

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	69
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga008-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Guidelines for Getting Started with 16-bit Microcontrollers	19
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	51
6.0	Resets	57
7.0	Interrupt Controller	63
8.0	Oscillator Configuration	
9.0	Power-Saving Features	105
10.0	I/O Ports	107
11.0	Timer1	111
12.0	Timer2/3 and Timer4/5	113
13.0	Input Capture	119
14.0	Output Compare	121
15.0	Serial Peripheral Interface (SPI)	127
16.0	Inter-Integrated Circuit (I ² C TM)	137
17.0	Universal Asynchronous Receiver Transmitter (UART)	145
18.0	Parallel Master Port (PMP)	153
19.0	Real-Time Clock and Calendar (RTCC)	163
20.0	Programmable Cyclic Redundancy Check (CRC) Generator	175
21.0	10-bit High-Speed A/D Converter	179
22.0	Comparator Module	
23.0	Comparator Voltage Reference	193
24.0	Special Features	195
25.0	Instruction Set Summary	205
26.0	Development Support	
27.0	Electrical Characteristics	217
28.0	Packaging Information	
Appe	ndix A: Revision History	
Index	C	247
The I	Microchip Web Site	251
Custo	omer Change Notification Service	
Custo	omer Support	251
Read	ler Response	252
Prod	uct Identification System	253

2.4 **Voltage Regulator Pins** (ENVREG/DISVREG and VCAP/VDDCORE)

Note:	This section applies only to PIC24F J
	devices with an on-chip voltage regulator.

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:

- For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator
- · For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator

Refer to Section 24.2 "On-Chip Voltage Regulator" for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (< 5Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD and must use a capacitor of 10 µF connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specification can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to Section 27.0 "Electrical Characteristics" for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to Section 27.0 "Electrical Characteristics" for information on VDD and VDDCORE.

TABLE 2-1:	LE 2-1: SUITABLE CAPACITOR EQUIVALENTS					
Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range	
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to 125°C	
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to 85°C	
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to 125°C	
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to 85°C	
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to 125°C	
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to 85°C	

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to **Section 2.** "CPU" (DS39703) in the "PIC24F Family Reference Manual" for more information.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported either directly or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to 7 addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports signed, unsigned and Mixed mode 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative, non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism, and a selection of iterative divide instructions, to support 32-bit (or 16-bit) divided by 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory mapped.

TABLE 4-15: A/D REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300		A/D Data Buffer 0										xxxx					
ADC1BUF1	0302								A/D Data	a Buffer 1								xxxx
ADC1BUF2	0304								A/D Data	a Buffer 2								xxxx
ADC1BUF3	0306								A/D Data	a Buffer 3								xxxx
ADC1BUF4	0308								A/D Data	a Buffer 4								xxxx
ADC1BUF5	030A								A/D Data	a Buffer 5								xxxx
ADC1BUF6	030C								A/D Data	a Buffer 6								xxxx
ADC1BUF7	030E								A/D Data	a Buffer 7								xxxx
ADC1BUF8	0310								A/D Data	a Buffer 8								xxxx
ADC1BUF9	0312								A/D Data	a Buffer 9								xxxx
ADC1BUFA	0314								A/D Data	Buffer 10								xxxx
ADC1BUFB	0316								A/D Data	Buffer 11								xxxx
ADC1BUFC	0318								A/D Data	Buffer 12								xxxx
ADC1BUFD	031A								A/D Data	Buffer 13								xxxx
ADC1BUFE	031C								A/D Data	Buffer 14								xxxx
ADC1BUFF	031E								A/D Data	Buffer 15								xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	—	—	FORM1	FORM0	SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	r	—	CSCNA	—	—	BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	_	—	_	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	_	-	—	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFG	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'; r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15 ⁽¹⁾	TRISA14 ⁽¹⁾	_	—	_	TRISA10 ⁽¹⁾	TRISA9 ⁽¹⁾	-	TRISA7 ⁽²⁾	TRISA6 ⁽²⁾	TRISA5(2)	TRISA4 ⁽²⁾	TRISA3(2)	TRISA2(2)	TRISA1 ⁽²⁾	TRISA0(2)	C6FF
PORTA	02C2	RA15 ⁽¹⁾	RA14 ⁽¹⁾	_	_	_	RA10 ⁽¹⁾	RA9 ⁽¹⁾	_	RA7	RA6	RA5 ⁽²⁾	RA4 ⁽²⁾	RA3 ⁽²⁾	RA2 ⁽²⁾	RA1 ⁽²⁾	RA0 ⁽²⁾	xxxx
LATA	02C4	LATA15 ⁽¹⁾	LATA14 ⁽¹⁾	_	_	_	LATA10 ⁽¹⁾	LATA9 ⁽¹⁾	_	LATA7	LATA6	LATA5 ⁽²⁾	LATA4 ⁽²⁾	LATA3 ⁽²⁾	LATA2 ⁽²⁾	LATA1 ⁽²⁾	LATA0 ⁽²⁾	xxxx
ODCA	06C0	ODA15 ⁽¹⁾	ODA14 ⁽¹⁾	_	_	_	ODA10 ⁽¹⁾	ODA9 ⁽¹⁾	_	ODA7	ODA6	ODA5 ⁽²⁾	ODA4 ⁽²⁾	ODA3 ⁽²⁾	ODA2 ⁽²⁾	ODA1 ⁽²⁾	ODA0 ⁽²⁾	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices.

Note 1: Implemented in 80-pin and 100-pin devices only.

2: Implemented in 100-pin devices only.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 4. "Program Memory" (DS39715) in the "PIC24F Family Reference Manual" for more information.

The PIC24FJ128GA010 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the specified VDD range.

Flash memory can be programmed in four ways:

- 1. In-Circuit Serial Programming[™] (ICSP[™])
- 2. Run-Time Self-Programming (RTSP)
- 3. JTAG
- 4. Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ128GA010 family device to be serially programmed while in the end application circuit. This is simply done with two lines for Programming Clock and Programming Data (which are named PGCx and PGDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time, and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred (note that BOR is also set after a Power-on Reset)
 - 0 = A Brown-out Reset has not occurred
- bit 0 POR: Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 8.0** "Oscillator Configuration" for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time that the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

REGISTER 7-29: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
—	—	—	_	—	RTCIP2	RTCIP1	RTCIP0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	—		
bit 7		•					bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-11	Unimplemen	ted: Read as '	0'						
bit 10-8	RTCIP<2:0>:	Real-Time Clo	ck/Calendar I	nterrupt Priorit	y bits				
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)					
	•								
	•								
	•								
	001 = Interrup	ot is Priority 1							
	000 = Interrup	ot source is dis	abled						
bit 7-0	Unimplemen	ted: Read as '	0'						

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_	CRCIP2	CRCIP1	CRCIP0		U2ERIP2	U2ERIP1	U2ERIP0						
bit 15							bit 8						
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0						
_	U1ERIP2	U1ERIP1	U1ERIP0		_								
bit 7							bit 0						
r													
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, reac	l as '0'							
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unk	nown						
bit 15	Unimplemen	nted: Read as '	0'										
bit 14-12	CRCIP2:0>:	CRC Generato	or Error Interru	pt Priority bits									
	111 = Interru	 111 = Interrupt is Priority 7 (highest priority interrupt) • 											
	•												
	•												
	001 = Interru	001 = Interrupt is Priority 1											
	000 = Interru	pt source is dis	sabled										
bit 11	Unimplemen	nted: Read as '	0'										
bit 10-8	U2ERIP<2:0:	>: UART2 Erro	r Interrupt Pric	ority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)												
	•	•											
	001 = Interru	001 = Interrupt is Priority 1											
	000 = Interru	ipt source is dis	sabled										
bit 7	Unimplemen	nted: Read as '	0'										
bit 6-4	U1ERIP<2:0	>: UART1 Erro	r Interrupt Pric	ority bits									
	111 = Interru	pt is Priority 7	(highest priori	ty interrupt)									
	•												
	•												
	001 = Interru	pt is Priority 1											
	000 = Interru	pt source is dis	sabled										
bit 3-0	Unimplemen	Unimplemented: Read as '0'											

REGISTER 7-30: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

REGISTER 7-31: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'		
Legend:								
Dit /							bit 0	
VECNUM6 VECNUM5		VECNUM4 VECNUM3 VECNUM2			VECNUM1 VECNUM0			
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
bit 15							bit 8	
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0	
R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0	

bit 15	CPUIRQ: Interrupt Request from Interrupt Controller CPU bit
	 1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when the CPU priority is higher than the interrupt priority 0 = No interrupt request is unacknowledged
hit 14	Inimplemented: Read as '0'
bit 13	VHOLD: Vector Number Capture Configuration bit
bit 13	 1 = The VECNUM bits contain the value of the highest priority pending interrupt 0 = The VECNUM bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that has occurred with higher priority than the CPU, even if other interrupts are pending)
bit 12	Unimplemented: Read as '0'
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits
	1111 = CPU Interrupt Priority Level is 15
	•
	•
	• 0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0
bit 7	Unimplemented: Read as '0'
bit 6-0	VECNUM<6:0>: Pending Interrupt Vector ID bits (pending vector number is VECNUM + 8)
	0111111 = Interrupt Vector pending is number 135
	•
	0000001 = Interrupt Vector pending is number 9 0000000 = Interrupt Vector pending is number 8

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON	—	TSIDL	—	—	—	—	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0		
	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	—		
bit 7							bit 0		
						_			
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	IOWN		
bit 15	TON: limer1	On bit							
	\perp = Starts 16 0 = Stops 16-	-bit Timer1							
bit 14	Unimplemen	ted: Read as '	י)						
bit 13	TSIDL: Stop i	n Idle Mode bit							
	1 = Discontinu	ues module op	eration when	device enters I	dle mode				
	0 = Continues	s module opera	tion in Idle mo	ode					
bit 12-7	Unimplemented: Read as '0'								
bit 6	TGATE: Time	r1 Gated Time	Accumulation	n Enable bit					
	<u>When TCS = 1:</u> This bit is ignored.								
	When TCS =	<u>0:</u>							
	1 = Gated tin0 = Gated tin	ne accumulatio ne accumulatio	n is enabled n is disabled						
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits					
	11 = 1:256								
	10 = 1:64 01 = 1:8								
	00 = 1:1								
bit 3	Unimplemen	ted: Read as '	כ'						
bit 2	. TSYNC: Timer1 External Clock Input Synchronization Select bit								
	When TCS =	<u>1:</u>							
	1 = Synchron	nizes external c	lock input						
	0 = Does not	synchronize e.	xtemai ciock i	nput					
	This bit is igno	<u>o.</u> ored.							
bit 1	TCS: Timer1	CS: Timer1 Clock Source Select bit							
	1 = External	clock from pin,	T1CK (on the	rising edge)					
	0 = Internal c	lock (Fosc/2)		,					
bit 0	Unimplemen	ted: Read as '	כ'						

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

16.0 INTER-INTEGRATED CIRCUIT (I²C[™])

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702) in the "PIC24F Family Reference Manual" for more information.

The Inter-Integrated Circuit (I²C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

- Independent master and slave logic
- 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications.
- Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave, regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 16-1.

16.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

17.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated, 16-bit Baud Rate Generator. The UBRGx register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UARTX BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UBRGx + 1)}$ UBRGx = $\frac{FCY}{16 \cdot Baud Rate} - 1$ Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

• Fcy = 4 MHz

EXAMPLE 17-1:

Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is Fcy/16 (for UBRGx = 0) and the minimum baud rate possible is Fcy/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UBRGx = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UBRGx register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

Desired Baud Rate	=	FCY/(16 (UBRGx + 1))					
Solving for UBRGx value:							
BRGx BRGx BRGx	= = =	((FCY/Desired Baud Rate)/16) – 1 ((4000000/9600)/16) – 1 25					
Calculated Baud Rate	=	4000000/(16 (25 + 1)) 9615					
Error	=	(Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate (9615 – 9600)/9600 0.16%					

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = BRG generates 4 clocks per bit period (4x Baud Clock, High-Speed mode)
 0 = BRG generates 16 clocks per bit period (16x Baud Clock, Standard mode)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit 1 = Two Stop bits
 - 0 =One Stop bit
- **Note 1:** This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

- bit 2 BEP: Byte Enable Polarity bit 1 = Byte enable is active-high (PMBE) 0 = Byte enable is active-low (PMBE) bit 4
- bit 1 WRSP: Write Strobe Polarity bit For Slave modes and Master mode 2 (PMMODE<9:8> = 00.01.10): 1 = Write strobe is active-high (PMWR) 0 = Write strobe is active-low (PMWR) For Master mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe is active-high (PMENB) 0 = Enable strobe is active-low (PMENB) bit 0 RDSP: Read Strobe Polarity bit For Slave modes and Master mode 2 (PMMODE<9:8> = 00.01.10): 1 = Read strobe is active-high (PMRD) 0 = Read strobe is active-low (PMRD) 0 = Read strobe is active-low (PMRD) 1 = Read/write strobe is active-high (PMRD/PMWR)
 - 1 Read/write strobe is active-ingri (FINRD/FINIWR)
 - 0 = Read/write strobe is active-low (PMRD/PMWR)
- Note 1: These bits have no effect when their corresponding pins are used as address lines.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	
ADON ⁽¹⁾	N ⁽¹⁾ — ADSIDL —			_		FORM1	FORM0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HCS	R/C-0, HCS	
SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE	
bit 7							bit 0	
Legend:		C = Clearable	bit	HCS = Hardw	are Clearable/	Settable bit		
R = Reada	ble bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	x = Bit is unknown	
bit 14 bit 13	Unimplemented: Read as '0' ADSIDL: Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode							
bit 12-10	Unimplemented: Read as '0'							
טז ש-8	FORM<1:0>: Data Output Format bits 11 = Signed fractional (sddd dddd dd00 0000) 10 = Fractional (dddd dddd dd00 0000) 01 = Signed integer (ssss sssd dddd dddd) 00 = Integer (0000 00dd dddd dddd)							
bit 7-5	SSRC<2:0>: Conversion Trigger Source Select bits							
	 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 10x = Reserved 011 = Reserved 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on the INT0 pin ends sampling and starts conversion 000 = Clearing the SAMP bit ends sampling and starts conversion 							
bit 4-3	Unimplemented: Read as '0'							

- bit 2 ASAM: A/D Sample Auto-Start bit
 - 1 = Sampling begins immediately after the last conversion completes; SAMP bit is auto-set
 0 = Sampling begins when the SAMP bit is set
- bit 1 **SAMP:** A/D Sample Enable bit

bit 0

- 1 = A/D Sample-and-Hold amplifier is sampling input
- 0 = A/D Sample-and-Hold amplifier is holding
- DONE: A/D Conversion Status bit
 - 1 = A/D conversion is done
 - 0 = A/D conversion is NOT done
- **Note 1:** The values of the ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	_	_	_	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15	·	·		·			bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	—	—	—	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15	CH0NB: Char	nnel 0 Negative	Input Select for	or MUX B Multi	olexor Setting bi	t	
	1 = Channel 0	negative input	is AN1				
bit 14 12		negative input	15 VR-				
bit 11 0		Channel 0 Dec	uitivo Input Sol	oot for MUX D	Multiplayor Sotti	na hito	
DIL II-O	1111 = Chapr	el 0 positive in	out is AN15		Multiplexor Setti	ng bits	
	1110 = Chan	nel 0 positive in	out is AN14				
	• • • • •						
	0001 = Channel 0 positive input is AN1						
hit 7	0000 = Channel U positive input is ANU						
	1 - Channel 0				Setting bi	L	
	0 = Channel 0	negative input	is VR-				
bit 6-4	Unimplemented: Read as '0'						
bit 3-0	CH0SA<3:0>: Channel 0 Positive Input Select for MUX A Multiplexor Setting bits						
	1111 = Channel 0 positive input is AN15						
	1110 = Chan r	nel 0 positive inp	out is AN14				
	0.001 - Chapter	al O positivo in	outic AN1				
	0000 = Channel 0 positive input is AN0						

REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER

22.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 19. "Comparator Module" (DS39710) in the "PIC24F Family Reference Manual" for more information. The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs, multiplexed with I/O pins, as well as the on-chip voltage reference. Block diagrams of the various comparator configurations are shown in Figure 22-1.

FIGURE 22-1: COMPARATOR I/O OPERATING MODES

27.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ128GA010 AC characteristics and timing parameters.

TABLE 27-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	Operating voltage VDD range as described in Section 27.1 "DC Characteristics".

FIGURE 27-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSC2/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent					
Fron): Name						
	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
Appl	ication (optional):						
Wou	ld you like a reply?YN						
Devi	ce: PIC24FJ128GA010 family	Literature Number: DS39747F					
Que	stions:						
1. \	What are the best features of this document?						
-							
2. I	How does this document meet your hardware and softwa	re development needs?					
-							
3. I	3. Do you find the organization of this document easy to follow? If not, why?						
-							
4. \	What additions to the document do you think would enha	nce the structure and subject?					
-							
5. \	What deletions from the document could be made withou	t affecting the overall usefulness?					
-							
6. I	s there any incorrect or misleading information (what and	d where)?					
-							
7. I	How would you improve this document?						
-							