST	
CN8	4	6	10	I	ST	
CN9	5	7	11	I	ST	
CN10	6	8	12	I	ST	
CN11	8	10	14	I	ST	
CN12	30	36	44	I	ST	
CN13	52	66	81	1	ST	
CN14	53	67	82	I	ST	
CN15	54	68	83	I	ST	
CN16	55	69	84	I	ST	
CN17	31	39	49	I	ST	
Legend: 1		ut buffor ST -	- Schmitt Tria	aor input k	ouffor ANA	= Analog level input/output, $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 1-2: PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, $l^2C^{TM} = l^2C/SMBus$ input buffer

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operation with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m+1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided below in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction Description							
ASR	Arithmetic shift right source register by one or more bits.						
SL	Shift left source register by one or more bits.						
LSR	Logical shift right source register by one or more bits.						

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

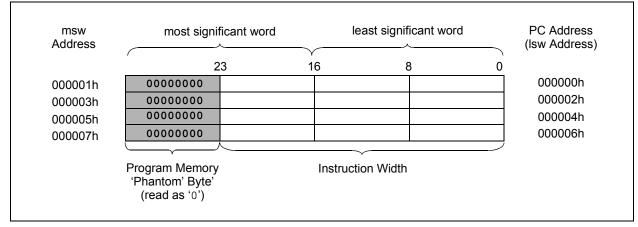
Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables (IVT), located from 000004h to 0000FFh, and 000100h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in **Section 7.1 "Interrupt Vector Table**".

4.1.3 FLASH CONFIGURATION WORDS


In PIC24FJ128GA010 family devices, the top two words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration registers. The addresses of the Flash Configuration Word for devices in the PIC24FJ128GA010 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1.

The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words do not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in **Section 24.1** "**Configuration Bits**".

TABLE 4-1:	FLASH CONFIGURATION
	WORDS FOR
	PIC24FJ128GA010 FAMILY
	DEVICES

Device	Program Memory (Words)	Configuration Word Addresses
PIC24FJ64GA	22,016	00ABFCh: 00ABFEh
PIC24FJ96GA	32,768	00FFFCh: 00FFFEh
PIC24FJ128GA	44,032	0157FCh: 0157FEh

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-15: A/D REGISTER MAP

IADLL 4	-15.																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								A/D Data	a Buffer 0								xxxx
ADC1BUF1	0302								A/D Data	a Buffer 1								xxxx
ADC1BUF2	0304								A/D Data	a Buffer 2								xxxx
ADC1BUF3	0306		A/D Data Buffer 3 xx										xxxx					
ADC1BUF4	0308		A/D Data Buffer 4										xxxx					
ADC1BUF5	030A		A/D Data Buffer 5									xxxx						
ADC1BUF6	030C								A/D Data	a Buffer 6								xxxx
ADC1BUF7	030E								A/D Data	a Buffer 7								xxxx
ADC1BUF8	0310								A/D Data	a Buffer 8								xxxx
ADC1BUF9	0312								A/D Data	a Buffer 9								xxxx
ADC1BUFA	0314								A/D Data	Buffer 10								xxxx
ADC1BUFB	0316								A/D Data	Buffer 11								xxxx
ADC1BUFC	0318								A/D Data	Buffer 12								xxxx
ADC1BUFD	031A								A/D Data	Buffer 13								xxxx
ADC1BUFE	031C								A/D Data	Buffer 14								xxxx
ADC1BUFF	031E			-					A/D Data	Buffer 15	-		-	-		-	-	xxxx
AD1CON1	0320	ADON	_	ADSIDL	—	—	—	FORM1	FORM0	SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	r	—	CSCNA	_	—	BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	_	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	_		—	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA		_		CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFG	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
1																		

Legend: x = unknown value on Reset; - = unimplemented, read as '0'; r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15 ⁽¹⁾	TRISA14 ⁽¹⁾	_	_	-	TRISA10 ⁽¹⁾	TRISA9 ⁽¹⁾	_	TRISA7(2)	TRISA6(2)	TRISA5(2)	TRISA4 ⁽²⁾	TRISA3(2)	TRISA2(2)	TRISA1(2)	TRISA0(2)	C6FF
PORTA	02C2	RA15 ⁽¹⁾	RA14 ⁽¹⁾	_	—	_	RA10 ⁽¹⁾	RA9 ⁽¹⁾	—	RA7	RA6	RA5 ⁽²⁾	RA4 ⁽²⁾	RA3 ⁽²⁾	RA2 ⁽²⁾	RA1 ⁽²⁾	RA0 ⁽²⁾	xxxx
LATA	02C4	LATA15 ⁽¹⁾	LATA14 ⁽¹⁾	_	_	_	LATA10 ⁽¹⁾	LATA9 ⁽¹⁾	_	LATA7	LATA6	LATA5 ⁽²⁾	LATA4 ⁽²⁾	LATA3 ⁽²⁾	LATA2 ⁽²⁾	LATA1 ⁽²⁾	LATA0 ⁽²⁾	xxxx
ODCA	06C0	ODA15 ⁽¹⁾	ODA14 ⁽¹⁾	_	_	_	ODA10 ⁽¹⁾	ODA9 ⁽¹⁾	_	ODA7	ODA6	ODA5 ⁽²⁾	ODA4 ⁽²⁾	ODA3 ⁽²⁾	ODA2 ⁽²⁾	ODA1 ⁽²⁾	ODA0 ⁽²⁾	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices.

Note 1: Implemented in 80-pin and 100-pin devices only.

2: Implemented in 100-pin devices only.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

	; Set up NVMCO	N for row programming operation	ns	
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
	; Set up a poi	nter to the first program memo:	ry	location to be written
	; program memo	ry selected, and writes enabled	d	
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
	; Perform the	TBLWT instructions to write the	e i	latches
	; 0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	; 1st_program_	word		
	MOV	#LOW_WORD_1, W2	;	
		#HIGH_BYTE_1, W3	;	
		W2, [W0]		Write PM low word into program latch
		W3, [W0++]	;	Write PM high byte into program latch
	; 2nd_program	—		
	MOV	#LOW_WORD_2, W2	;	
		<pre>#HIGH_BYTE_2, W3</pre>	;	
		W2, [W0]		Write PM low word into program latch
		W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•	_		
1	; 63rd_program	—		
	MOV	#LOW_WORD_31, W2	;	
		<pre>#HIGH_BYTE_31, W3</pre>	;	
		W2, [W0]		Write PM low word into program latch
1	TRTMLH	W3, [W0]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the program/erase sequence
BTSC	NVMCON, #15	; and wait for it to be
BRA	\$-2	; completed

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to **Section 8. "Interrupts"** (DS39707) in the *"PIC24F Family Reference Manual"* for more information.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ128GA010 family devices implement nonmaskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F device clears its registers in response to a Reset which forces the PC to zero. The microcontroller then begins program execution at location, 00000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER	<i>i</i> - <i>i</i>	INTERRUPT					
U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0
—	—	PMPIF	_	—	_	OC5IF	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
IC5IF	IC4IF	IC3IF	—	—	—	SPI2IF	SPF2IF
bit 7							bit 0
Legend:							
R = Readabl		W = Writable		•	nented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplomon	ted. Dood on '	o'				
bit 13	•	i ted: Read as 'i llel Master Port		a Status bit			
DIL 15		request has occ		y Status Dit			
		request has not					
bit 12-10	Unimplemen	ted: Read as '	0'				
bit 9	OC5IF: Output	ut Compare Ch	annel 5 Interr	upt Flag Status	s bit		
		request has occ					
	-	request has not					
bit 8	•	ted: Read as '					
bit 7	•	Capture Channe	•	-lag Status bit			
		request has occ request has not					
bit 6	•	Capture Channe		Flag Status bit			
	•	request has occ	•	- 3			
	0 = Interrupt	request has not	occurred				
bit 5	IC3IF: Input C	Capture Channe	el 3 Interrupt I	Flag Status bit			
		request has occ					
h:+ 4 0	•	request has not					
bit 4-2 bit 1	-	ted: Read as '		-:+			
		Event Interrup request has occ	-	JIL			
		request has not					
bit 0		2 Fault Interrup		oit			
		request has occ					
	0 = Interrupt	request has not	occurred				

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—		—	_	—	—	—	—		
bit 15	•			•			bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
_		_		_	INT1IP2	INT1IP1	INT1IP0		
bit 7	•			•			bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	e at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown		

bit 15-3 Unimplemented: Read as '0'

- INT1IP<2:0>: External Interrupt 1 Priority bits
 - 111 = Interrupt is Priority 7 (highest priority interrupt)
 - •

bit 2-0

•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0							
bit 15		•	•			·	bit 8							
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0							
	U1ERIP2	U1ERIP1	U1ERIP0	<u> </u>			0-0							
bit 7	UTERII 2	OTEINIT	OTENITO				bit C							
Legend:	la hit		L:4		mented bit meet									
R = Readab		W = Writable		-	mented bit, read									
-n = Value a	TPOR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	lown							
bit 15	Unimplemen	ted: Read as '	0'											
bit 14-12	-	CRC Generato		ot Priority bits										
		111 = Interrupt is Priority 7 (highest priority interrupt)												
	•													
	• 001 = Interru	ot is Priority 1												
		ot source is dis	abled											
bit 11	-	ted: Read as '												
bit 10-8	-	UART2 Erro		ority bits										
		ot is Priority 7 (•										
	•	-												
	•													
	•													
	001 = Interru	ot is Priority 1												
	001 = Interru 000 = Interru	ot is Priority 1 ot source is dis	abled											
bit 7	000 = Interru													
	000 = Interru Unimplemen	ot source is dis	0'	prity bits										
	000 = Interru Unimplemen U1ERIP<2:0>	ot source is dis ted: Read as '	^{0'} r Interrupt Pric	•										
	000 = Interru Unimplemen U1ERIP<2:0>	ot source is dis ted: Read as ' •: UART1 Error	^{0'} r Interrupt Pric	•										
	000 = Interru Unimplemen U1ERIP<2:0>	ot source is dis ted: Read as ' •: UART1 Error	^{0'} r Interrupt Pric	•										
bit 7 bit 6-4	000 = Interruj Unimplemen U1ERIP<2:0> 111 = Interruj • •	ot source is dis ted: Read as ' •: UART1 Error ot is Priority 7 (^{0'} r Interrupt Pric	•										
	000 = Interruj Unimplemen U1ERIP<2:0> 111 = Interruj 001 = Interruj	ot source is dis ted: Read as ' •: UART1 Error ot is Priority 7 (^{0'} r Interrupt Pric highest priorit	•										

REGISTER 7-30: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

REGISTER	8-2: CLKDI	V: CLOCK D		GISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			0-0				
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	าดพท
bit 14-12	111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1	CPU Periphera					
bit 11	1 = DOZE<2:	E Enable bit ⁽¹ :0> bits specify pheral clock ra	the CPU per	ipheral clock ra	tio		
bit 10-8	RCDIV<2:0>: 111 = 31.25 k 110 = 125 kH 101 = 250 kH	FRC Postscal (Hz (divide-by-64 z (divide-by-32 z (divide-by-32 z (divide-by-16 (divide-by-8) (divide-by-4) (divide-by-2)	er Select bits 256) 4) 2)				
bit 7-0	Unimplemen	ted: Read as '	0'				

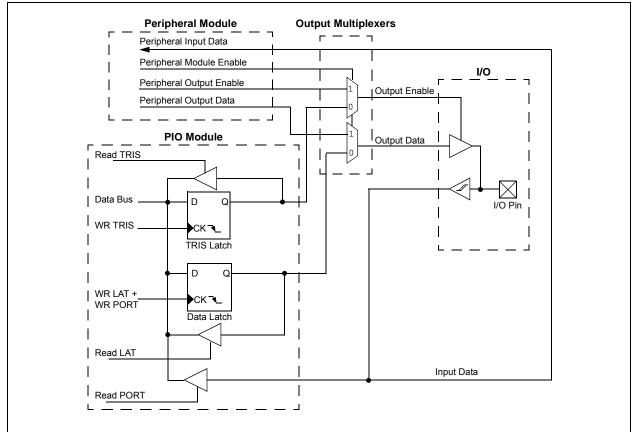
REGISTER 8-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

10.0 I/O PORTS

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. Refer to Section 12. "I/O
	Ports with Peripheral Pin Select (PPS)"
	(DS39711) in the "PIC24F Family
	Reference Manual" for more information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.


10.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless, regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

NOTES:

19.2 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.

EQUATION 19-1:

(Ideal Frequency[†] – Measured Frequency) * 60 = Clocks per Minute

† Ideal Frequency = 32,768 Hz

3. a) If the oscillator is faster then ideal (negative result form Step 2), the RCFGCAL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower then ideal (positive result from Step 2), the RCFGCAL register value needs to be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

 Divide the number of error clocks per minute by 4 to get the correct CAL value and load the RCFGCAL register with the correct value. (Each 1-bit increment in CAL adds or subtracts 4 pulses). Load the RCFGCAL register with the correct value.

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off or immediately after the rising edge of the seconds pulse.

Note:	It is up to the user to include in the error
	value, the initial error of the crystal drift
	due to temperature and drift due to crystal
	aging.

19.3 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>, Register 19-3)
- One-time alarm and repeat alarm options are available

19.3.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVALH:ALRMVALL should only take place when ALRMEN = 0.

As shown in Figure 19-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur. The alarm can also be configured to repeat, based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the lower half of the ALCFGRPT register.

When ALCFGRPT = 0.0 and the CHIME (ALCFGRPT<14>) bit = 0, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading the lower half of the ALCFGRPT register with FFh.

After each alarm is issued, the ALCFGRPT register is decremented by one. Once the register has reached '00', the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off. Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the ALCFGRPT register reaches '00', it will roll over to FF and continue counting indefinitely when CHIME = 1.

19.3.2 ALARM INTERRUPT

At every alarm event an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note: Changing any of the registers, other then the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

NOTES:

24.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 32. "High-Level Device Integration" (DS39719) in the "PIC24F Family Reference Manual" for more information.

PIC24FJ128GA010 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list is shown in Table 24-1. A detailed explanation of the various bit functions is provided in Register 24-1 through Register 24-4.

Note that address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using table reads and table writes.

24.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ128GA010 FAMILY DEVICES

In PIC24FJ128GA010 family devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the two words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 24-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among five locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

TABLE 24-1:FLASH CONFIGURATION
WORD LOCATIONS

Device	Configuration Word Addresses						
	1	2					
PIC24FJ64GA	00ABFEh	00ABFCh					
PIC24FJ96GA	00FFFEh	00FFFCh					
PIC24FJ128GA	0157FEh	0157FCh					

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The Configuration bits are reloaded from the Flash Configuration Word on any device Reset.

The upper byte of both Flash Configuration Words in program memory should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

REGISTER 24-2: FLASH CONFIGURATION WORD 2

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
—	_	_	—				—			
bit 23	•					•	bit 16			
R/PO-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1			
IESO	—	<u> </u>	—		FNOSC2	FNOSC1	FNOSC0			
bit 15 bit										
R/PO-1	R/PO-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1			
FCKSM1	FCKSM0	OSCIOFCN	—	—	—	POSCMD1	POSCMD0			
bit 7							bit 0			
Legend:		x = Bit is unkn								
R = Reada		PO = Program		-	nted bit, read as	'0'				
-n = Value	when device	is unprogramme	ed	'1' = Bit is set		'0' = Bit is clea	ared			
bit 23-16	-	nted: Read as '								
bit 15		al External Swit								
		ode (Two-Speed ode (Two-Speed								
bit 14-11		nted: Read as '	• /	ISabled						
bit 10-8	-	>: Initial Oscilla								
bit 10-0		RC Oscillator wi		(FRCDIV)						
	110 = Reser									
		ower RC Oscill								
		ndary Oscillator		(XTPLL, HSPLL,						
		ry Oscillator (X ⁻		(XIFLL, HOFLL,	EGFLL)					
				and PLL module (FRCPLL)					
	000 = Fast F	RC Oscillator (F	RC)							
bit 7-6			•	afe Clock Monito	•	vits				
				Monitor are disat						
		•		Clock Monitor is Clock Monitor is						
bit 5		OSC2 Pin Con								
		<1:0> = 11 or 0	-							
		LKO/RC15 fund								
	0 = OSC2/CLKO/RC15 functions as port I/O (RC15)									
		If POSCMD<1:0> = 10 or 01: OSCIOFCN has no effect on OSC2/CLKO/RC15.								
				/RC15						
bit 4-2	OSCIOFCN	has no effect or	n OSC2/CLKO	/RC15.						
bit 4-2 bit 1-0	OSCIOFCN Unimpleme	has no effect or nted: Read as '	n OSC2/CLKO 1'							
bit 4-2 bit 1-0	OSCIOFCN Unimplemen POSCMD<1	has no effect or nted: Read as ' :0>: Primary Os	n OSC2/CLKO 1' scillator Config							
	OSCIOFCN Unimplement POSCMD<1 11 = Primary	has no effect or nted: Read as '	n OSC2/CLKO 1' scillator Config sabled							
	OSCIOFCN Unimplement POSCMD<1 11 = Primary 10 = HS Osc 01 = XT Osc	has no effect or nted: Read as ' :0>: Primary Os / oscillator is dis	n OSC2/CLKO 1' scillator Config sabled selected selected							

REGISTER 24-4: DEVREV: DEVICE REVISION REGISTER

bit 7							bit 0
MAJRV1	MAJRV0		_		DOT2	DOT1	DOT0
R	R	U	U	U	R	R	R
bit 15							bit 8
r	r	r	r	—	—	—	MAJRV2
R-0	R-0	R-1	R-1	U	U	U	R
bit 23							bit 16
—	—	—	—	—	—	—	— —
U	U	U	U	U	U	U	U

Legend: x = Bit is unknown		r = Reserved				
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, rea	d as '1'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 23-16 Unimplemented: Read as '0'
- bit 15-12 Reserved: Read as '0011'
- bit 11-9 Unimplemented: Read as '0'
- bit 8-6 MAJRV<2:0>: Major Revision Identifier bits
- bit 5-3 Unimplemented: Read as '0'
- bit 2-0 DOT<2:0>: Minor Revision Identifier bits

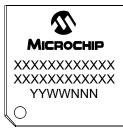
DC CHA	DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions		
		Program Flash Memory							
D130	Eр	Cell Endurance	100	1K	_	E/W	-40°C to +85°C		
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage		
D132B	VPEW	VDD for Self-Timed Erase/Write	2.25	—	3.6	V			
D133A	Tiw	Self-Timed Write Cycle Time	_	3	_	ms			
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current During Programming	_	10		mA			

TABLE 27-11: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 27-12: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Sym	n Characteristics		Тур	Max	Units	Comments	
	VRGOUT	Regulator Output Voltage	_	2.5	—	V		
	Cefc	External Filter Capacitor Value	4.7	10	—	μF	Series resistance < 3 Ohm recommended; < 5 Ohm required.	
	TVREG	Voltage Regulator Start-up Time	—	500	—	μS	ENVREG = VDD	
	TPWRT	Power-up Timer Period		64	_	ms	ENVREG = Vss	
	Tbg	Band Gap Reference Start-up Time			1	ms		


28.0 PACKAGING INFORMATION

28.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

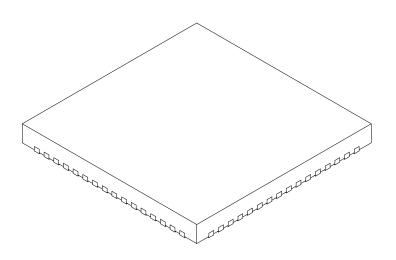
80-Lead TQFP (12x12x1 mm)

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

Example

Example


Example

Legend:	XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)
		can be found on the outer packaging for this package.
Note:	n the eve	nt the full Microchip part number cannot be marked on one line, it will
		d over to the next line, thus limiting the number of available s for customer-specific information.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Number of Pins	Ν		64	
Pitch	е		0.50 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	-
Overall Width	Е		9.00 BSC	
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2