

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	84
Program Memory Size	96KB (32K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj96ga010-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
_	_	_	_	_	—	_	DC				
bit 15							bit 8				
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С				
bit 7	•			•	•		bit (
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 15-9	Unimplemen	ted: Read as '	0'								
bit 8	DC: ALU Hali	f Carry/Borrow	bit								
			low-order bit	(for byte-sized of	data) or 8th low-	-order bit (for wo	ord-sized data				
		sult occurred	th or 8th low-	order bit of the	result has occu	rred					
bit 7-5	•	PU Interrupt Pri				iicu					
					ots are disabled	1					
		111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled110 = CPU Interrupt Priority Level is 6 (14)									
		101 = CPU Interrupt Priority Level is 5 (13)									
		100 = CPU Interrupt Priority Level is 4 (12)									
		011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10)									
		nterrupt Priority									
		nterrupt Priority									
bit 4		Loop Active bit		, ,							
		oop in progres									
		0 = REPEAT loop not in progress									
bit 3	N: ALU Nega	itive bit									
	1 = Result wa	•									
		as non-negative	e (zero or pos	itive)							
bit 2	OV: ALU Ove										
			• ·	nplement) arithi	metic in this arit	thmetic operation	on				
hit 1		ow has occurre	u								
bit 1	Z: ALU Zero I		cts the 7 hit	has set it at sou	me time in the p	naet					
					as cleared it (i.e		esult)				
bit 0	C: ALU Carry		. ,			,	,				
bit 0			st Significant	bit of the result	occurred						
	•		•	t bit of the resu							
Noto 1. T	ho IDI Statua hita	are read only			15>) - 1						
	he IPL Status bits he IPL bits are co	-		-			riority Loval				
							Honty Level.				

The value in parentheses indicates the IPL when IPL3 = 1.

TABLE 4-	-3: C	CPU CO	RE REG	ISTERS	MAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000		•				•		Working F	Register 0	•		-		·		·	0000
WREG1	0002								Working F	Register 1								0000
WREG2	0004								Working F	Register 2								0000
WREG3	0006								Working F	Register 3								0000
WREG4	0008		Working Register 4										0000					
WREG5	000A		Working Register 5										0000					
WREG6	000C								Working F	Register 6								0000
WREG7	000E								Working F	Register 7								0000
WREG8	0010								Working F	Register 8								0000
WREG9	0012		Working Register 9										0000					
WREG10	0014								Working R	egister 10								0000
WREG11	0016								Working R	egister 11								0000
WREG12	0018								Working R	egister 12								0000
WREG13	001A								Working R	egister 13								0000
WREG14	001C								Working R	egister 14								0000
WREG15	001E								Working R	egister 15								0800
SPLIM	0020								Stack Poi	nter Limit								xxxx
PCL	002E							Pr	ogram Cour	ter Low Wo	ord							0000
PCH	0030	—	_	—	—	—	—	—	—			Pi	rogram Cou	unter High B	yte			0000
TBLPAG	0032	_	_	—	_	_	_	_	—			Та	ible Page A	ddress Poir	nter			0000
PSVPAG	0034	_	_	_	_	_	_	_	_		F	Program Me	mory Visibi	lity Page Ac	Idress Point	ter		0000
RCOUNT	0036								Repeat Loo	op Counter								xxxx
SR	0042	_	_	_	_	_	_	_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	_	_	—	_	_	_	_	—	_	_	_	—	IPL3	PSV	—	—	0000
DISICNT	0052	_	_						[Disable Inter	rupts Coun	ter						xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	Notes
EC, FRC, FRCDIV, LPRC	TPOR + TSTARTUP + TRST	_	_	1, 2, 3
ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
XT, HS, SOSC	TPOR + TSTARTUP + TRST	Тоѕт	TFSCM	1, 2, 3, 4, 6
XTPLL, HSPLL	TPOR + TSTARTUP + TRST	TOST + TLOCK	TFSCM	1, 2, 3, 4, 5, 6
EC, FRC, FRCDIV, LPRC	TSTARTUP + TRST	—	_	2, 3
ECPLL, FRCPLL	TSTARTUP + TRST	TLOCK	TFSCM	2, 3, 5, 6
XT, HS, SOSC	TSTARTUP + TRST	Tost	TFSCM	2, 3, 4, 6
XTPLL, HSPLL	TSTARTUP + TRST	TOST + TLOCK	TFSCM	2, 3, 4, 5, 6
Any Clock	Trst	_	_	3
Any Clock	Trst	—	_	3
Any Clock	Trst	—	_	3
Any Clock	Trst	—	_	3
Any Clock	Trst	—	_	3
Any Clock	Trst	—	_	3
	EC, FRC, FRCDIV, LPRC ECPLL, FRCPLL XT, HS, SOSC XTPLL, HSPLL EC, FRC, FRCDIV, LPRC ECPLL, FRCPLL XT, HS, SOSC XTPLL, HSPLL Any Clock Any Clock Any Clock Any Clock	EC, FRC, FRCDIV, LPRCTPOR + TSTARTUP + TRSTECPLL, FRCPLLTPOR + TSTARTUP + TRSTXT, HS, SOSCTPOR + TSTARTUP + TRSTXTPLL, HSPLLTPOR + TSTARTUP + TRSTEC, FRC, FRCDIV, LPRCTSTARTUP + TRSTECPLL, FRCPLLTSTARTUP + TRSTXTPLL, HSPLLTSTARTUP + TRSTXTPLL, HSPLLTSTARTUP + TRSTXTPLL, HSPLLTSTARTUP + TRSTAny ClockTRSTAny ClockTRSTAny ClockTRSTAny ClockTRSTAny ClockTRSTAny ClockTRSTAny ClockTRSTAny ClockTRST	Clock SourceSYSKST DelayDelayEC, FRC, FRCDIV, LPRCTPOR + TSTARTUP + TRST—ECPLL, FRCPLLTPOR + TSTARTUP + TRSTTLOCKXT, HS, SOSCTPOR + TSTARTUP + TRSTTOSTXTPLL, HSPLLTPOR + TSTARTUP + TRSTTOST + TLOCKEC, FRC, FRCDIV, LPRCTSTARTUP + TRST—ECPLL, FRCPLLTSTARTUP + TRSTTLOCKXT, HS, SOSCTSTARTUP + TRSTTOSTXTPLL, HSPLLTSTARTUP + TRSTTOSTXTPLL, HSPLLTSTARTUP + TRSTTOSTAny ClockTRST—Any ClockTRST—Any ClockTRST—Any ClockTRST—Any ClockTRST—Any ClockTRST—Any ClockTRST—Any ClockTRST—Any ClockTRST—	Clock SourceSYSRS I DelayDelayDelayEC, FRC, FRCDIV, LPRCTPOR + TSTARTUP + TRST——ECPLL, FRCPLLTPOR + TSTARTUP + TRSTTLOCKTFSCMXT, HS, SOSCTPOR + TSTARTUP + TRSTTOSTTFSCMXTPLL, HSPLLTPOR + TSTARTUP + TRSTTOST + TLOCKTFSCMEC, FRC, FRCDIV, LPRCTSTARTUP + TRSTTOST + TLOCKTFSCMXT, HS, SOSCTSTARTUP + TRSTTLOCKTFSCMXT, HS, SOSCTSTARTUP + TRSTTOSTTFSCMXT, HS, SOSCTSTARTUP + TRSTTOSTTFSCMXTPLL, HSPLLTSTARTUP + TRSTTOST + TLOCKTFSCMAny ClockTRST——Any ClockTRST——Any ClockTRST——Any ClockTRST——Any ClockTRST——Any ClockTRST——Any ClockTRST——

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μ s nominal).

2: TSTARTUP = TVREG (10 μs nominal) if the on-chip regulator is enabled or TPWRT (64 ms nominal) if an on-chip regulator is disabled.

3: TRST = Internal state Reset time (20 μs nominal).

4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.

5: TLOCK = PLL lock time.

6: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	_	_	—		_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit C
Legend:						<i>(</i> -)	
R = Readab		W = Writable		•	nented bit, read		
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15		la Altarpata li	atorrupt Vootor	Tabla bit			
	1 = Use altern		nterrupt Vector	Table bit			
	0 = Use stand						
bit 14	DISI: DISI In	· · ·					
	1 = DISI inst	ruction is activ	/e				
	0 = DISI is n	ot active					
bit 13-5	Unimplemen						
bit 4		•	•	Polarity Select	bit		
	1 = Interrupt c 0 = Interrupt c						
bit 3	INT3EP: Exte	rnal Interrupt	3 Edge Detect	Polarity Select	bit		
	1 = Interrupt of	•	•				
	0 = Interrupt o	•					
bit 2		•	•	Polarity Select	bit		
	1 = Interrupt o 0 = Interrupt o						
bit 1	•	•	-	Polarity Select	bit		
	1 = Interrupt o			5			
	0 = Interrupt o	on positive ed	ge				
bit 0		•	•	Polarity Select	bit		
	1 = Interrupt o						
	0 = Interrupt o	on positive edg	ge				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

	_	_	-								
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0				
bit 15			•	•			bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	—	—	—				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	MI2C2IP1 MI2C2IP0 bit 8 U-0 — — bit 0				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
	• • 001 = Interru	pt is Priority 7 (pt is Priority 1 pt source is dis		y interrupt)							
bit 7		ited: Read as '									
bit 6-4	SI2C2IP<2:0: 111 = Interru	>: Slave I2C2 E pt is Priority 7 (Event Interrup highest priorit	•							
bit 3-0	Unimplemen	ted: Read as '	0'								

8.0 OSCILLATOR CONFIGURATION


Note:	This data sheet summarizes the features of								
	this group of PIC24F devices. It is not								
	intended to be a comprehensive reference								
	source. Refer to Section 6. "Oscillator"								
	(DS39700) in the "PIC24F Family								
	Reference Manual" for more information.								

The oscillator system for PIC24FJ128GA010 family devices has the following features:

• A total of four external and internal oscillator options as clock sources, providing 11 different clock modes

- On-chip 4x PLL to boost internal operating frequency on select internal and external oscillator sources
- Software-controllable switching between various clock sources
- Software-controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: PIC24FJ128GA010 FAMILY CLOCK DIAGRAM

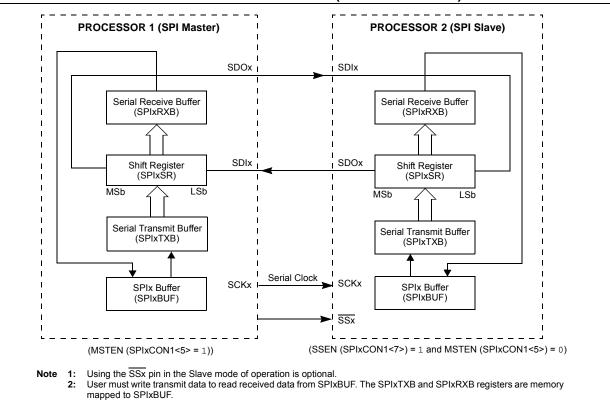
10.3 Input Change Notification

The input change notification function of the I/O ports allows the PIC24FJ128GA010 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 22 external signals (CN0 through CN21) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

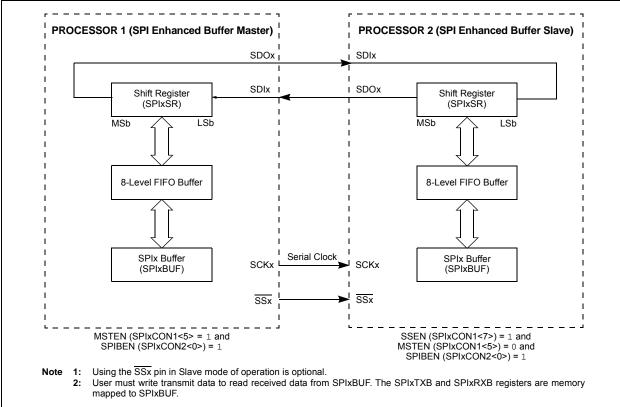
There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

When the internal pull-up is selected, the pin pulls up to VDD - 0.7V (typical). Make sure that there is no external pull-up source when the internal pull-ups are enabled, as the voltage difference can cause a current path.


Note: Pull-ups on Change Notification (CN) pins should always be disabled whenever the port pin is configured as a digital output.

NOTES:


R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL	—		_	_	_				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15	TON: Timer1	On bit									
	1 = Starts 16										
	0 = Stops 16	-bit Timer1									
bit 14	Unimplemen	nted: Read as '	0'								
bit 13	TSIDL: Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode										
					Idle mode						
	0 = Continues module operation in Idle mode										
bit 12-7	Unimplemented: Read as '0'										
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
	<u>When TCS = 1:</u> This bit is ignored.										
	When TCS = 0 :										
		<u></u> ne accumulatio	n is enabled								
	0 = Gated tir	ne accumulatio	on is disabled								
bit 5-4	TCKPS<1:0>: Timer1 Input Clock Prescale Select bits										
	11 = 1:256										
	10 = 1:64										
	01 = 1:8 00 = 1:1										
bit 3		ted: Read as '	٥'								
bit 2	-	er1 External Cl		chronization S	elect hit						
	When TCS =		Jok Input Oyn								
		<u></u> nizes external o	clock input								
		t synchronize e		input							
	When TCS =										
	This bit is ign										
bit 1		Clock Source S									
		clock from pin,	11CK (on the	e rising edge)							
h # 0		clock (Fosc/2)	0'								
bit 0	Unimplemen	ted: Read as '	U								

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

16.0 INTER-INTEGRATED CIRCUIT (I²C[™])

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702) in the "PIC24F Family Reference Manual" for more information.

The Inter-Integrated Circuit (I²C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

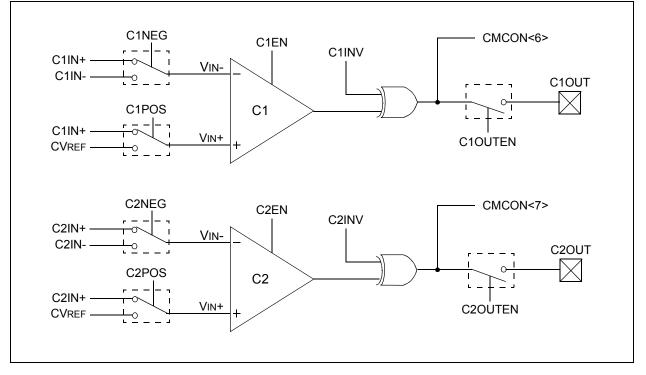
The I²C module supports these features:

- Independent master and slave logic
- 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications.
- Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave, regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 16-1.

16.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.


REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC				
ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10				
bit 15							bit 8				
R/C-0, HSC	R/C-0, HSC	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF				
bit 7							bit 0				
			0.000	11 11 2							
Legend:	- L-:4	HS = Hardware		•	mented bit, rea		C = Clearable bit				
R = Readable		W = Writable b	II.		ware Settable/						
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown				
bit 15		knowledge Stat	us bit								
		eceived from sla									
		ceived from slav	-								
		et or clear at the		-							
bit 14			-	-	ter; applicable	e to master tra	insmit operation.)				
		nsmit is in prog nsmit is not in p		ACK)							
				nsmission. Har	dware is clear	at the end of sl	ave Acknowledge.				
bit 13-11	Unimplement	ed: Read as '0'									
bit 10	BCL: Master I	3CL: Master Bus Collision Detect bit									
		ision has been o	detected during	g master oper	ation						
	0 = No collisio Hardware is s	n et at the detection	on of a bus col	lision							
bit 9		eral Call Status									
		all address was									
		all address was									
h # 0				a general call	address. Hard	lware is clear	at Stop detection.				
bit 8		t Address Statu ress was match									
		ress was match									
	Hardware is se	et at a match of th	ne 2nd byte of a	matched 10-l	oit address. Ha	rdware is clea	r at Stop detection.				
bit 7		Collision Detec									
	1 = An attemp 0 = No collisio	t to write the I20	CxTRN registe	r failed becau	ise the I ² C mo	dule is busy					
		et at an occurre	nce of a write	to I2CxTRN w	hile busy (cle	ared by softwa	are).				
bit 6		ve Overflow Fla			5.0	,	,				
	1 = A byte wa	s received while		register is sti	ll holding the p	previous byte					
	0 = No overflo		ta taona (an 100			d h					
hit E	_	et at an attempt			XRCV (cleared	a by software)					
bit 5		that the last byte									
		that the last byte			ss						
		lear at a device	address match	n. Hardware is	s set after a tra	ansmission fin	ishes or by				
hit 1	reception of a	slave byte.									
bit 4	P: Stop bit	that a Stop bit h	as heen detect	ted last							
		as not detected									
	Hardware is s	et or clear wher	a Start, Repe	ated Start or S	Stop is detecte	ed.					

22.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 19. "Comparator Module" (DS39710) in the "PIC24F Family Reference Manual" for more information. The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs, multiplexed with I/O pins, as well as the on-chip voltage reference. Block diagrams of the various comparator configurations are shown in Figure 22-1.

FIGURE 22-1: COMPARATOR I/O OPERATING MODES

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + Iit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE,Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT,Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N, Expr	Branch if Negative	1	1 (2)	None
	BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
DODI	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
2011	BSW.C	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BSW.2 BTG	f,#bit4	Bit Toggle f	1	1	None
919				1	1	
BTSC	BTG BTSC	Ws,#bit4 f,#bit4	Bit Toggle Ws Bit Test f, Skip if Clear	1	1 (2 or 3)	None None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	(2 or 3)	None

TABLE 25-2:	INSTRUCTION SET OVERVIEW

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	f = f	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
	COM	Ws,Wd	Wd = Ws	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
01	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
CFU	CPO	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
012	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f - 1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-Bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-Bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-Bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-Bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	с
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 27-13: COMPARATOR SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
D300	VIOFF	Input Offset Voltage*	_	10	30	mV	
D301	VICM	Input Common Mode Voltage*	0	_	Vdd	V	
D302	CMRR	Common Mode Rejection Ratio*	55	—	—	dB	
300	TRESP	Response Time* ⁽¹⁾	_	150	400	ns	
301	Тмс2о∨	Comparator Mode Change to Output Valid*	_	_	10	μs	

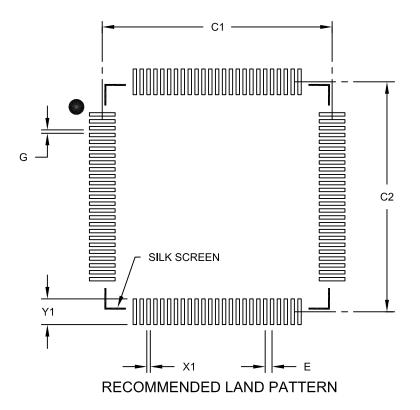
Parameters are characterized but not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 27-14: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments	
VRD310	CVRES	Resolution	VDD/24	_	Vdd/32	LSb		
VRD311	CVRAA	Absolute Accuracy	_	_	AVDD – 1.5	LSb		
VRD312	CVRur	Unit Resistor Value (R)	_	2k	_	Ω		
VR310	TSET	Settling Time ⁽¹⁾	_	—	10	μS		

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.


TABLE 27-23:	A/D CONVERSION TIMING REQUIREMENTS ⁽¹⁾
--------------	---

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions	
AD50	TAD	A/D Clock Period	75	_		ns	Tcy = 75 ns, ADxCON3 is in default state	
AD51	tRC	A/D Internal RC Oscillator Period	—	250		ns		
			Convers	ion Rate				
AD55	tCONV	Conversion Time	_	12	_	TAD		
AD56	FCNV	Throughput Rate	_	—	500	ksps	AVDD > 2.7V	
AD57	t SAMP	Sample Time	_	1	_	Tad		
Clock Parameters								
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad		

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch E		0.40 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN:978-1-61341-955-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.