

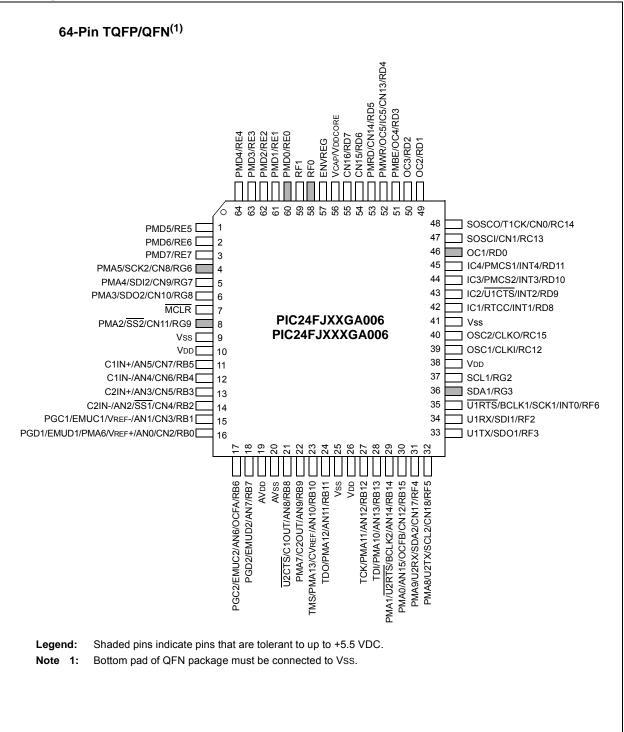
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

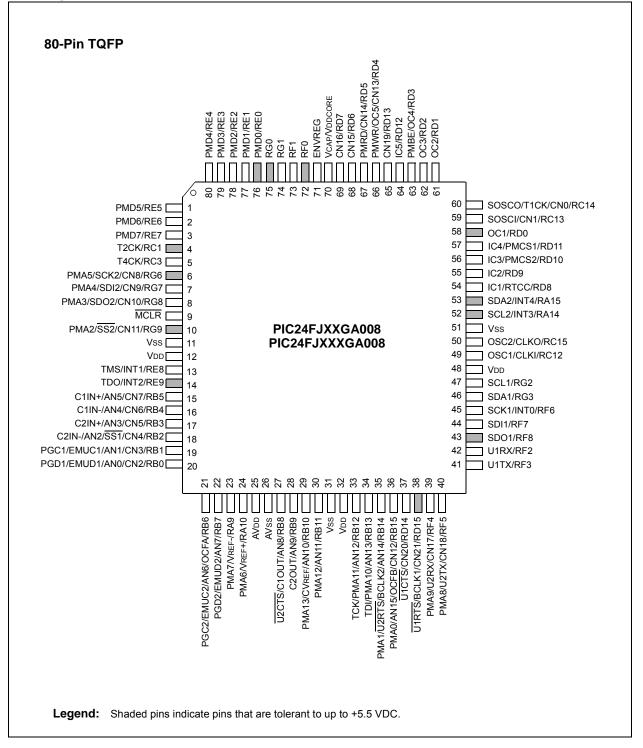
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	84
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga010t-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Diagrams (Continued)

Function	Pin Number		1/0	Input	Description	
Function	64-Pin	80-Pin	100-Pin	I/O	Buffer	Description
PMA0	30	36	44	I/O	ST/TTL	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	29	35	43	I/O	ST/TTL	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2	8	10	14	0	_	Parallel Master Port Address (Demultiplexed Master
PMA3	6	8	12	0	—	modes).
PMA4	5	7	11	0	_	
PMA5	4	6	10	0	_	
PMA6	16	24	29	0	_	
PMA7	22	23	28	0	_	
PMA8	32	40	50	0	_	
PMA9	31	39	49	0	_	
PMA10	28	34	42	0	_	
PMA11	27	33	41	0	_	
PMA12	24	30	35	0	_	
PMA13	23	29	34	0	_	
PMBE	51	63	78	0	_	Parallel Master Port Byte Enable Strobe.
PMCS1	45	57	71	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe/Address bit 1
PMCS2	44	56	70	0	—	Parallel Master Port Chip Select 2 Strobe/Address bit 15
PMD0	60	76	93	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode
PMD1	61	77	94	I/O	ST/TTL	or Address/Data (Multiplexed Master modes).
PMD2	62	78	98	I/O	ST/TTL	
PMD3	63	79	99	I/O	ST/TTL	
PMD4	64	80	100	I/O	ST/TTL	
PMD5	1	1	3	I/O	ST/TTL	
PMD6	2	2	4	I/O	ST/TTL	
PMD7	3	3	5	I/O	ST/TTL]
PMRD	53	67	82	I/O	ST/TTL	Parallel Master Port Read Strobe.
PMWR	52	66	81	I/O	ST/TTL	Parallel Master Port Write Strobe.

TABLE 1-2: PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, $l^2C^{TM} = l^2C/SMBus$ input buffer

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP

				00111														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0800	NSTDIS	_	_	_	_	_		_		_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_		_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	PMPIF	_	_	_	OC5IF	_	IC5IF	IC4IF	IC3IF		-	_	SPI2IF	SPF2IF	0000
IFS3	008A	_	RTCIF	_	_	_	_	_	_		INT4IF	INT3IF			MI2C2IF	SI2C2IF	_	0000
IFS4	008C	_	_	_	_	_	_	_	_	_	_	_	_	CRCIF	U2ERIF	U1ERIF	_	0000
IEC0	0094	_	-	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE		T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	_		_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_	PMPIE	_	_	_	OC5IE	_	IC5IE	IC4IE	IC3IE		-	_	SPI2IE	SPF2IE	0000
IEC3	009A	_	RTCIE	_	_	_	_	_	_		INT4IE	INT3IE			MI2C2IE	SI2C2IE	_	0000
IEC4	009C	_	_	_	_	_	_	_	_	_	_	_	_	CRCIE	U2ERIE	U1ERIE	_	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0		IC1IP2	IC1IP1	IC1IP0	-	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	_	_	_	4440
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	—	_	_	_	—	_	_	_	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	—	_	_	_	—	_	_	_	_	_	_	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	—	_	_	_	4440
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	_	_	_	_	_	_	_	_	SPI2IP2	SPI2IP1	SPI2IP0	_	SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	_	_	_	4440
IPC10	00B8	_	_	_	_	_	_	_	_	_	OC5IP2	OC5IP1	OC5IP0	_	_	_	_	0040
IPC11	00BA	-		_	-	_	-		-		PMPIP2	PMPIP1	PMPIP0		—		—	0040
IPC12	00BC	_	_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	_	_	_	0440
IPC13	00BE	_		—	-	—	INT4IP2	INT4IP1	INT4IP0		INT3IP2	INT3IP1	INT3IP0		—		-	0440
IPC15	00C2	_		-	-	—	RTCIP2	RTCIP1	RTCIP0		—	-			-		-	0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0		U1ERIP2	U1ERIP1	U1ERIP0	_	—		_	4440
INTTREG	00E0	CPUIRQ		VHOLD	-	ILR3	ILR2	ILR1	ILR0		VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-1: SR: CPU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	_	_	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- Note 1: See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - 2: The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - 3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

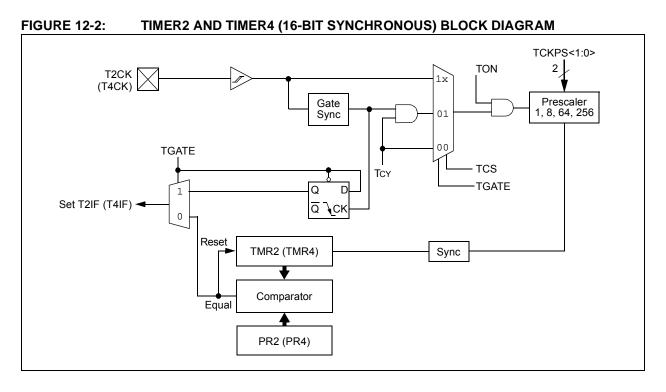
REGISTER 7-2: CORCON: CORE CONTROL REGISTER

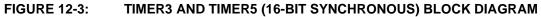
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—
bit 7							bit 0
Legend:		C = Clearable	bit				

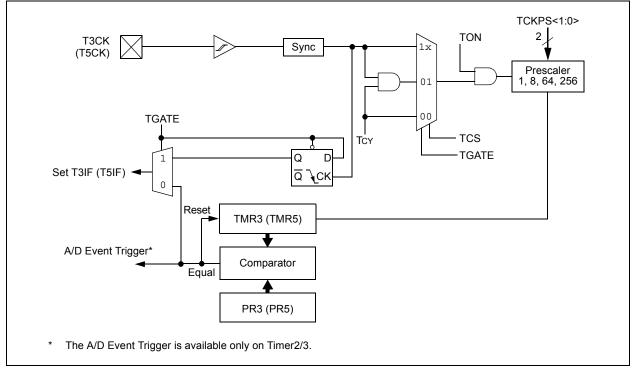
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less


Note 1: See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.


2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.


U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0						
bit 15	·	•	·				bit						
		DAMO				DAALO							
U-0	R/W-1 IC1IP2	R/W-0 IC1IP1	R/W-0 IC1IP0	U-0	R/W-1 INT0IP2	R/W-0 INT0IP1	R/W-0 INT0IP0						
 bit 7	ICTIFZ	ICTIFT	ICTIFU	—	INTUFZ	INTUFT	bit						
Legend:													
R = Readab		W = Writable		-	mented bit, read	l as '0'							
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown						
bit 15	Unimpleme	ented: Read as	·0'										
bit 14-12	-	Timer1 Interrup											
		upt is Priority 7		y interrupt)									
	•												
	•												
	001 = Interr	upt is Priority 1											
	000 = Interr	upt source is dis	sabled										
bit 11	Unimpleme	ented: Read as	0'										
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits												
	 111 = Interrupt is Priority 7 (highest priority interrupt) . 												
	•												
	•												
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled												
bit 7		upt source is dis ented: Read as '											
	-			rrupt Drigrity h	vito								
bit 6-4		: Input Capture (upt is Priority 7			JIIS								
	•		(nighest phon	ly interrupt)									
	•												
	•	untin Drievitud											
		upt is Priority 1 upt source is dis	sabled										
bit 3		nted: Read as											
bit 2-0	INT0IP<2:0	:> External Inter	rupt 0 Priority	bits									
	111 = Interr	upt is Priority 7	(highest priorit	ty interrupt)									
	•												
	•												
	001 = Interr	upt is priority 1											

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
_		<u> </u>		<u> </u>	<u> </u>	<u> </u>							
bit 15							bit 8						
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
_	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0						
bit 7							bit 0						
Legend:													
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	l as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown						
bit 15-6	Unimplemen	ted: Read as '	0'										
bit 5-0	TUN<5:0>: FRC Oscillator Tuning bits												
	011111 = Ma	ximum frequer	ncy deviation										
	011110 =												
	•												
	•												
	000001 =												
		nter frequency.	oscillator is r	unning at facto	ory calibrated fre	equency							
	111111 =			9	,								
	•												
	•												
	•												
	100001 = 100000 = Mi	nimum frequen	cy deviation										
	T00000 - MII	innun nequen	cy ueviation										

Input Capture Registers 13.1

REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	ICSIDL	_	—	—	—	—
						bit 8
R/W-0	R/W-0	R-0, HC	R/W-0, HC	R/W-0	R/W-0	R/W-0
ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
	•	•	· ·		•	bit C
		— ICSIDL R/W-0	— ICSIDL — R/W-0 R/W-0 R-0, HC	- ICSIDL	— ICSIDL — — — R/W-0 R/W-0 R-0, HC R/W-0, HC R/W-0	— ICSIDL — = Image: Missing is a first in the instand is a first in the

Legend:	HC = Hardware Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture x Module Stop in Idle Control bit
	1 = Input capture module will Halt in CPU Idle mode
	0 = Input capture module will continue to operate in CPU Idle mode
bit 12-8	Unimplemented: Read as '0'
bit 7	ICTMR: Input Capture x Timer Select bit ⁽¹⁾
	1 = TMR2 contents are captured on capture event
	0 = TMR3 contents are captured on capture event
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	
DIL 4	ICOV: Input Capture x Overflow Status Flag bit (read-only) 1 = Input capture overflow occurred
	0 = No input capture overflow occurred
bit 3	ICBNE: Input Capture x Buffer Empty Status bit (read-only)
Sit 0	1 = Input capture buffer is not empty, at least one more capture value can be read
	0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture x Mode Select bits
	111 = Input capture functions as an interrupt pin only when the device is in Sleep or Idle mode (rising
	edge detect only, all other control bits are not applicable)
	110 = Unused (module is disabled)
	101 = Capture mode, every 16th rising edge 100 = Capture mode, every 4th rising edge
	011 = Capture mode, every rising edge
	010 = Capture mode, every falling edge
	001 = Capture mode, every edge (rising and falling); ICI<1:0> does not control interrupt generation
	for this mode
	000 = Input capture module is turned off
Note 1:	Timer selections may vary. Refer to the specific device data sheet for details.

To generate a single output pulse, the following steps are required (these steps assume the timer source is initially turned off, but this is not a requirement for the module operation):

- Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
- 2. Calculate time to the rising edge of the output pulse relative to the TMRy start value (0000h).
- 3. Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.
- 4. Write the values computed in Steps 2 and 3 above into the Compare register, OCxR, and the Secondary Compare register, OCxRS, respectively.
- 5. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS, the Secondary Compare register.
- Set the OCM bits to '100' and the OCTSEL (OCxCON<3>) bit to the desired timer source. The OCx pin state will now be driven low.
- 7. Set the TON (TyCON<15>) bit to '1', which enables the compare time base to count.
- 8. Upon the first match between TMRy and OCxR, the OCx pin will be driven high.
- 9. When the incrementing timer, TMRy, matches the Secondary Compare register, OCxRS, the second and trailing edge (high-to-low) of the pulse is driven onto the OCx pin. No additional pulses are driven onto the OCx pin and it remains at low. As a result of the second compare match event, the OCxIF interrupt flag bit is set which will result in an interrupt, if it is enabled, by setting the OCxIE bit. For further information on peripheral interrupts, refer to Section 7.0 "Interrupt Controller".
- 10. To initiate another single pulse output, change the Timer and Compare register settings, if needed, and then issue a write to set the OCM bits to '100'. Disabling and re-enabling of the timer, and clearing the TMRy register are not required, but may be advantageous for defining a pulse from a known event time boundary.

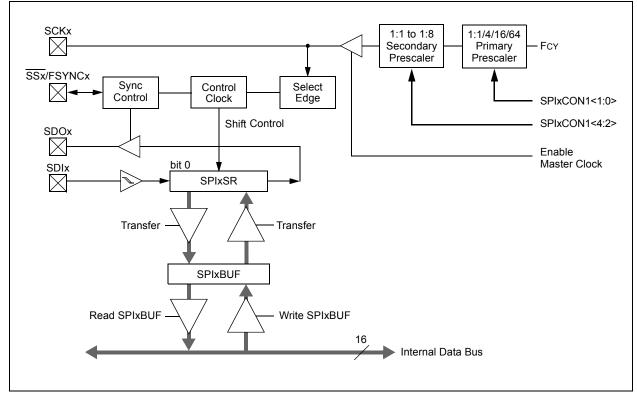
The output compare module does not have to be disabled after the falling edge of the output pulse. Another pulse can be initiated by rewriting the value of the OCxCON register.

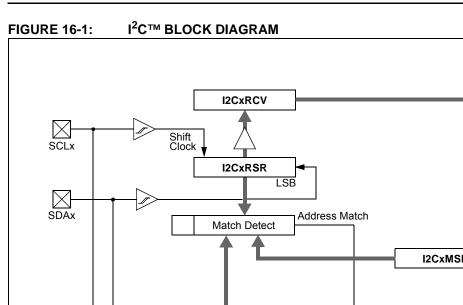
14.3 Setup for Continuous Output Pulse Generation

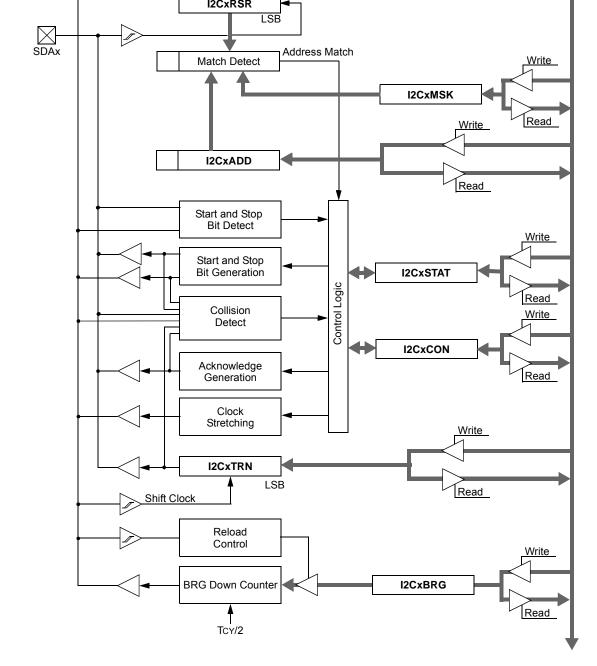
When the OCM control bits (OCxCON<2:0>) are set to '101', the selected output compare channel initializes the OCx pin to the low state, and generates output pulses on each and every compare match event.

For the user to configure the module for the generation of a continuous stream of output pulses, the following steps are required (these steps assume the timer source is initially turned off, but this is not a requirement for the module operation):

- 1. Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
- 2. Calculate the time to the rising edge of the output pulse relative to the TMRy start value (0000h).
- 3. Calculate the time to the falling edge of the pulse, based on the desired pulse width and the time to the rising edge of the pulse.
- 4. Write the values computed in Step 2 and 3 above, into the Compare register, OCxR, and the Secondary Compare register, OCxRS, respectively.
- 5. Set the Timer Period register, PRy, to a value, equal to or greater than, the value in OCxRS, the Secondary Compare register.
- Set the OCM bits to '101' and the OCTSEL bit to the desired timer source. The OCx pin state will now be driven low.
- Enable the compare time base by setting the TON (TyCON<15>) bit to '1'.
- 8. Upon the first match between TMRy and OCxR, the OCx pin will be driven high.
- 9. When the compare time base, TMRy, matches the Secondary Compare register, OCxRS, the second and trailing edge (high-to-low) of the pulse is driven onto the OCx pin.
- 10. As a result of the second compare match event, the OCxIF interrupt flag bit is set.
- When the compare time base and the value in its respective Period register match, the TMRy register resets to 0x0000 and resumes counting.
- 12. Steps 8 through 11 are repeated and a continuous stream of pulses is generated indefinitely. The OCxIF flag is set on each OCxRS-TMRy compare match event.


To set up the SPI module for the Enhanced Buffer Master mode of operation:


- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 5. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- 6. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.


To set up the SPI module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - Clear the SPIxIF bit in the respective IFSx register.
 - Set the SPIxIE bit in the respective IECx register.
 - Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 8. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-1: SPIX MODULE BLOCK DIAGRAM (STANDARD MODE)

Internal Data Bus

Read

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	 ACKDT: Acknowledge Data bit (When operating as an I²C master; applicable during master receive.) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (When operating as an I²C master; applicable during master receive.) 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	 RCEN: Receive Enable bit (when operating as an I²C master) 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. 0 = Receive sequence is not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as an I²C master) 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence. 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as an I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as an I²C master) 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start sequence. 0 = Start condition is not in progress

REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

oit	7	

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; Contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'

bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; Contains a value from 0 to 2

bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; Contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

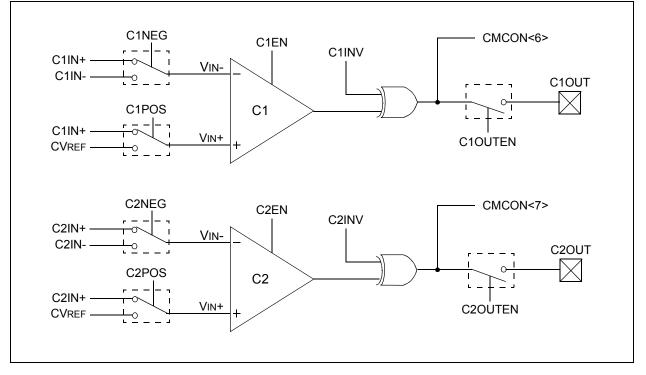
U-0	R/W-x						
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; Contains a value from 0 to 5


- bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; Contains a value from 0 to 9 bit 7 Unimplemented: Read as '0'
- bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; Contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; Contains a value from 0 to 9

22.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 19. "Comparator Module" (DS39710) in the "PIC24F Family Reference Manual" for more information. The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs, multiplexed with I/O pins, as well as the on-chip voltage reference. Block diagrams of the various comparator configurations are shown in Figure 22-1.

FIGURE 22-1: COMPARATOR I/O OPERATING MODES

REGISTER 24-3: DEVID: DEVICE ID REGISTER

U	U	U	U	U	U	U	U
—	—	—	—	—	—	—	—
bit 23							bit 16

U	U	R	R	R	R	R	R
_	—	FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2
bit 15							bit 8

R	R	R	R	R	R	R	R
FAMID1	FAMID0	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:	x = Bit is unknown			
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read as '1'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 23-14 Unimplemented: Read as '0'

bit 13-6 **FAMID<7:0>:** Device Family Identifier bits 00010000 = PIC24FJ128GA010 family

bit 5-0 **DEV<5:0>:** Individual Device Identifier bits 000101 = PIC24FJ64GA006 000110 = PIC24FJ96GA006

000111 = PIC24FJ128GA006

001000 = PIC24FJ64GA008

001001 = PIC24FJ96GA008

001010 = PIC24FJ128GA008

001011 = PIC24FJ64GA010

001100 = PIC24FJ96GA010

001101 = PIC24FJ128GA010

24.4 JTAG Interface

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 33. "Programming and Diagnostics" (DS39716) in the "PIC24F Family Reference Manual" for more information.

PIC24FJ128GA010 family devices implement a JTAG interface, which supports boundary scan device testing as well as In-Circuit Serial Programming[™] (ICSP[™]).

Refer to the Microchip web site (www.microchip.com) for JTAG support files and additional information.

24.5 Program Verification and Code Protection

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 33. "Programming and Diagnostics" (DS39716) in the "PIC24F Family Reference Manual" for more information.

For all devices in the PIC24FJ128GA010 family, the on-chip program memory space is treated as a single block. Code protection for this block is controlled by one Configuration bit, GCP (Flash Configuration Word 1<13>. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

Write protection is controlled by the GWRP bit (Flash Configuration Word 1<12>. When GWRP is programmed to '0', internal write and erase operations to the program memory are blocked.

24.5.1 CONFIGURATION REGISTER PROTECTION

The Configuration registers are protected against inadvertent or unwanted changes, or reads in two ways. The primary protection method is the same as that of the shadow registers, which contain a complimentary value that is constantly compared with the actual value. To safeguard against unpredictable events, Configuration bit changes resulting from individual cell level disruptions (such as ESD events) will cause a parity error and trigger a device Configuration Word Mismatch Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. As a consequence, when the GCP bit is set, the source data for the device configuration is also protected.

24.6 In-Circuit Serial Programming

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 33. "Programming and Diagnostics" (DS39716) in the "PIC24F Family Reference Manual" for more information.

PIC24FJ128GA010 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGCx) and data (PGDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

24.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the In-Circuit Debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pins.

To use the In-Circuit Debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGCx, PGDx and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

DC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Idle Current ((IIDLE): Core (Off, Clock C	On Base Curre	ent ⁽²⁾				
DC40	0.7	2	mA	-40°C				
DC40a	0.7	2	mA	+25°C	2.5V ⁽³⁾			
DC40b	0.7	2	mA	+85°C		1 MIPS		
DC40d	0.7	2	mA	-40°C		T MIFS		
DC40e	0.7	2	mA	+25°C	3.6V ⁽⁴⁾			
DC40f	0.7	2	mA	+85°C				
DC43	2.1	4	mA	-40°C		– 4 MIPS		
DC43a	2.1	4	mA	+25°C	2.5V ⁽³⁾			
DC43b	2.1	4	mA	+85°C				
DC43d	2.1	4	mA	-40°C				
DC43e	2.1	4	mA	+25°C	3.6∨ (4)			
DC43f	2.1	4	mA	+85°C				
DC47	6.8	8	mA	-40°C		- 16 MIPS		
DC47a	6.8	8	mA	+25°C	2.5V ⁽³⁾			
DC47b	6.8	8	mA	+85°C				
DC47c	6.8	8	mA	-40°C				
DC47d	6.8	8	mA	+25°C	3.6V ⁽⁴⁾			
DC47e	6.8	8	mA	+85°C				
DC51	70	150	μΑ	-40°C				
DC51a	100	200	μΑ	+25°C	2.5∨ ⁽³⁾			
DC51b	150	400	μΑ	+85°C		LPRC (31 kHz)		
DC51d	70	150	μΑ	-40°C				
DC51e	100	200	μΑ	+25°C	3.6∨ ⁽⁴⁾			
DC51f	150	400	μA	+85°C				

TABLE 27-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with core off, clock on, PMD bits set and all modules turned off.

3: On-chip voltage regulator is disabled (ENVREG tied to Vss).

4: On-chip voltage regulator is enabled (ENVREG tied to VDD).

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max. Units		Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (2,5)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB11, SOSCI, SOSCO, D+, D-, VUSB and VBUS	
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(3,4,5)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, RB11, SOSCI, SOSCO, D+, D-, VUSB and VBUS, and all 5V tolerant pins ⁽⁴⁾	
DI60c	ΣΙΙCT	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (6)	_	+20 ⁽⁶⁾	mA	Absolute instantaneous sum of all \pm input injection cur- rents from all I/O pins (IICL + IICH) $\leq \Sigma$ IICT	

TABLE 27-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Characterized but not tested.

3: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

4: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

5: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

64-Lead QFN (9x9x0.9 mm)

Example

