

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	69
Program Memory Size	96KB (32K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj96ga008-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and busses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 **Program Address Space**

The program address memory space of PIC24FJ128GA010 family devices is 4M instructions. The space is addressable by a 24-bit value derived from

either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces**".

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FJ128GA010 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ128GA010 FAMILY DEVICES

	PIC24FJ64GA	PIC24FJ96GA	PIC24FJ128GA	
\mathbf{I}	GOTO Instruction	GOTO Instruction	GOTO Instruction	000000h
	Reset Address	Reset Address	Reset Address	000002h 000004h
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	
	Reserved	Reserved	Reserved	0000FEh 000100h 000104h
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0001FEh
User Memory Space	User Flash Program Memory (22K instructions)	User Flash Program Memory (32K instructions)	User Flash	000200h
Ŝ	Flash Config Words	`	Program Memory (44K instructions)	00ABFEh
lory			(1111100000000)	00AC00h
lem		Flash Config Words		00FFFEh 010000h
≥ ⊡				
ns.			Flash Config Words	0157FEh 015800h
	Unimplemented			0100001
	(Read '0's)	Unimplemented		
	(,	(Read '0's)	Unimplemented	
			(Read '0's)	
			(1.000 0.0)	
				7FFFFEh
-				800000h
ace	Reserved	Reserved	Reserved	
y Sp	Device Configuration	Device Configuration	Device Configuration	F7FFFEh F80000h
i mo	Registers	Registers	Registers	_F8000Eh
Contiguration Memory Space	Reserved	Reserved	Reserved	F80010h
	DEVID (2)	DEVID (2)	DEVID (2)	FEFFFEh FF0000h FFFFFEh

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

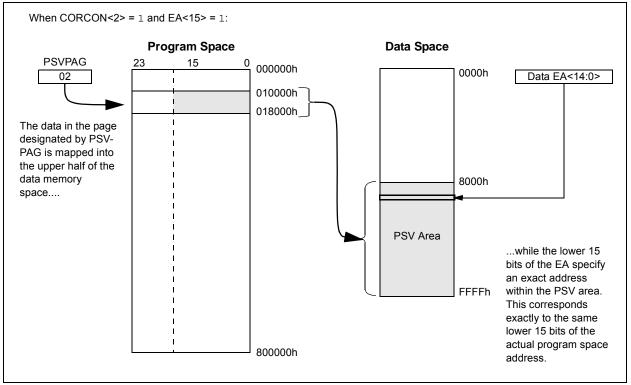
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and Program Space Visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 4. "Program Memory" (DS39715) in the "PIC24F Family Reference Manual" for more information.

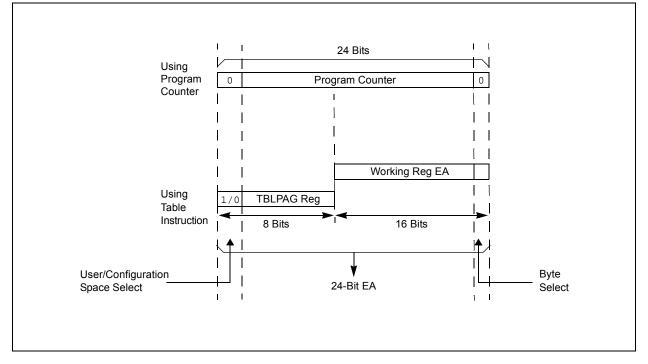
The PIC24FJ128GA010 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the specified VDD range.

Flash memory can be programmed in four ways:

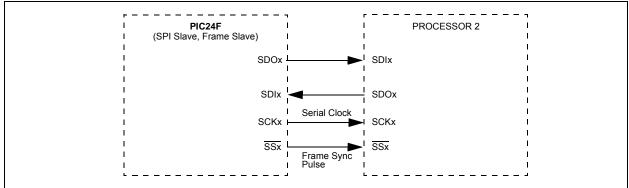
- 1. In-Circuit Serial Programming[™] (ICSP[™])
- 2. Run-Time Self-Programming (RTSP)
- 3. JTAG
- 4. Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ128GA010 family device to be serially programmed while in the end application circuit. This is simply done with two lines for Programming Clock and Programming Data (which are named PGCx and PGDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

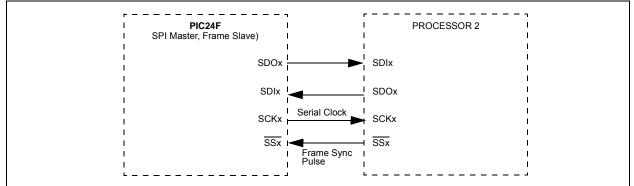
RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time, and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

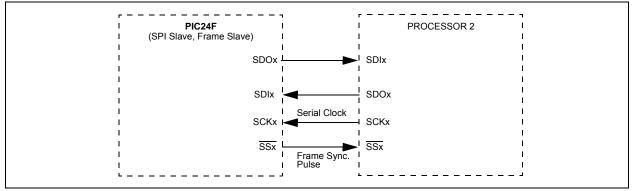

5.1 Table Instructions and Flash Programming

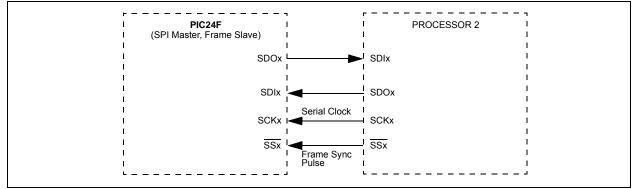
Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.


The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.


FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

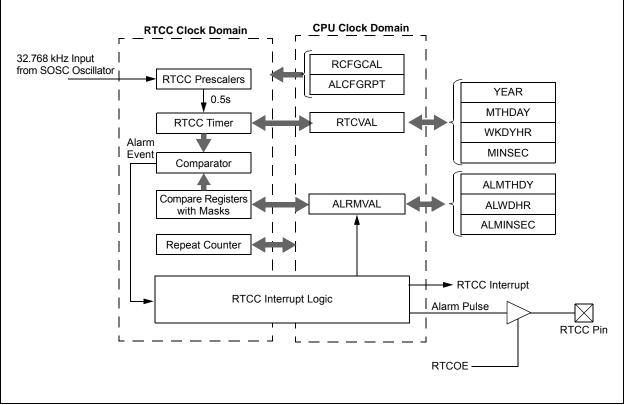




© 2005-2012 Microchip Technology Inc.

19.0 REAL-TIME CLOCK AND **CALENDAR (RTCC)**

This data sheet summarizes the features of Note: this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696) in the "PIC24F Family Reference Manual" for more information.


The Real-Time Clock and Calendar hardware module has the following features:

RTCC BLOCK DIAGRAM

- · Time: Hours, Minutes and Seconds
- 24-Hour Format (Military Time)

FIGURE 19-1:

- · Calendar: Weekday, Date, Month and Year
- · Alarm Configurable
- Year Range: 2000 to 2099
- Leap Year Correction
- · BCD Format for Compact Firmware
- · Optimized for Low-Power Operation
- · User Calibration with Auto-Adjust
- · Calibration Range: ±2.64 Seconds Error per Month
- Requirements: External 32.768 kHz Clock Crystal
- · Alarm Pulse or Seconds Clock Output on RTCC Pin

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

bit 7-0 CAL<7:0>: RTC Drift Calibration bits

- 01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute
 - ... 01111111 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute
 - 00000000 = No adjustment

...

111111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL Reset value is dependent on the type of Reset.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

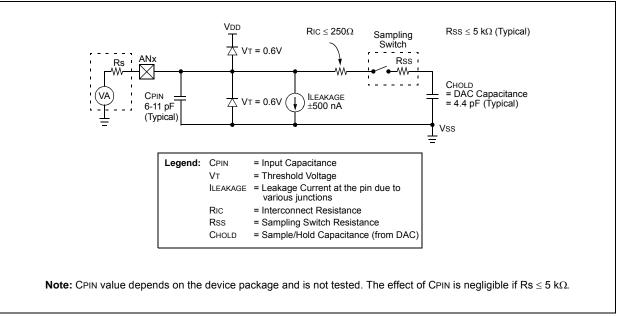
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		_	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	—	—	RTSECSEL ⁽¹⁾	PMPTTL ⁽²⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	vn
							,

bit 15-2 Unimplemented: Read as '0'

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit ⁽²⁾
	1 = PMP module uses TTL input buffers
	0 = PMP module uses Schmitt input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.

2: Refer to Table 1-2 for affected PMP inputs.


NOTES:

EQUATION 21-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

TAD = TCY(ADCS + 1) $ADCS = \frac{TAD}{TCY} - 1$

Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.

FIGURE 21-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

REGISTER 24-1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	U-1	R/PO-1
r	JTAGEN ⁽¹⁾	GCP	GWRP	DEBUG	r	_	ICS
bit 15							bit 8

R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	WINDIS	—	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:	x = Bit is unknown	r = Reserved	
R = Readable bit	PO = Program Once bit U = Unimplemented bit, read as '0'		
-n = Value when device is u	inprogrammed	'1' = Bit is set	'0' = Bit is cleared

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: Program as '0'. Read value is unknown.
bit 14	JTAGEN: JTAG Port Enable bit ⁽¹⁾
	 1 = JTAG port is enabled 0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	 1 = Code protection is disabled 0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	 Writes to program memory are allowed Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	 1 = Device resets into Operational mode 0 = Device resets into Debug mode
bit 10	Reserved: Program as '1'
bit 9	Unimplemented: Read as '1'
bit 8	ICS: Emulator Pin Placement Select bit
	 1 = Emulator/debugger uses EMUC2/EMUD2 0 = Emulator/debugger uses EMUC1/EMUD1
bit 7	FWDTEN: Watchdog Timer Enable bit
	 1 = Watchdog Timer is enabled 0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled; FWDTEN must be '1'
bit 5	Unimplemented: Read as '1'
bit 4	FWPSA: WDT Prescaler Ratio Select bit
	1 = Prescaler ratio of 1:128
	0 = Prescaler ratio of 1:32
Note 1:	JTAGEN bit can not be modified using JTAG programming. It can only change using In-Circuit Seri

Note 1: JTAGEN bit can not be modified using JTAG programming. It can only change using In-Circuit Serial Programming[™] (ICSP[™]).

24.3 Watchdog Timer (WDT)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 9. "Watchdog Timer (WDT)" (DS39697) in the "PIC24F Family Reference Manual" for more information.

For PIC24FJ128GA010 family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

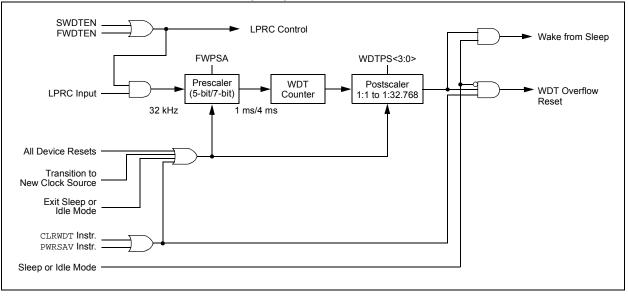
A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (Flash Configuration Word 1<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods, ranging from 1 ms to 131 seconds, can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)

- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake-up and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.


The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

24.3.1 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disables the WDT during non-critical segments for maximum power savings.

FIGURE 24-2: WATCHDOG TIMER (WDT) BLOCK DIAGRAM

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
2010	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wite S = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wrd = Logical Right Shift Wb by Wrs	1	1	N, Z
			Wind = Logical Right Shift Wb by Wils	1	1	N, Z
MOM	LSR	Wb,#lit5,Wnd	Move f to Wn	1	1	None
MOV	MOV	f,Wn		1	1	
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd			None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-Bit Literal to Wn	1	1	None
-	MOV.b	#lit8,Wn	Move 8-Bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
-	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S	mitt	Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
ruan	PUSH		Push Wso to Top-of-Stack (TOS)	1	1	None
		Wso	,		2	
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	۷	None

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (2,5)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB11, SOSCI, SOSCO, D+, D-, VUSB and VBUS	
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(3,4,5)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, RB11, SOSCI, SOSCO, D+, D-, VUSB and VBUS, and all 5V tolerant pins ⁽⁴⁾	
DI60c	ΣΙΙCT	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (6)	_	+20 ⁽⁶⁾	mA	Absolute instantaneous sum of all \pm input injection cur- rents from all I/O pins (IICL + IICH) $\leq \Sigma$ IICT	

TABLE 27-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Characterized but not tested.

3: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

4: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

5: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 27-13: COMPARATOR SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
D300	VIOFF	Input Offset Voltage*	_	10	30	mV	
D301	VICM	Input Common Mode Voltage*	0	_	Vdd	V	
D302	CMRR	Common Mode Rejection Ratio*	55	—	—	dB	
300	TRESP	Response Time* ⁽¹⁾	_	150	400	ns	
301	Тмс2о∨	Comparator Mode Change to Output Valid*		_	10	μs	

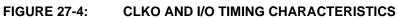
Parameters are characterized but not tested.

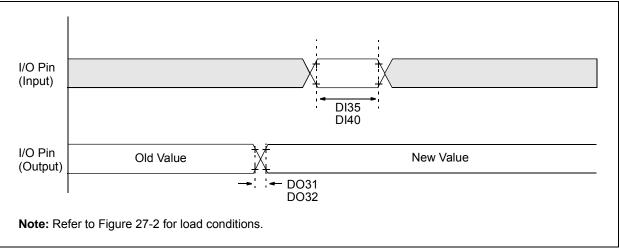
Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 27-14: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Operatin	Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)						
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
VRD310	CVRES	Resolution	VDD/24	_	Vdd/32	LSb	
VRD311	CVRAA	Absolute Accuracy	_	_	AVDD – 1.5	LSb	
VRD312	CVRur	Unit Resistor Value (R)	_	2k	_	Ω	
VR310	TSET	Settling Time ⁽¹⁾	_	—	10	μS	

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

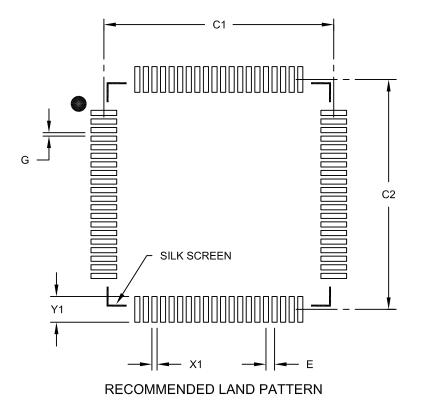

TABLE 27-17: EXTERNAL CLOCK TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
OS10	Fosc	External CLKI Frequency (external clocks allowed only in EC mode)	DC 3		32 8	MHz MHz	EC mode ECPLL mode	
		Oscillator Frequency	3.5 3.5 10 31		10 8 32 33	MHz MHz MHz kHz	XT mode XTPLL mode HS mode SOSC	
OS20	Tosc	Tosc = 1/Fosc	—	—	—	—	See Parameter OS10 for Fosc value	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	—	ns	EC mode	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC mode	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	6	10	ns		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (TcY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).


TABLE 27-21:	CLKO AND I/O TIMING REQUIREMENTS
--------------	---

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym Characteristic		Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TioR	Port Output Rise Time	_	10	25	ns	
DO32	TIOF	Port Output Fall Time	_	10	25	ns	
DI35	Tinp	INTx Pin High or Low Time (output)	20	—	—	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү	

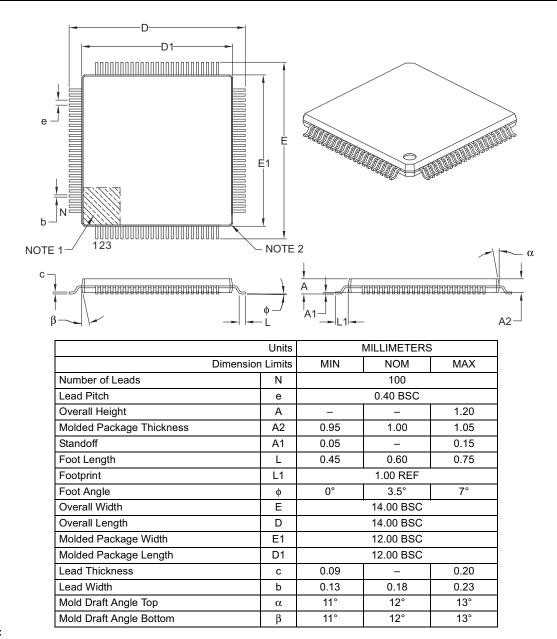
Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

80-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension Limits		MIN	NOM	MAX		
Contact Pitch E		0.50 BSC				
Contact Pad Spacing	C1		13.40			
Contact Pad Spacing	C2		13.40			
Contact Pad Width (X80)	X1			0.30		
Contact Pad Length (X80)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

NOTES:

INDEX

Α	
A/D	
Conversion Timing Requirements	
Module Specifications	
AC	
Characteristics	227
Load Conditions	227
Temperature and Voltage Specifications	
Alternate Interrupt Vector Table (AIVT)	63
Arithmetic Logic Unit (ALU)	30
Assembler	
MPASM Assembler	214

В

Block Diagrams	
10-Bit High-Speed A/D Converter)
16-Bit Timer1 Module111	
8-Bit Multiplexed Address and Data Application 162	2
Accessing Program Memory with	
Table Instructions	3
Addressable Parallel Slave Port	
Comparator I/O Operating Modes	9
Comparator Voltage Reference	
Connections for On-Chip Voltage Regulator	
Device Clock	7
I ² C	3
Input Capture119	9
LCD Control, Byte Mode 162	2
Legacy Parallel Slave Port	
Master Mode, Demultiplexed Addressing)
Master Mode, Fully Multiplexed Addressing	
Master Mode, Partially Multiplexed Addressing 161	1
Multiplexed Addressing Application	1
Output Compare Module	1
Parallel EEPROM (Up to 15-Bit Address, 16-Bit Data)	
162	
Parallel EEPROM (Up to 15-Bit Address, 8-Bit Data)	
162	
Partially Multiplexed Addressing Application	
PIC24F CPU Core26	
PIC24FJ128GA010 Family (General)10	
PMP Module153	
Program Space Visibility Operation49	
Reset System57	7
RTCC 163	
Shared Port Structure107	
SPI Master, Frame Master Connection	
SPI Master, Frame Slave Connection	5
SPI Master/Slave Connection (Enhanced	
Buffer Modes) 134	
SPI Master/Slave Connection (Standard Mode) 134	
SPI Slave, Frame Master Connection	
SPI Slave, Frame Slave Connection135	
SPIx Module (Enhanced Mode)129	
SPIx Module (Standard Mode)128	
Timer2 and Timer4 (16-Bit Synchronous)115	
Timer2/3 and Timer4/5 (32-Bit)114	
Timer3 and Timer5 (16-Bit Synchronous)115	
UARTx	
Watchdog Timer (WDT) 202	2

С

C Compilers
MPLAB C18
Clock Switching
Enabling
Operation 103
Oscillator Sequence 103
Code Examples
Basic Code Sequence for Clock Switching 104
Erasing a Program Memory Block
Initiating a Programming Sequence
Loading Write Buffers
Port Write/Read 108
Programming a Single Word of Flash
Program Memory56
PWRSAV Instruction Syntax 105
Comparator Module
Comparator Voltage Reference
Configuring 193
Configuration Bits 195
Configuration Register Protection
Core Features
16-Bit Architecture7
Easy Migration8
Oscillator Options, Features 7
PIC24FJ128GA010 Family Devices
Power-Saving Technology7
CPU
Control Registers
Programmer's Model 27
CPU Clocking Scheme
CRC
Example Setup 175
Operation in Power Save Modes 177
Overview
Registers 175
User Interface 176
Customer Change Notification Service
Customer Notification Service
Customer Support
CVRR
CVrsrc
Ρ

Da

ata Memory	
Address Space	33
Width	33
Memory Map for PIC24F128GA010	
Family Devices	33
Near Data Space	34
Organization and Alignment	34
SFR Space	34
Software Stack	46

OSCTUN (FRC Oscillator Tune)102
PADCFG1 (Pad Configuration Control)
PMADDR (Parallel Port Address)
PMAEN (Parallel Port Enable)
PMCON (Parallel Port Control)
PMMODE (Parallel Port Mode)156
PMSTAT (Parallel Port Status)
RCFGCAL (RTCC Calibration
and Configuration)165
RCON (Reset Control)
SPIxCON1 (SPIx Control 1)132
SPIxCON2 (SPIx Control 2)
SPIxSTAT (SPIx Status and Control)
SR (CPU STATUS)
T1CON (Timer1 Control)112
TxCON (Timer2/4 Control)116
TyCON (Timer3/5 Control)117
UxMODE (UARTx Mode)148
UxSTA (UARTx Status and Control)150
WKDYHR (Weekday and Hours Value)169
YEAR (Year Value)168
Registers Map
CPU Core
Reset Sequence
Resets
Clock Source Selection
Device Times59
Revision History
RTCC
Alarm172
Configuring172
Interrupt172
ALRMVAL Register Mappings 170
Calibration
Control Registers165
Module Registers
Mapping
RTCVAL Register Mapping168

S

Serial Peripheral Interface (SPI)1	27
Software Simulator (MPLAB SIM)2	15
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	46
Special Features1	95
Code Protection1	95
Flexible Configuration1	95
In-Circuit Emulation1	95
In-Circuit Serial Programming (ICSP)1	95
JTAG Boundary Scan Interface1	95
Watchdog Timer (WDT)1	95
Special Function Register Reset States	61
Symbols Used in Opcode Descriptions	.06

Т

•
Table of Contents 5
Timer1 Module 111
Timer2/3 Module 113
Timer4/5 Module
Timing Diagrams
CLKO and I/O 230
External Clock
Timing Requirements
Capacitive Loading on Output Pin 227
CLKO and I/O
External Clock
Timing Specifications
Internal RC Oscillator
Internal RC Oscillator Accuracy 229
PLL Clock
U
UARTx
Baud Rate Generator (BRG) 146
Break and Sync Transmit Sequence 147
Infrared Support 147
IrDA
Built-in Encoder and Decoder 147
External Support, Clock Output 147
Operation of UxCTS and UxRTS Control Pins 147
Receiving in
8-Bit or 9-Bit Data Mode 147
Transmitting
8-Bit Data Mode147
Transmitting in
9-Bit Data Mode147
Universal Asynchronous Receiver Transmitter (UART) 145
V
VDDCORE/VCAP Pin
W
Watchdog Timer (WDT)
Control Register
Programming Considerations
WWW Address

WWW, On-Line Support 6