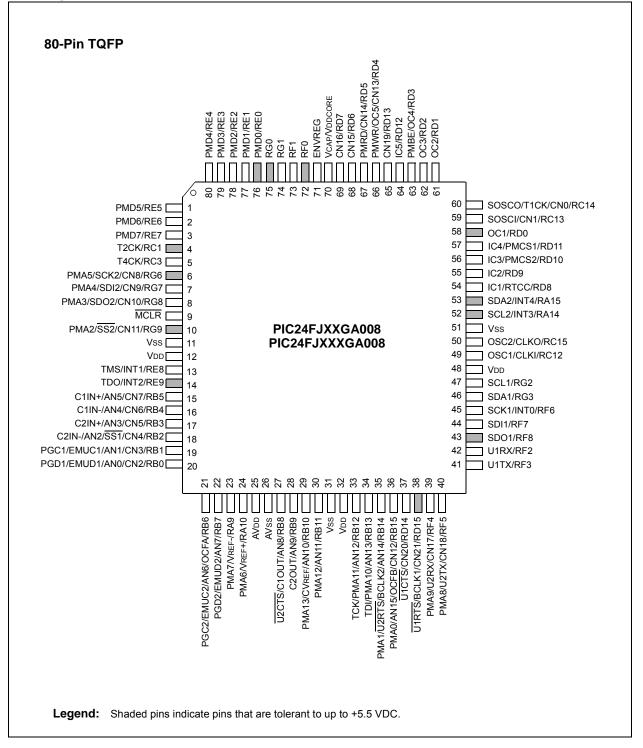


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Decans	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga006-i-mr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

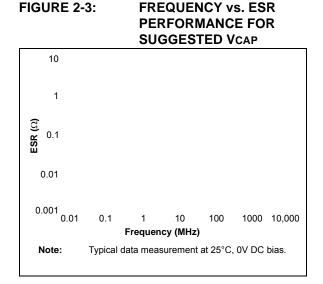
Pin Diagrams (Continued)

2.4 **Voltage Regulator Pins** (ENVREG/DISVREG and VCAP/VDDCORE)

Note:	This section applies only to PIC24F J
	devices with an on-chip voltage regulator.

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:

- For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator
- · For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator


Refer to Section 24.2 "On-Chip Voltage Regulator" for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (< 5Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD and must use a capacitor of 10 µF connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specification can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to Section 27.0 "Electrical Characteristics" for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to Section 27.0 "Electrical Characteristics" for information on VDD and VDDCORE.

TABLE 2-1:	SUITABLE CAPACITOR	EQUIVALENTS			
Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to 125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to 85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to 125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to 85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to 125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to 85°C

TABLE 4-15: A/D REGISTER MAP

IADLL 4	-15.																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								A/D Data	a Buffer 0								xxxx
ADC1BUF1	0302								A/D Data	a Buffer 1								xxxx
ADC1BUF2	0304								A/D Data	a Buffer 2								xxxx
ADC1BUF3	0306								A/D Data	a Buffer 3								xxxx
ADC1BUF4	0308								A/D Data	a Buffer 4								xxxx
ADC1BUF5	030A								A/D Data	a Buffer 5								xxxx
ADC1BUF6	030C								A/D Data	a Buffer 6								xxxx
ADC1BUF7	030E								A/D Data	a Buffer 7								xxxx
ADC1BUF8	0310								A/D Data	a Buffer 8								xxxx
ADC1BUF9	0312		A/D Data Buffer 9 xx													xxxx		
ADC1BUFA	0314								A/D Data	Buffer 10								xxxx
ADC1BUFB	0316								A/D Data	Buffer 11								xxxx
ADC1BUFC	0318								A/D Data	Buffer 12								xxxx
ADC1BUFD	031A								A/D Data	Buffer 13								xxxx
ADC1BUFE	031C								A/D Data	Buffer 14								xxxx
ADC1BUFF	031E			-					A/D Data	Buffer 15	-		-	-		-	-	xxxx
AD1CON1	0320	ADON	_	ADSIDL	—	—	—	FORM1	FORM0	SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	r	—	CSCNA	_	—	BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	_	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	_		—	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA		_		CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFG	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
1																		

Legend: x = unknown value on Reset; - = unimplemented, read as '0'; r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15 ⁽¹⁾	TRISA14 ⁽¹⁾	_	_	-	TRISA10 ⁽¹⁾	TRISA9 ⁽¹⁾	_	TRISA7(2)	TRISA6(2)	TRISA5(2)	TRISA4 ⁽²⁾	TRISA3(2)	TRISA2(2)	TRISA1(2)	TRISA0(2)	C6FF
PORTA	02C2	RA15 ⁽¹⁾	RA14 ⁽¹⁾	_	—	_	RA10 ⁽¹⁾	RA9 ⁽¹⁾	—	RA7	RA6	RA5 ⁽²⁾	RA4 ⁽²⁾	RA3 ⁽²⁾	RA2 ⁽²⁾	RA1 ⁽²⁾	RA0 ⁽²⁾	xxxx
LATA	02C4	LATA15 ⁽¹⁾	LATA14 ⁽¹⁾	_	_	_	LATA10 ⁽¹⁾	LATA9 ⁽¹⁾	_	LATA7	LATA6	LATA5 ⁽²⁾	LATA4 ⁽²⁾	LATA3 ⁽²⁾	LATA2 ⁽²⁾	LATA1 ⁽²⁾	LATA0 ⁽²⁾	xxxx
ODCA	06C0	ODA15 ⁽¹⁾	ODA14 ⁽¹⁾	_	_	_	ODA10 ⁽¹⁾	ODA9 ⁽¹⁾	_	ODA7	ODA6	ODA5 ⁽²⁾	ODA4 ⁽²⁾	ODA3 ⁽²⁾	ODA2 ⁽²⁾	ODA1 ⁽²⁾	ODA0 ⁽²⁾	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices.

Note 1: Implemented in 80-pin and 100-pin devices only.

2: Implemented in 100-pin devices only.

TABLE 4-17: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13 ⁽¹⁾	TRISB12 ⁽¹⁾	TRISB11 ⁽¹⁾	TRISB10 ⁽¹⁾	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13 ⁽¹⁾	RB12 ⁽¹⁾	RB11 ⁽¹⁾	RB10 ⁽¹⁾	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13 ⁽¹⁾	LATB12 ⁽¹⁾	LATB11 ⁽¹⁾	LATB10 ⁽¹⁾	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	06C6	ODB15	ODB14	ODB13 ⁽¹⁾	ODB12 ⁽¹⁾	ODB11 ⁽¹⁾	ODB10 ⁽¹⁾	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices

Note 1: Unimplemented when JTAG is enabled.

TABLE 4-18: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	—	—	—	—	TRISC4(2)	TRISC3(1)	TRISC2(2)	TRISC1 ⁽¹⁾	_	F01E
PORTC	02CE	RC15	RC14	RC13	RC12		_	_	_	_	_	_	RC4 ⁽²⁾	RC3 ⁽¹⁾	RC2 ⁽²⁾	RC1 ⁽¹⁾	_	XXXX
LATC	02D0	LATC15	LATC14	LATC13	LATC12		_	_	_	_	_	_	LATC4 ⁽²⁾	LATC3 ⁽¹⁾	LATC2 ⁽²⁾	LATC1 ⁽¹⁾	_	XXXX
ODCC	06CC	ODC15	ODC14	ODC13	ODC12		_	_	_	_	_	_	ODC4 ⁽²⁾	ODC3 ⁽¹⁾	ODC2 ⁽²⁾	ODC1 ⁽¹⁾	_	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices.

Note 1: Implemented in 80-pin and 100-pin devices only.

2: Implemented in 100-pin devices only

TABLE 4-19: PORTD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15 ⁽¹⁾	TRISD14(1)	TRISD13(1)	TRISD12(1)	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15 ⁽¹⁾	RD14 ⁽¹⁾	RD13 ⁽¹⁾	RD12 ⁽¹⁾	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15 ⁽¹⁾	LATD14 ⁽¹⁾	LATD13 ⁽¹⁾	LATD12 ⁽¹⁾	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODD15 ⁽¹⁾	ODD14 ⁽¹⁾	ODD13 ⁽¹⁾	ODD12 ⁽¹⁾	ODD11	ODD10	ODD9	ODD8	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices.

Note 1: Implemented in 80-pin and 100-pin devices only.

TABLE 4-27: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	_	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	_	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXOR	0642		- <u>CSIDL</u> VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT <u>CRCGO</u> PLEN3 PLEN2 PLEN1 PLEN0 CRC XOR Polynomial Register															0000
CRCDAT	0644							(CRC Data Ir	nput Registe	r							0000
CRCWDAT	0646								CRC Resu	ılt Register								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_		—	_	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{xxxx} (1)
OSCCON	0742	_	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF		SOSCEN	OSWEN	xxxx(2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	0100
OSCTUN	0748	_	—	_	_	—	_	_	_	—	_			TUN	<5:0>			0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-29:NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR		—	_		_		ERASE	_		NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000 (1)
NVMKEY	0766	_		—	-	_		-	_				NVMKE	Y<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-30: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	_	_		I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	ADC1MD	0000
PMD2	0772	_	—	_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	—	CMPMD	RTCCMD	PMPMD	CRCPMD	—	_	—	—	_	I2C2MD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC24FJ128GA010 FAMILY

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0				
bit 15	·	•	·				bit				
		DAMO				DAALO					
U-0	R/W-1 IC1IP2	R/W-0 IC1IP1	R/W-0 IC1IP0	U-0	R/W-1 INT0IP2	R/W-0 INT0IP1	R/W-0 INT0IP0				
 bit 7	ICTIFZ	ICTIFT	ICTIFU	—	INTUFZ	INTUFT	bit				
Legend:											
R = Readab		W = Writable		-	mented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimpleme	ented: Read as	·0'								
bit 14-12	-	Timer1 Interrup									
		upt is Priority 7		y interrupt)							
	•										
	•										
	001 = Interrupt is Priority 1										
	000 = Interr	upt source is dis	sabled								
bit 11	Unimpleme	ented: Read as	0'								
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits										
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled										
bit 7		upt source is dis ented: Read as '									
	-			rrupt Drigrity h	vito						
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	• 001 = Interrupt is Priority 1										
		upt is Priority 1	sabled								
bit 3		nted: Read as									
bit 2-0	INT0IP<2:0	INTOIP<2:0:> External Interrupt 0 Priority bits									
	111 = Interr	upt is Priority 7	(highest priorit	ty interrupt)							
	•										
	•										
	001 = Interr	upt is priority 1									

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0					
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0					
bit 7					1011 2	1011 1	bit					
Legend:	1- 1-14		L-:4			d = = (0)						
R = Readab		W = Writable		-	emented bit, rea							
-n = Value a	IL POR	'1' = Bit is set		'0' = Bit is cle	eareu	x = Bit is unkr	IOWII					
bit 15	Unimplemen	ted: Read as '	0'									
bit 14-12	-	-: UART1 Rece		Priority bits								
	111 = Interru	pt is Priority 7 ((highest priorit	y interrupt)								
	•	 111 = Interrupt is Priority 7 (highest priority interrupt) • 										
	•											
	• 001 = Interrupt is Priority 1											
		pt source is dis	sabled									
bit 11	Unimplemen	ted: Read as '	0'									
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits											
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interrupt is Priority 1											
		pt source is dis	abled									
bit 7	Unimplemen	ted: Read as '	0'									
bit 6-4	SPF1IP<2:0>	SPF1IP<2:0>: SPI1 Fault Interrupt Priority bits										
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is Priority 1											
		pt source is dis	abled									
bit 3	Unimplemen	ted: Read as '	0'									
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits									
	111 = Interru	pt is Priority 7 ((highest priorit	y interrupt)								
	•											
	•											
	•											
	• 001 = Interru	pt is Prioritv 1										

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	_	—	
bit 15							bit 8	
	D 444 4	D 444 0	D 444 A		D 444 4	D 444 0	D 444 0	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
—	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-7	Unimplemer	ted: Read as '	0'					
bit 6-4 AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)								

	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•

•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- 2. Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx Control register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note: At a device Reset, the IPC registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx Status register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx Control register.

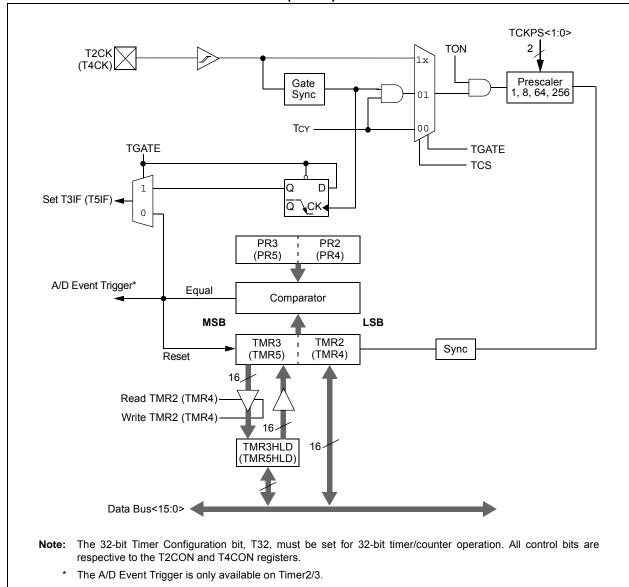
7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

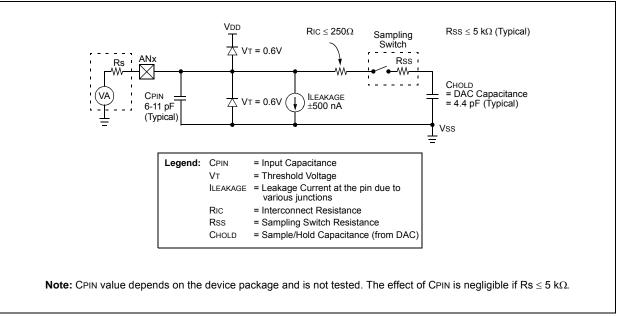

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Level 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.


FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

EQUATION 21-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

TAD = TCY(ADCS + 1) $ADCS = \frac{TAD}{TCY} - 1$

Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.

FIGURE 21-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 5	C2INV: Comparator 2 Output Inversion bit 1 = C2 output is inverted
	0 = C2 output is not inverted
bit 4	C1INV: Comparator 1 Output Inversion bit
	1 = C1 output is inverted0 = C1 output is not inverted
bit 3	C2NEG: Comparator 2 Negative Input Configure bit
	1 = C2IN+ is connected to VIN-
	0 = C2IN- is connected to VIN-
	See Figure 22-1 for the Comparator modes.
bit 2	C2POS: Comparator 2 Positive Input Configure bit
	1 = C2IN+ is connected to VIN+
	0 = CVREF is connected to VIN+
	See Figure 22-1 for the Comparator modes.
bit 1	C1NEG: Comparator 1 Negative Input Configure bit
	1 = C1IN+ is connected to VIN-
	0 = C1IN- is connected to VIN-
	See Figure 22-1 for the Comparator modes.
bit 0	C1POS: Comparator 1 Positive Input Configure bit
	1 = C1IN is connected to VIN+
	0 = CVREF is connected to VIN+
	See Figure 22-1 for the Comparator modes.

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	_	_	—	—	—
bit 15							bit
	5444	D 444 A		D 444 A			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable b	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 6	0 = CVREF cir CVROE: Com 1 = CVREF vo	rcuit is powered rcuit is powered nparator VREF O oltage level is ou oltage level is di	down utput Enable I itput on the C ^v	VREF pin	bin		
bit 5	1 = 0 to 0.62	arator VREF Rai 5 CVRSRC, with SRC to 0.72 CV	CVRSRC/24 s	tep size	ze		
bit 4	1 = Compara	CVRSS: Comparator VREF Source Selection bit 1 = Comparator reference source: CVRSRC = VREF+ – VREF- 0 = Comparator reference source: CVRSRC = AVDD – AVSS					
bit 3-0	$CVR<3:0>: Comparator VREF Value Selection 0 \le CVR<3:0> \le 15 \text{ bits}$ $\frac{When CVRR = 1:}{CVREF = (CVR<3:0>/24) \bullet (CVRSRC)}$ $\frac{When CVRR = 0:}{CVREF = 1/4 \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)}$						

27.1 DC Characteristics

TABLE 27-1: OPERATING MIPS vs. VOLTAGE

VDD Range	Temp Range	Max MIPS
(in Volts)	(in °C)	PIC24FJ128GA010 Family
2.0-3.6V	-40°C to +85°C	16

TABLE 27-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC24FJ128GA010 Family:					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	Pint + Pi/o W			W
Maximum Allowed Power Dissipation	Ромах (Тj – Та)/θја			W	

TABLE 27-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 14x14x1 mm TQFP	θJA	50	_	°C/W	(Note 1)
Package Thermal Resistance, 12x12x1 mm TQFP	θJA	69.4	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm TQFP	θJA	76.6	_	°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 27-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
Operat	ing Voltag	e						
DC10	Supply V	oltage						
	Vdd		VBOR	_	3.6	V	Regulator is enabled	
	Vdd		VDDCORE	—	3.6	V	Regulator is disabled	
	VDDCORE		2.0	—	2.75	V	Regulator is disabled	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	—	-	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V		
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	_	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms	
DC18	VBOR	Brown-out Reset Voltage ⁽³⁾	1.9	2.2	2.5	V	Regulator must be enabled	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: Device will operate normally until Brown-out reset occurs even though VDD may be below VDDMIN.

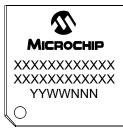
TABLE 27-17: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS10	Fosc	External CLKI Frequency (external clocks allowed only in EC mode)	DC 3		32 8	MHz MHz	EC mode ECPLL mode
		Oscillator Frequency	3.5 3.5 10 31		10 8 32 33	MHz MHz MHz kHz	XT mode XTPLL mode HS mode SOSC
OS20	Tosc	Tosc = 1/Fosc	—	—	—	—	See Parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	—	ns	EC mode
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC mode
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (TcY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).


28.0 PACKAGING INFORMATION

28.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

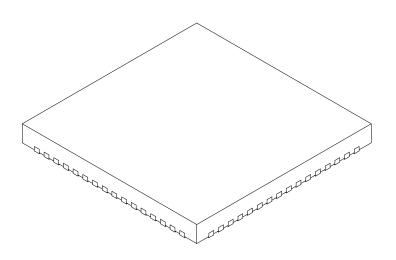
80-Lead TQFP (12x12x1 mm)

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

Example

Example


Example

Legend:	XXX	Customer-specific information				
	Y	Year code (last digit of calendar year)				
	ΥY	Year code (last 2 digits of calendar year)				
	WW	Week code (week of January 1 is week '01')				
	NNN	Alphanumeric traceability code				
		Pb-free JEDEC designator for Matte Tin (Sn)				
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)				
		can be found on the outer packaging for this package.				
Note:	In the event the full Microchip part number cannot be marked on one line, it will					
		d over to the next line, thus limiting the number of available s for customer-specific information.				

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		64	
Pitch	е	0.50 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е		9.00 BSC	
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent				
Fron	n: Name					
	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: ()	FAX: ()				
Application (optional):						
Wou	ld you like a reply?YN					
Devi	ce: PIC24FJ128GA010 family	Literature Number: DS39747F				
Questions:						
1. What are the best features of this document?						
-						
2. I	2. How does this document meet your hardware and software development needs?					
-						
3. I	Do you find the organization of this document easy to follow? If not, why?					
-						
4. \	What additions to the document do you think would enhance the structure and subject?					
-						
5. \	What deletions from the document could be made without affecting the overall usefulness?					
-						
6. I	Is there any incorrect or misleading information (what and where)?					
-						
7. I	How would you improve this document?					
-						

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN:978-1-61341-955-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.