

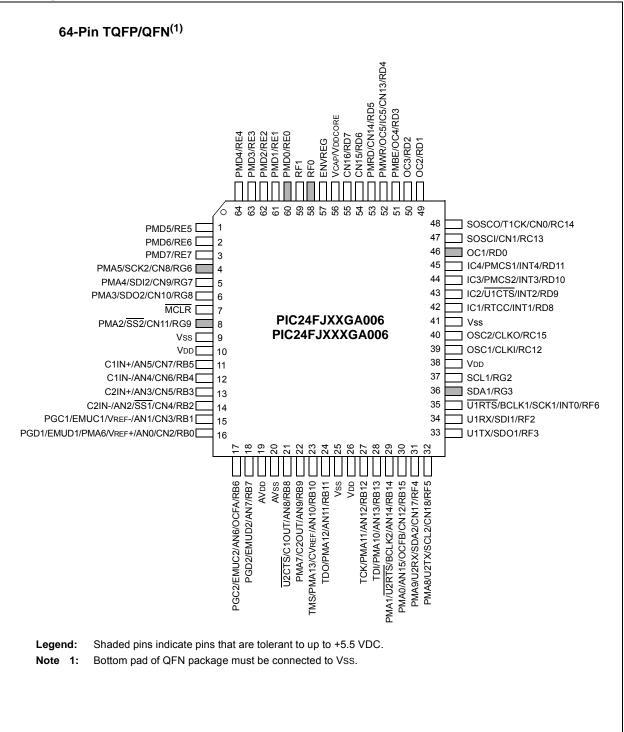
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

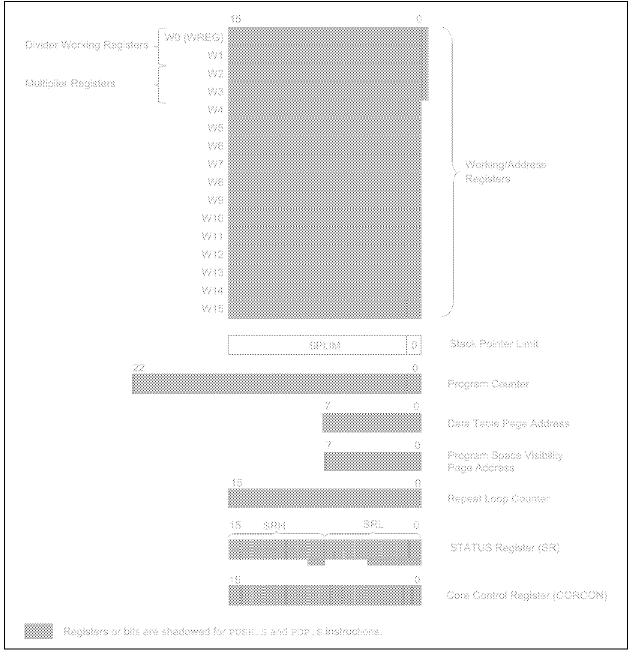

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga006-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams



Function		Pin Number			Input	Description	
Function	64-Pin	80-Pin	100-Pin	I/O	Buffer	Description	
RG0		75	90	I/O	ST	PORTG Digital I/O.	
RG1	_	74	89	I/O	ST		
RG2	37	47	57	I/O	ST		
RG3	36	46	56	I/O	ST		
RG6	4	6	10	I/O	ST		
RG7	5	7	11	I/O	ST		
RG8	6	8	12	I/O	ST		
RG9	8	10	14	I/O	ST		
RG12	_	—	96	I/O	ST		
RG13	_	—	97	I/O	ST		
RG14	_	—	95	I/O	ST		
RG15	_	—	1	I/O	ST		
RTCC	42	54	68	0	_	Real-Time Clock Alarm Output.	
SCK1	35	45	55	0	_	SPI1 Serial Clock Output.	
SCK2	4	6	10	I/O	ST	SPI2 Serial Clock Output.	
SCL1	37	47	57	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output.	
SCL2	32	52	58	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output.	
SDA1	36	46	56	I/O	l ² C	I2C1 Data Input/Output.	
SDA2	31	53	59	I/O	l ² C	I2C2 Data Input/Output.	
SDI1	34	44	54	I	ST	SPI1 Serial Data Input.	
SDI2	5	7	11	I	ST	SPI2 Serial Data Input.	
SDO1	33	43	53	0	_	SPI1 Serial Data Output.	
SDO2	6	8	12	0	_	SPI2 Serial Data Output.	
SOSCI	47	59	73	I	ANA	Secondary Oscillator/Timer1 Clock Input.	
SOSCO	48	60	74	0	ANA	Secondary Oscillator/Timer1 Clock Output.	
SS1	14	18	23	I/O	ST	Slave Select Input/Frame Select Output (SPI1).	
SS2	8	10	14	I/O	ST	Slave Select Input/Frame Select Output (SPI2).	
T1CK	48	60	74	I	ST	Timer1 Clock.	
T2CK		4	6	I	ST	Timer2 External Clock Input.	
T3CK		_	7	I	ST	Timer3 External Clock Input.	
T4CK	_	5	8	I	ST	Timer4 External Clock Input.	
T5CK	_	—	9	I	ST	Timer5 External Clock Input.	
TCK	27	33	38	I	ST	JTAG Test Clock/Programming Clock Input.	
TDI	28	34	60	I	ST	JTAG Test Data/Programming Data Input.	
TDO	24	14	61	0	—	JTAG Test Data Output.	
TMS	23	13	17	I	ST	JTAG Test Mode Select Input.	

TABLE 1-2: PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, $l^2C^{TM} = l^2C/SMB$ us input buffer

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is not recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG programming and boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity. Programming can be performed with industry standard JTAG programmers supporting Serial Vector Format (SVF).

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an onboard bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. See the device programming specification for more information on Enhanced ICSP

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or an erase operation, the processor stalls (Waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

Configuration Word values are stored in the last two locations of program memory. Performing a page erase operation on the last page of program memory clears these values and enables code protection. As a result, avoid performing page erase operations on the last page of program memory.

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has NOT expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, will automatically be inserted after the POR and PWRT delay times. The FSCM will not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 100 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay will prevent an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Device Configuration register (see Table 6-2). The RCFGCAL and NVMCON registers are only affected by a POR.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF				
bit 15	•						bit				
DAMA	DAMO	DAMA		DAMA	DAMA	DAALO	DAMA				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IF bit 7	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INT0IF bit				
Legend:											
R = Readabl	e bit	W = Writable	e bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-14	Unimpleme	nted: Read as	'O'								
bit 13	-			ot Flag Status b	it						
		request has or									
		request has no									
bit 12		RT1 Transmitte		g Status bit							
		request has or									
hit 11	•	request has no		Natua hit							
bit 11		U1RXIF: UART1 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred									
		request has no									
bit 10	SPI1IF: SPI	SPI1IF: SPI1 Event Interrupt Flag Status bit									
	1 = Interrupt request has occurred										
	-	0 = Interrupt request has not occurred									
bit 9		SPF1IF: SPI1 Fault Interrupt Flag Status bit									
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 8	•	3 Interrupt Flag									
		request has or									
		request has no									
bit 7		2 Interrupt Flag									
		= Interrupt request has occurred = Interrupt request has not occurred									
	•	•			h:+						
bit 6	-	request has or		upt Flag Status	DIL						
		request has no									
bit 5		Capture Chanr		lag Status bit							
		request has o									
		request has no									
bit 4	-	nted: Read as									
bit 3		I Interrupt Flag									
		request has of									
bit 2		•		upt Flag Status	bit						
	-	request has o		-p							
	0 = Interrupt	request has no	ot occurred								
bit 1		Capture Chanr		lag Status bit							
		request has or									
hit 0	•	request has no		+							
bit 0		ernal Interrupt C request has or	-	ι							

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0			
_	_	PMPIE		—	—	OC5IE				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
IC5IE	IC4IE	IC3IE	—	—	—	SPI2IE	SPF2IE			
bit 7							bit			
Legend:										
R = Readabl	e hit	W = Writable I	nit	U = Unimpler	nented hit re	o, se pe				
-n = Value at		'1' = Bit is set	JIL	'0' = Bit is cle		x = Bit is unkr	nwn			
					aleu					
bit 15-14	Unimpleme	nted: Read as 'd)'							
bit 13	-	allel Master Port		able bit						
		request is enab								
		request is not e								
bit 12-10	Unimpleme	nted: Read as 'o)'							
bit 9		out Compare Ch		rupt Enable bit						
		request is enab request is not e								
bit 8	•	nted: Read as '0								
bit 7	IC5IE: Input	Capture Channe	el 5 Interrupt	Enable bit						
				1 = Interrupt request is enabled						
	0 = Interrupt request is not enabled									
	IC4IE: Input Capture Channel 4 Interrupt Enable bit									
bit 6	IC4IE: Input	•		Enable bit						
bit 6	1 = Interrupt	Capture Channe request is enab	el 4 Interrupt led	Enable bit						
	1 = Interrupt 0 = Interrupt	Capture Channe request is enab request is not e	el 4 Interrupt led nabled							
bit 6 bit 5	1 = Interrupt 0 = Interrupt IC3IE: Input	Capture Channe request is enab request is not e Capture Channe	el 4 Interrupt led nabled el 3 Interrupt							
	1 = Interrupt 0 = Interrupt IC3IE: Input 1 = Interrupt	Capture Channe request is enab request is not e	el 4 Interrupt led nabled el 3 Interrupt led							
	1 = Interrupt 0 = Interrupt IC3IE: Input 1 = Interrupt 0 = Interrupt	Capture Channe request is enab request is not e Capture Channe request is enab	el 4 Interrupt led nabled el 3 Interrupt led nabled							
bit 5	 1 = Interrupt 0 = Interrupt IC3IE: Input 1 = Interrupt 0 = Interrupt Unimplement 	Capture Channe request is enab request is not e Capture Channe request is enab request is not e	el 4 Interrupt led nabled el 3 Interrupt led nabled o'							
bit 5 bit 4-2	1 = Interrupt 0 = Interrupt IC3IE: Input 1 = Interrupt 0 = Interrupt Unimplemen SPI2IE: SPI2 1 = Interrupt	Capture Channe request is enab request is not e Capture Channe request is enab request is not e nted: Read as '0 2 Event Interrupt request is enab	el 4 Interrupt led nabled el 3 Interrupt led nabled o' : Enable bit led							
bit 5 bit 4-2 bit 1	 1 = Interrupt 0 = Interrupt IC3IE: Input 1 = Interrupt 0 = Interrupt Unimplement SPI2IE: SPI2 1 = Interrupt 0 = Interrupt 	Capture Channe request is enab request is not e Capture Channe request is enab request is not e nted: Read as (2 Event Interrupt request is enab request is not e	el 4 Interrupt led nabled el 3 Interrupt led nabled o' Enable bit led nabled							
bit 5 bit 4-2	 1 = Interrupt 0 = Interrupt IC3IE: Input 1 = Interrupt 0 = Interrupt Unimplement SPI2IE: SPI2 1 = Interrupt 0 = Interrupt SPF2IE: SPI2 	Capture Channe request is enab request is not e Capture Channe request is enab request is not e nted: Read as '0 2 Event Interrupt request is enab	el 4 Interrupt led nabled el 3 Interrupt led nabled o' Enable bit led nabled Enable bit							

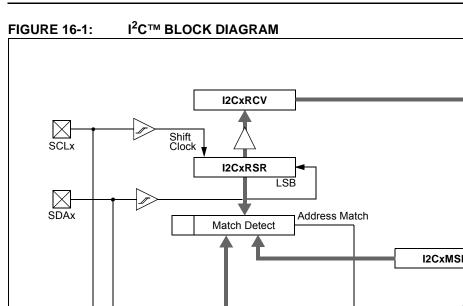
REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

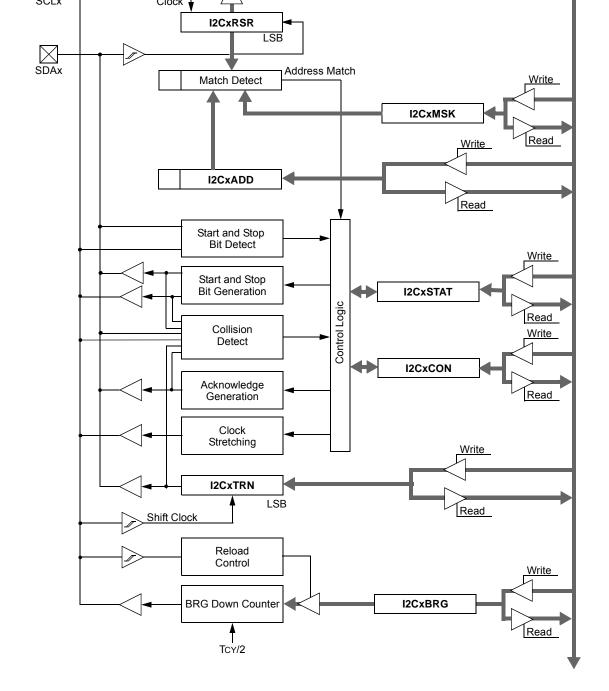
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	—	—	—
bit 15	•			•			bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_		_		_	INT1IP2	INT1IP1	INT1IP0
bit 7	•			•			bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-3 Unimplemented: Read as '0'

- INT1IP<2:0>: External Interrupt 1 Priority bits
 - 111 = Interrupt is Priority 7 (highest priority interrupt)
 - •

bit 2-0


•


001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾				
oit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0				
pit 7							bit				
_egend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkn	iown				
oit 15-13	Unimplemen	ted: Read as '	0'								
oit 12	-			er modes only)							
			-	functions as a							
	0 = Internal S	SPI clock is en	abled								
bit 11	DISSDO: Dis	able SDOx pin	bit								
				the pin functio	ns as an I/O						
		n is controlled	•								
bit 10		ord/Byte Comn									
	 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) 										
oit 9		ata Input Sam									
Dit 9	Master mode		bie i nase bit								
	<u>Master mode:</u> 1 = Input data is sampled at the end of data output time										
		 I = input data is sampled at the end of data output time Input data is sampled at the middle of data output time 									
	<u>Slave mode:</u>	cleared when	SPIx is used i	n Slave mode.							
bit 8				n olave mode.							
		CKE: SPIx Clock Edge Select bit ⁽¹⁾ 1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6)									
		0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)									
bit 7	SSEN: Slave	Select Enable	bit (Slave mo	de)							
		$1 = \overline{SSx}$ pin is used for Slave mode									
				controlled by p	port function						
bit 6		Polarity Select									
		 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level 									
bit 5		ter Mode Enat		e state is a nig	in ievei						
	1 = Master m		DIE DIL								
	0 = Slave mo										
bit 4-2		Secondary Pre	escale bits (Ma	aster mode)							
		dary prescale '	-	,							
		dary prescale 2									
	 000 = Seco nd	dary prescale 8	3:1								
oit 1-0	PPRE<1:0>:	Primary Presc	ale bits (Maste	er mode)							
	11 = Primary										
	10 = Primary										
	01 = Primary										
	00 = Primary	DIESCALE 04.									

SPI modes (FRMEN = 1).

Internal Data Bus

Read

17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UBRGx register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write data byte to lower byte of UTXxREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. Serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK sets up the Break character,
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. A receive interrupt will be generated when one or more data characters have been received, as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

17.7 Infrared Support

The UARTx module provides two types of infrared UARTx support: one is the IrDA clock output to support the external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

17.8 External IrDA Support – IrDA Clock Output

To support the external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. With UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UARTx module is enabled. It can be used to support the IrDA codec chip.

17.9 Built-in IrDA Encoder and Decoder

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit UxMODE<12>. When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

19.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- · Alarm Value Registers

19.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 19-1). By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0>, decrements by one until it reaches '00'. Once it reaches '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 19-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window				
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11		YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 19-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0>, decrements by one until it reaches '00'. Once it reaches '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 19-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window					
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>				
00	ALRMMIN	ALRMSEC				
01	ALRMWD	ALRMHR				
10	ALRMMNTH	ALRMDAY				
11	_	—				

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes it will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and					
	not write operations.					

19.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 19-1).

EXAMPLE 19-1: SETTING THE RTCWREN BIT IN MPLAB[®] C30

```
asm volatile("disi #13");
asm volatile("push W1");
asm volatile("push W2");
asm volatile("push W3");
                                        //move the address of NVMKEY into W1
asm volatile("MOV #NVMKEY, W1");
asm volatile("MOV #0x55, W2");
asm volatile("MOV #0xAA, W3");
asm volatile("MOV W2, [W1]");
                                        //start 55/AA sequence
NOP(); //There must be an instruction between the two writes ( either a NOP or a MOV to W)
asm volatile("MOV W3, [W1]");
asm volatile("BSET RCFGCAL, #13");
                                        //set the RTCWREN bit
asm volatile("pop W3");
asm volatile("pop W2");
asm volatile("pop W1");
```

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that the code in Example 19-1 be followed.

REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_		SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15				•		÷	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable b	it	U = Unimplen	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ADRC: A/D C	Conversion Clock	Source bit				
	1 = A/D inter	nal RC clock					
	0 = Clock is	derived from the	system clock	ζ.			
bit 14-13	Unimplemen	ted: Read as '0'					
bit 12-8	SAMC<4:0>:	Auto-Sample Tir	ne bits				
	11111 = 31 T	TAD .					
	00001 = 1 TA						
		D (not recommer					
bit 7-0		A/D Conversion	Clock Select	bits			
	11111111						
		Reserved					
	01000000 00111111 =	64 * Toy					
	00111111						
	00000001 =	2 * TCY					

REGISTER 24-3: DEVID: DEVICE ID REGISTER

U	U	U	U	U	U	U	U
—	—	—	—	—	—	—	—
bit 23							bit 16

U	U	R	R	R	R	R	R
_	—	FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2
bit 15							bit 8

R	R	R	R	R	R	R	R
FAMID1	FAMID0	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:	x = Bit is unknown		
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read	as '1'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-14 Unimplemented: Read as '0'

bit 13-6 **FAMID<7:0>:** Device Family Identifier bits 00010000 = PIC24FJ128GA010 family

bit 5-0 **DEV<5:0>:** Individual Device Identifier bits 000101 = PIC24FJ64GA006 000110 = PIC24FJ96GA006

000111 = PIC24FJ128GA006

001000 = PIC24FJ64GA008

001001 = PIC24FJ96GA008

001010 = PIC24FJ128GA008

001011 = PIC24FJ64GA010

001100 = PIC24FJ96GA010

001101 = PIC24FJ128GA010

REGISTER 24-4: DEVREV: DEVICE REVISION REGISTER

bit 7							bit 0
MAJRV1	MAJRV0		_		DOT2	DOT1	DOT0
R	R	U	U	U	R	R	R
bit 15							bit 8
r	r	r	r	—	—	—	MAJRV2
R-0	R-0	R-1	R-1	U	U	U	R
bit 23							bit 16
—	—	—	—	—	—	—	— —
U	U	U	U	U	U	U	U

Legend:	x = Bit is unknown	r = Reserved	
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, rea	d as '1'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 23-16 Unimplemented: Read as '0'
- bit 15-12 Reserved: Read as '0011'
- bit 11-9 Unimplemented: Read as '0'
- bit 8-6 MAJRV<2:0>: Major Revision Identifier bits
- bit 5-3 Unimplemented: Read as '0'
- bit 2-0 DOT<2:0>: Minor Revision Identifier bits

26.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

26.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

26.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta A/D, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

27.1 DC Characteristics

TABLE 27-1: OPERATING MIPS vs. VOLTAGE

VDD Range	Temp Range	Max MIPS
(in Volts)	(in °C)	PIC24FJ128GA010 Family
2.0-3.6V	-40°C to +85°C	16

TABLE 27-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC24FJ128GA010 Family:					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40 — +85			°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD				W
Maximum Allowed Power Dissipation	Pdmax	(TJ – TA)/θJA W			W

TABLE 27-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 14x14x1 mm TQFP	θJA	50	_	°C/W	(Note 1)
Package Thermal Resistance, 12x12x1 mm TQFP	θJA	69.4	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm TQFP	θJA	76.6	_	°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

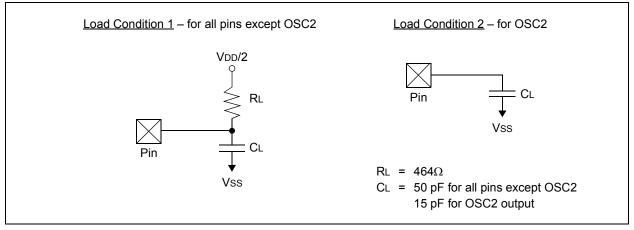
TABLE 27-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CH				Standard Operating Conditions: 2.0V to 3.6V (unless otherwiseOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
Operat	ing Voltag	e						
DC10	Supply V	oltage						
	Vdd		VBOR	_	3.6	V	Regulator is enabled	
	Vdd		VDDCORE	—	3.6	V	Regulator is disabled	
	VDDCORE		2.0	—	2.75	V	Regulator is disabled	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	—	-	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V		
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	_	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms	
DC18	VBOR	Brown-out Reset Voltage ⁽³⁾	1.9	2.2	2.5	V	Regulator must be enabled	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

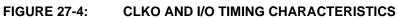
3: Device will operate normally until Brown-out reset occurs even though VDD may be below VDDMIN.


27.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ128GA010 AC characteristics and timing parameters.

TABLE 27-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	Operating voltage VDD range as described in Section 27.1 "DC Characteristics".


FIGURE 27-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

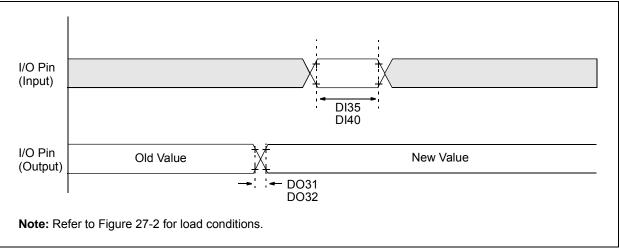


TABLE 27-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSC2/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-21:	CLKO AND I/O TIMING REQUIREMENTS
--------------	---

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TioR	Port Output Rise Time	_	10	25	ns	
DO32	TIOF	Port Output Fall Time	_	10	25	ns	
DI35	Tinp	INTx Pin High or Low Time (output)	20	—	—	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

DC Characteristics	218
Comparator Voltage Reference	
Specifications	
I/O Pin Input Specifications	222, 224
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	218
Thermal Operating Conditions	
Thermal Packaging	
Development Support	213

Е

Electrical Characteristics Absolute Maximum Ratings ENVREG Pin	217
Equations	
A/D Conversion Clock Period	186
Calculating the PWM Period	123
Calculation for Maximum PWM Resolution	123
CRC Polynomial	175
Relationship Between Device and SPI	
Clock Speed	136
UARTx Baud Rate with BRGH = 0	146
UARTx Baud Rate with BRGH = 1	146
Errata	6
Examples	
Baud Rate Error Calculation (BRGH = 0)	
PWM Period and Duty Cycle Calculations	
Setting RTCWREN Bit in MPLAB C30	164

F

Flash Configuration Words	32, 195
Flash Program Memory	51
Control Registers	
Enhanced ICSP	
JTAG Operation	
Operations	
Programming a Single Word	
Programming Algorithm	
RTSP Operation	
Table Instructions	
FSCM	
and Device Resets	61
Delay for Crystal and PLL Clock Sources	61

I

I/O Ports	107
Configuring Analog Pins	108
Voltage Considerations	108
Input Change Notification	109
Open-Drain Configuration	108
Parallel I/O (PIO)	107
Write/Read Timing	108
l ² C	
Clock Rates	139
Communicating as Master in a Single	
Master Environment	137
Setting Baud Rate When Operating as	
Bus Master	139
Slave Address Masking	139
Implemented Interrupt Vectors (table)	65

In-Circuit Debugger	203
In-Circuit Serial Programming (ICSP)	203
Input Capture	
Registers	120
Instruction Set	
Overview	207
Summary	205
Inter-Integrated Circuit (I ² C)	137
Internal RC Oscillator	
Use with WDT	202
Internet Address	253
Interrupt	
Setup Procedures	
Initialization	. 96
Interrupt Control and Status Registers	. 66
IECx	. 66
IFSx	. 66
INTCON1, INTCON2	. 66
IPCx	. 66
Interrupt Controller	. 63
Interrupt Vector Table (IVT)	. 63
Interrupts	
Setup Procedure,	
Interrupt Disable	. 96
Setup Procedures	. 96
Interrupt Service Routine (ISR)	. 96
Trap Service Routine (TSR)	. 96

Μ

Memory Organization	31
Microchip Internet Web Site	. 253
MPLAB ASM30 Assembler, Linker, Librarian	. 214
MPLAB Integrated Development	
Environment Software	. 213
MPLAB PM3 Device Programmer	. 216
MPLAB REAL ICE In-Circuit Emulator System	. 215
MPLINK Object Linker/MPLIB Object Librarian	. 214

0

On Chin Voltage Regulator	201
On-Chip Voltage Regulator	
Brown-out Reset (BOR)	
Power-on Reset (POR)	
Power-up Requirements	201
Oscillator Configuration	
Clock Switching Mode Configuration Bits	
Control Registers	99
CLKDIV	99
OSCCON	99
OSCTUN	99
Output Compare	121
Continuous Output Pulse Generation Setup	122
Modes of Operation	121
Pulse-Width Modulation	123
Pulse-Width Modulation	
Duty Cycle	123
PWM Period	123
Single Output Pulse Generation Setup	121