

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	84
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga010-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2		PIC24FJ128GA010 FAMIL Pin Number				
Function	64-Pin	80-Pin	100-Pin	I/O	Input Buffer	Description
AN0	16	20	25	1	ANA	A/D Analog Inputs.
AN1	15	19	24	I	ANA	
AN2	14	18	23	1	ANA	
AN3	13	17	22	I	ANA	
AN4	12	16	21	I	ANA	
AN5	11	15	20	I	ANA	
AN6	17	21	26	I	ANA	
AN7	18	22	27	I	ANA	
AN8	21	27	32	I	ANA	-
AN9	22	28	33	I	ANA	-
AN10	23	29	34	I	ANA	-
AN11	24	30	35	I	ANA	
AN12	27	33	41	I	ANA	-
AN13	28	34	42	I	ANA	1
AN14	29	35	43	I	ANA	1
AN15	30	36	44	I	ANA	
AVdd	19	25	30	Р	_	Positive Supply for Analog Modules.
AVss	20	26	31	Р	_	Ground Reference for Analog Modules.
BCLK1	35	38	48	0	_	UART1 IrDA [®] Baud Clock.
BCLK2	29	35	39	0	_	UART2 IrDA [®] Baud Clock.
C1IN-	12	16	21	I	ANA	Comparator 1 Negative Input.
C1IN+	11	15	20	I	ANA	Comparator 1 Positive Input.
C10UT	21	27	32	0	_	Comparator 1 Output.
C2IN-	14	18	23	I	ANA	Comparator 2 Negative Input.
C2IN+	13	17	22	I	ANA	Comparator 2 Positive Input.
C2OUT	22	28	33	0	_	Comparator 2 Output.
CLKI	39	49	63	I	ANA	Main Clock Input Connection.
CLKO	40	50	64	0	_	System Clock Output.
CN0	48	60	74	I	ST	Interrupt-on-Change Inputs.
CN1	47	59	73	I	ST	
CN2	16	20	25	I	ST	
CN3	15	19	24	I	ST	
CN4	14	18	23	I	ST]
CN5	13	17	22	I	ST]
CN6	12	16	21	I	ST	
CN7	11	15	20	I	ST	
CN8	4	6	10	I	ST	
CN9	5	7	11	I	ST	
CN10	6	8	12	I	ST	
CN11	8	10	14	I	ST	
CN12	30	36	44	I	ST	
CN13	52	66	81	1	ST	
CN14	53	67	82	I	ST	
CN15	54	68	83	I	ST	
CN16	55	69	84	I	ST	
CN17	31	39	49	I	ST	
Legend:		ut buffor ST -	- Schmitt Tria	aor input k	ouffor ANA	= Analog level input/output, $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 1-2: PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, $l^2C^{TM} = l^2C/SMBus$ input buffer

5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY BLOCK

; Set u	MOV	N for block erase operation #0x4042, W0 W0, NVMCON	;	Initialize NVMCON
• Trit		to row to be ERASED	'	IIIIIIIIZE NVMCON
, 11110	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>		
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
	TBLWTL	W0, [W0]	;	Set base address of erase block
	DISI	#5	;	Block all interrupts with priority <7
			;	for next 5 instructions
	MOV	#0x55, W0		
	MOV	W0, NVMKEY	;	Write the 55 key
	MOV	#0xAA, W1	;	
	MOV	W1, NVMKEY	;	Write the AA key
	BSET	NVMCON, #WR	;	Start the erase sequence
	NOP		;	Insert two NOPs after the erase
	NOP		;	command is asserted

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred (note that BOR is also set after a Power-on Reset)
 - 0 = A Brown-out Reset has not occurred
- bit 0 POR: Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR
BOR (RCON<1>)	POR, BOR	_
POR (RCON<0>)	POR	—

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 8.0** "Oscillator Configuration" for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time that the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0				
bit 15					÷		bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0				
bit 7		_					bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, read	1 as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cl		x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	CNIP<2:0>:	nput Change N	Iotification Inte	errupt Priority	bits						
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled								
bit 11		ted: Read as '									
bit 10-8	-			bits							
		CMIP<2:0>: Comparator Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interru	pt is Priority 1 pt source is dis	abled								
bit 7		ted: Read as '									
bit 6-4	-	>: Master I2C1		pt Priority bits	6						
		pt is Priority 7 (
	•										
	•										
	001 = Interru	pt is Priority 1									
		pt source is dis									
bit 3	•	ted: Read as '									
bit 2-0		Slave I2C1 I pt is Priority 7 (-							
	•										
	•										
		pt is Priority 1 pt source is dis									

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0				
bit 15		•	•			·	bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
	U1ERIP2	U1ERIP1	U1ERIP0	<u> </u>			0-0				
bit 7	UTERII 2	OTEINIT	OTENITO				bit C				
Legend:	la hit		L:4		mented bit meet						
R = Readab		W = Writable		-	mented bit, read						
-n = Value a	TPOR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	lown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	-	CRC Generato		ot Priority bits							
		ot is Priority 7 (• •							
	•	, , , , , , , , , , , , , , , , , , ,	0	, ,							
	•										
	• 001 = Interru	ot is Priority 1									
		ot source is dis	abled								
bit 11	-	ted: Read as '									
bit 10-8	-	UART2 Erro		ority bits							
		ot is Priority 7 (•	•							
	•										
	•										
	• 001 = Interrupt is Priority 1										
	001 = Interru	ot is Priority 1									
		ot is Priority 1 ot source is dis	abled								
bit 7	000 = Interru										
	000 = Interru Unimplemen	ot source is dis	0'	prity bits							
	000 = Interru Unimplemen U1ERIP<2:0>	ot source is dis ted: Read as '	^{0'} r Interrupt Pric	•							
	000 = Interru Unimplemen U1ERIP<2:0>	ot source is dis ted: Read as ' •: UART1 Error	^{0'} r Interrupt Pric	•							
	000 = Interru Unimplemen U1ERIP<2:0>	ot source is dis ted: Read as ' •: UART1 Error	^{0'} r Interrupt Pric	•							
bit 7 bit 6-4	000 = Interruj Unimplemen U1ERIP<2:0> 111 = Interruj • •	ot source is dis ted: Read as ' •: UART1 Error ot is Priority 7 (^{0'} r Interrupt Pric	•							
	000 = Interruj Unimplemen U1ERIP<2:0> 111 = Interruj 001 = Interruj	ot source is dis ted: Read as ' •: UART1 Error ot is Priority 7 (^{0'} r Interrupt Pric highest priorit	•							

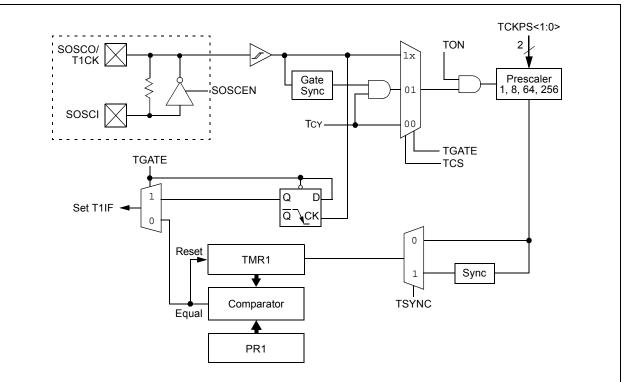
REGISTER 7-30: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

11.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 14. "Timers" (DS39704) in the "PIC24F Family Reference Manual" for more information.

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of the external gate signal

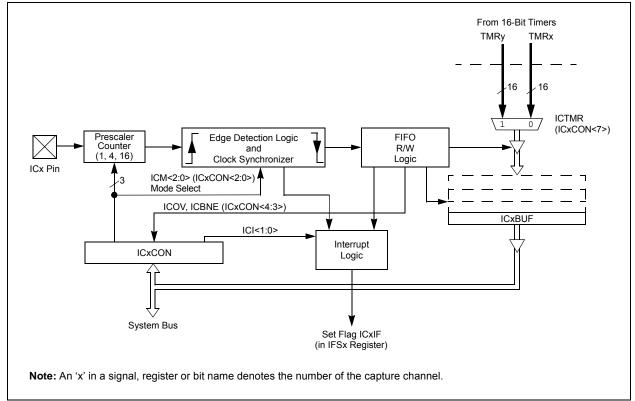
Figure 11-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

13.0 INPUT CAPTURE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 15. "Input Capture" (DS39701) in the "PIC24F Family Reference Manual" for more information.

The input capture module has multiple operating modes, which are selected via the ICxCON register. The operating modes include:

- Capture timer value on every falling edge of input, applied at the ICx pin
- Capture timer value on every rising edge of input, applied at the ICx pin

- Capture timer value on every fourth rising edge of input, applied at the ICx pin
- Capture timer value on every 16th rising edge of input, applied at the ICx pin
- Capture timer value on every rising and every falling edge of input, applied at the ICx pin
- Device wake-up from capture pin during CPU Sleep and Idle modes

The input capture module has a four-level FIFO buffer. The number of capture events required to generate a CPU interrupt can be selected by the user.

FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM

15.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 23. "Serial Peripheral Interface (SPI)" (DS39699) in the "PIC24F Family Reference Manual" for more information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with SPI and SIOP interfaces from Motorola[®].

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note: Do not perform read-modify-write operations (such as bit-oriented instructions) on the SPIxBUF register, in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave modes. A total of four framed SPI configurations are supported.

The SPI serial interface consists of four pins:

- · SDIx: Serial Data Input
- SDOx: Serial Data Output
- · SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

A block diagram of the module is shown in Figure 15-1 and Figure 15-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module. To set up the SPI module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- 2. Write the desired settings to the SPIxCON register with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- 5. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit is set, then the SSEN bit (SPIxCON1<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	 ACKDT: Acknowledge Data bit (When operating as an I²C master; applicable during master receive.) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (When operating as an I²C master; applicable during master receive.) 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	 RCEN: Receive Enable bit (when operating as an I²C master) 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. 0 = Receive sequence is not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as an I²C master) 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence. 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as an I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as an I²C master) 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start sequence. 0 = Start condition is not in progress

17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UBRGx register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write data byte to lower byte of UTXxREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. Serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK sets up the Break character,
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. A receive interrupt will be generated when one or more data characters have been received, as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

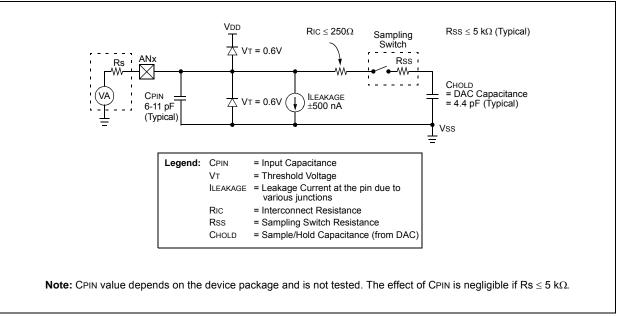
17.7 Infrared Support

The UARTx module provides two types of infrared UARTx support: one is the IrDA clock output to support the external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

17.8 External IrDA Support – IrDA Clock Output

To support the external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. With UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UARTx module is enabled. It can be used to support the IrDA codec chip.

17.9 Built-in IrDA Encoder and Decoder


The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit UxMODE<12>. When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

EQUATION 21-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

TAD = TCY(ADCS + 1) $ADCS = \frac{TAD}{TCY} - 1$

Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.

FIGURE 21-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

24.4 JTAG Interface

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 33. "Programming and Diagnostics" (DS39716) in the "PIC24F Family Reference Manual" for more information.

PIC24FJ128GA010 family devices implement a JTAG interface, which supports boundary scan device testing as well as In-Circuit Serial Programming[™] (ICSP[™]).

Refer to the Microchip web site (www.microchip.com) for JTAG support files and additional information.

24.5 Program Verification and Code Protection

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 33. "Programming and Diagnostics" (DS39716) in the "PIC24F Family Reference Manual" for more information.

For all devices in the PIC24FJ128GA010 family, the on-chip program memory space is treated as a single block. Code protection for this block is controlled by one Configuration bit, GCP (Flash Configuration Word 1<13>. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

Write protection is controlled by the GWRP bit (Flash Configuration Word 1<12>. When GWRP is programmed to '0', internal write and erase operations to the program memory are blocked.

24.5.1 CONFIGURATION REGISTER PROTECTION

The Configuration registers are protected against inadvertent or unwanted changes, or reads in two ways. The primary protection method is the same as that of the shadow registers, which contain a complimentary value that is constantly compared with the actual value. To safeguard against unpredictable events, Configuration bit changes resulting from individual cell level disruptions (such as ESD events) will cause a parity error and trigger a device Configuration Word Mismatch Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. As a consequence, when the GCP bit is set, the source data for the device configuration is also protected.

24.6 In-Circuit Serial Programming

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 33. "Programming and Diagnostics" (DS39716) in the "PIC24F Family Reference Manual" for more information.

PIC24FJ128GA010 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGCx) and data (PGDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

24.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the In-Circuit Debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pins.

To use the In-Circuit Debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGCx, PGDx and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
2010	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wite S = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wrd = Logical Right Shift Wb by Wrs	1	1	N, Z
			Wind = Logical Right Shift Wb by Wils	1	1	N, Z
MOM	LSR	Wb,#lit5,Wnd	Move f to Wn	1	1	None
MOV	MOV	f,Wn		1	1	
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd			None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-Bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-Bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
-	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S	mitt	Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
ruan	PUSH		Push Wso to Top-of-Stack (TOS)	1	1	None
		Wso	,		2	
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	۷	None

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected	
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None	
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None	
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None	
ULNK	ULNK		Unlink Frame Pointer	1	1	None	
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z	
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z	
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z	
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z	
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z	
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N	

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

		Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
OS50	Fplli	PLL Input Frequency Range	3	_	8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	PLL Output Frequency Range	12	—	32	MHz	
OS52	Тгоск	PLL Start-up Time (Lock Time)	-	—	2	ms	
OS53	DCLK	CLKO Stability (Jitter)	-2	1	+2	%	

TABLE 27-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-19: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS Industrial			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Sym	Characteristic ⁽¹⁾	Min	Typ Max Units Condition		Conditions	
	TFRC	FRC Start-up Time	—	15	—	μs	
	TLPRC	LPRC Start-up Time	—	500	—	μs	

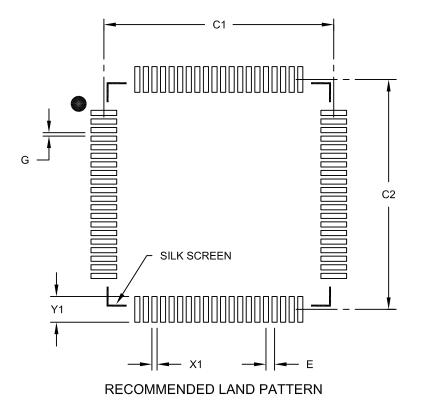
Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-20: INTERNAL RC OSCILLATOR ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	Internal FRC Accuracy @ 8 MHz ⁽¹⁾							
F20	FRC	-2		+2	%	+25°C	VDD = 3.0 - 3.6V	
		-5	_	+5	%	$-40^\circ C \le TA \le +85^\circ C$	VDD = 3.0 - 3.6V	
F21	LPRC @ 31 kHz ⁽¹⁾	-15	_	+15	%	$-40^\circ C \le TA \le +85^\circ C$	VDD = 3.0 - 3.6V	

Note 1: Change of LPRC frequency as VDD changes.

64-Lead QFN (9x9x0.9 mm)



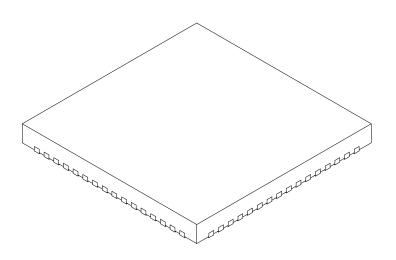
Example

80-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimensior	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		64	
Pitch	е		0.50 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	-
Overall Width	Е		9.00 BSC	
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

INDEX

Α	
A/D	
Conversion Timing Requirements	
Module Specifications	
AC	
Characteristics	227
Load Conditions	
Temperature and Voltage Specifications	
Alternate Interrupt Vector Table (AIVT)	63
Arithmetic Logic Unit (ALU)	30
Assembler	
MPASM Assembler	214

В

Block Diagrams	
10-Bit High-Speed A/D Converter)
16-Bit Timer1 Module111	
8-Bit Multiplexed Address and Data Application 162	2
Accessing Program Memory with	
Table Instructions	3
Addressable Parallel Slave Port	
Comparator I/O Operating Modes	9
Comparator Voltage Reference	
Connections for On-Chip Voltage Regulator	
Device Clock	7
I ² C	3
Input Capture119	9
LCD Control, Byte Mode 162	2
Legacy Parallel Slave Port	
Master Mode, Demultiplexed Addressing)
Master Mode, Fully Multiplexed Addressing	
Master Mode, Partially Multiplexed Addressing 161	1
Multiplexed Addressing Application	1
Output Compare Module	1
Parallel EEPROM (Up to 15-Bit Address, 16-Bit Data)	
162	
Parallel EEPROM (Up to 15-Bit Address, 8-Bit Data)	
162	
Partially Multiplexed Addressing Application	
PIC24F CPU Core26	
PIC24FJ128GA010 Family (General)10	
PMP Module153	
Program Space Visibility Operation49	
Reset System57	7
RTCC 163	
Shared Port Structure107	
SPI Master, Frame Master Connection	
SPI Master, Frame Slave Connection	5
SPI Master/Slave Connection (Enhanced	
Buffer Modes) 134	
SPI Master/Slave Connection (Standard Mode) 134	
SPI Slave, Frame Master Connection	
SPI Slave, Frame Slave Connection135	
SPIx Module (Enhanced Mode)129	
SPIx Module (Standard Mode)128	
Timer2 and Timer4 (16-Bit Synchronous)115	
Timer2/3 and Timer4/5 (32-Bit)114	
Timer3 and Timer5 (16-Bit Synchronous)115	
UARTx	
Watchdog Timer (WDT) 202	2

С

C Compilers
MPLAB C18
Clock Switching
Enabling
Operation 103
Oscillator Sequence 103
Code Examples
Basic Code Sequence for Clock Switching 104
Erasing a Program Memory Block
Initiating a Programming Sequence
Loading Write Buffers
Port Write/Read 108
Programming a Single Word of Flash
Program Memory56
PWRSAV Instruction Syntax 105
Comparator Module
Comparator Voltage Reference
Configuring 193
Configuration Bits 195
Configuration Register Protection
Core Features
16-Bit Architecture7
Easy Migration8
Oscillator Options, Features
PIC24FJ128GA010 Family Devices
Power-Saving Technology7
CPU
Control Registers
Programmer's Model 27
CPU Clocking Scheme
CRC
Example Setup 175
Operation in Power Save Modes 177
Overview
Registers 175
User Interface 176
Customer Change Notification Service
Customer Notification Service
Customer Support
CVRR
CVrsrc
Ρ

Da

ata Memory	
Address Space	33
Width	33
Memory Map for PIC24F128GA010	
Family Devices	33
Near Data Space	34
Organization and Alignment	34
SFR Space	34
Software Stack	46

DC Characteristics	218
Comparator Voltage Reference	
Specifications	
I/O Pin Input Specifications	222, 224
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	218
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	218
Thermal Operating Conditions	
Thermal Packaging	218
Development Support	

Е

Electrical Characteristics Absolute Maximum Ratings ENVREG Pin	217
Equations	
A/D Conversion Clock Period	186
Calculating the PWM Period	123
Calculation for Maximum PWM Resolution	123
CRC Polynomial	175
Relationship Between Device and SPI	
Clock Speed	
UARTx Baud Rate with BRGH = 0	146
UARTx Baud Rate with BRGH = 1	146
Errata	6
Examples	
Baud Rate Error Calculation (BRGH = 0) PWM Period and Duty Cycle Calculations Setting RTCWREN Bit in MPLAB C30	124

F

Flash Configuration Words	32, 195
Flash Program Memory	51
Control Registers	
Enhanced ICSP	
JTAG Operation	
Operations	
Programming a Single Word	
Programming Algorithm	
RTSP Operation	
Table Instructions	
FSCM	
and Device Resets	61
Delay for Crystal and PLL Clock Sources	61

I

I/O Ports	107
Configuring Analog Pins	108
Voltage Considerations	108
Input Change Notification	109
Open-Drain Configuration	108
Parallel I/O (PIO)	107
Write/Read Timing	108
l ² C	
Clock Rates	139
Communicating as Master in a Single	
Master Environment	137
Setting Baud Rate When Operating as	
Bus Master	139
Slave Address Masking	139
Implemented Interrupt Vectors (table)	65

In-Circuit Debugger	203
In-Circuit Serial Programming (ICSP)	203
Input Capture	
Registers	120
Instruction Set	
Overview	207
Summary	205
Inter-Integrated Circuit (I ² C)	137
Internal RC Oscillator	
Use with WDT	202
Internet Address	253
Interrupt	
Setup Procedures	
Initialization	. 96
Interrupt Control and Status Registers	. 66
IECx	. 66
IFSx	. 66
INTCON1, INTCON2	. 66
IPCx	. 66
Interrupt Controller	. 63
Interrupt Vector Table (IVT)	. 63
Interrupts	
Setup Procedure,	
Interrupt Disable	. 96
Setup Procedures	. 96
Interrupt Service Routine (ISR)	. 96
Trap Service Routine (TSR)	. 96

Μ

Memory Organization	31
Microchip Internet Web Site	. 253
MPLAB ASM30 Assembler, Linker, Librarian	. 214
MPLAB Integrated Development	
Environment Software	. 213
MPLAB PM3 Device Programmer	. 216
MPLAB REAL ICE In-Circuit Emulator System	. 215
MPLINK Object Linker/MPLIB Object Librarian	. 214

0

On Chin Voltage Regulator	201
On-Chip Voltage Regulator	
Brown-out Reset (BOR)	
Power-on Reset (POR)	
Power-up Requirements	201
Oscillator Configuration	
Clock Switching Mode Configuration Bits	
Control Registers	99
CLKDIV	99
OSCCON	99
OSCTUN	99
Output Compare	121
Continuous Output Pulse Generation Setup	122
Modes of Operation	121
Pulse-Width Modulation	123
Pulse-Width Modulation	
Duty Cycle	123
PWM Period	123
Single Output Pulse Generation Setup	121