

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	84
Program Memory Size	96КВ (32К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj96ga010-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with $PIC^{\textcircled{s}}$ devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word which contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area, between 0000h and 1FFFh, is referred to as the Near Data Space (NDS). Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is indirectly addressable. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where SFRs are actually implemented, is shown in Table 4-2. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-30.

	SFR Space Address														
	xx00	xx20	xx40	xx60	xx80	xxA0	xxC0	xxE0							
000h		Core		ICN		Interrupts		—							
100h	Tin	ners	Capture	—	Compare	—	_	—							
200h	I ² C™ UART		S	PI	_	—	۱/	0							
300h	A	/D	_	—	_	—	_	—							
400h	—	_	_	—	_	—	_	—							
500h			_	—	_	—	_	—							
600h	PMP	RTC/Comp	CRC	—	_	—	۱/	0							
700h	—	—	System	NVM/PMD	_	—	—	—							

 TABLE 4-2:
 IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

TABLE 4-5: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	—	_	_	—	_	_	—	_	_	CN21IE ⁽¹⁾	CN20IE ⁽¹⁾	CN19IE ⁽¹⁾	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	—	_	—	_	_	_	_	_	_	CN21PUE ⁽¹⁾	CN20PUE ⁽¹⁾	CN19PUE ⁽¹⁾	CN18PUE	CN17PUE	CN16PUE	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal

Note 1: Implemented in 80-pin and 100-pin devices only.

TABLE 4-6: TIMER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	l Register								xxxx
PR1	0102								Period	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—	0000
TMR2	0106								Timer2	2 Register								xxxx
TMR3HLD	0108						Tim	er3 Holding	Register (F	or 32-bit time	er operations	s only)						xxxx
TMR3	010A	Timer3 Register 2														xxxx		
PR2	010C	Period Register 2														FFFF		
PR3	010E								Period	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	—	_	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Т	Timer5 Holdi	ng Register	(For 32-bit of	operations of	nly)						xxxx
TMR5	0118								Timer	5 Register								xxxx
PR4	011A								Period	Register 4								FFFF
PR5	011C	Period Register 5													FFFF			
T4CON	011E	TON	_	TSIDL	_	_	_	_	_		TGATE	TCKPS1	TCKPS0	T32	_	TCS		0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	—	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: PORTE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8		_	_	_	_		TRISE9(1)	TRISE8 ⁽¹⁾	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
PORTE	02DA	_	_	_	_	_	_	RE9 ⁽¹⁾	RE8 ⁽¹⁾	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	_	_	_	_	_	_	LATE9 ⁽¹⁾	LATE8 ⁽¹⁾	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
ODCE	06D8		_	_	_	_	-	ODE9 ⁽¹⁾	ODE8 ⁽¹⁾	ODE7	ODE6	ODE5	ODE4	ODE3	ODE2	ODE1	ODE0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices.

Note 1: Implemented in 80-pin and 100-pin devices only.

TABLE 4-21: PORTF REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	_	_	TRISF13 ⁽¹⁾	TRISF12 ⁽¹⁾		_		TRISF8 ⁽²⁾	TRISF7 ⁽²⁾	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	_	_	RF13 ⁽¹⁾	RF12 ⁽¹⁾	_	_	_	RF8 ⁽²⁾	RF7 ⁽²⁾	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	_	_	LATF13 ⁽¹⁾	LATF12 ⁽¹⁾	_	_	_	LATF8 ⁽²⁾	LATF7 ⁽²⁾	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	06DE	_	—	ODF13 ⁽¹⁾	ODF12 ⁽¹⁾	_	_	_	ODF8 ⁽²⁾	ODF7 ⁽²⁾	ODF6	ODF5	ODF4	ODF3	ODF2	ODF1	ODF0	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices.

Note 1: Implemented in 100-pin devices only.

2: Implemented in 80-pin and 100-pin devices only.

TABLE 4-22: PORTG REGISTER MAP

	••		• ··= • ·•															
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	TRISG15	TRISG14(1)	TRISG13(1)	TRISG12(1)	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	—	TRISG3	TRISG2	TRISG1(2)	TRISG0(2)	F3CF
PORTG	02E6	RG15	RG14 ⁽¹⁾	RG13 ⁽¹⁾	RG12 ⁽¹⁾	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1 ⁽²⁾	RG0 ⁽²⁾	xxxx
LATG	02E8	LATG15	LATG14 ⁽¹⁾	LATG13 ⁽¹⁾	LATG12 ⁽¹⁾	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1 ⁽²⁾	LATG0 ⁽²⁾	xxxx
ODCG	06E4	ODG15	ODG14 ⁽¹⁾	ODG13 ⁽¹⁾	ODG12 ⁽¹⁾	_	_	ODG9	ODG8	ODG7	ODG6	_	_	ODG3	ODG2	ODG1 ⁽²⁾	ODG0 ⁽²⁾	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices.

Note 1: Implemented in 100-pin devices only.

2: Implemented in 80-pin and 100-pin devices only.

TABLE 4-23: PAD CONFIGURATION MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	—	—	_		_	_		_			_	_			RTSECSEL	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 100-pin devices.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming operatior #0x4001.W0	ıs ;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program memor	сv	location to be written
;	program memo:	ry selected, and writes enabled	1	
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the	TBLWT instructions to write the	9]	latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	<pre>#HIGH_BYTE_2, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•	word		
'	MOV	HIOW WORD 31 W2		
	MOV	HUTCH RVTE 21 W2		
	TRI MTT	W2 [W0]	;	Write DM low word into program latch
	твімти	W3 [W0]	;	Write PM high byte into program latch
	IDDWIN			Milee in high byce inco program racen

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the program/erase sequence
BTSC	NVMCON, #15	; and wait for it to be
BRA	\$-2	; completed

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to **Section 8. "Interrupts"** (DS39707) in the *"PIC24F Family Reference Manual"* for more information.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ128GA010 family devices implement nonmaskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F device clears its registers in response to a Reset which forces the PC to zero. The microcontroller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

	Vector		ΑΙΥΤ	Inte	rrupt Bit Locat	tions
Interrupt Source	Number	IVI Address	Address	Flag	Enable	Priority
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
External Interrupt 3	53	00007Eh	00017Eh	IFS3<5>	IEC3<5>	IPC13<6:4>
External Interrupt 4	54	000080h	000180h	IFS3<6>	IEC3<6>	IPC13<10:8>
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>
Parallel Master Port	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC0<0>	IPC8<2:0>
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0
bit 7							bit 0
Legend:	- I- 14		L :4				
R = Readable		vv = vvritable	DIL	0 = 0	mented bit, read		
-n = value at	PUR	I = BILIS SEL		0 = BIUS CIE	areo	x = Bit is unkr	IOWN
bit 15	Unimplemen	ted: Read as '	٥'				
bit 14-12	T1IP<2.0>. ⊥	imer1 Interrunt	• Priority hits				
51(1112	111 = Interru	pt is Priority 7 (highest priorit	v interrupt)			
	•	, , , , , , , , , , , , , , , , , , ,		, ,			
	•						
	• 001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	OC1IP<2:0>:	Output Compa	are Channel 1	Interrupt Prior	ity bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
1 H 7	000 = Interru	pt source is dis	abled				
Dit /	Unimplemen	ted: Read as	0° Dhannal dunta		:4-		
DIT 6-4	1111 - Interru	nput Capture (Diannel 1 Inte	rrupt Priority b	its		
	•		nighest phone	y interrupt)			
	•						
	•	ntin Drievity 1					
	001 = Interru	pt is Phonty T	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	INT0IP<2:0:>	External Inter	rupt 0 Priority	bits			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

	-	-					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, reac	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0' 	.			
bit 14-12	U1RXIP<2:0>	: UARI1 Rece	eiver Interrupt	Priority bits			
		ot is Priority 7 (nignest priorit	y interrupt)			
	•						
	•						
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	SPI1IP<2:0>:	SPI1 Event In	terrupt Priority	/ bits			
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interru	ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	SPF1IP<2:0>	: SPI1 Fault In	terrupt Priority	/ bits			
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interru	ot source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	T3IP<2:0>: 1	imer3 Interrupt	Priority bits				
	111 = Interrup	ot is Priority 7 (nignest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1	ahlad				
			abicu				

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0					
bit 15		•		-			bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
_	OC3IP2	OC3IP1	OC3IP0	—	—	—	—					
bit 7							bit 0					
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'						
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15	Unimplemer	nted: Read as	0'									
bit 14-12	T4IP<2:0>: ⊺	Fimer4 Interrup	t Priority bits									
	111 = Interru	pt is Priority 7	(highest priori	ty interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
	000 = Interru	pt source is dis	sabled									
bit 11	Unimplemer	nted: Read as	0'									
bit 10-8	OC4IP<2:0>	: Output Comp	are Channel 4	Interrupt Prior	rity bits							
	111 = Interru	pt is Priority 7	(highest priori	ty interrupt)								
	•											
	•											
	001 = Interru	001 = Interrupt is Priority 1										
	000 = Interru	pt source is dis	sabled									
bit 7	Unimplemer	nted: Read as	0'									
bit 6-4	OC3IP<2:0>	: Output Comp	are Channel 3	Interrupt Prior	rity bits							
	111 = Interru	pt is Priority 7	(highest priori	ty interrupt)								
	•											
	•											
	001 = Interru	upt is Priority 1										
	000 = Interru	pt source is dis	sabled									
bit 3-0	Unimplemer	nted: Read as	0'									

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

13.0 INPUT CAPTURE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 15. "Input Capture" (DS39701) in the "PIC24F Family Reference Manual" for more information.

The input capture module has multiple operating modes, which are selected via the ICxCON register. The operating modes include:

- Capture timer value on every falling edge of input, applied at the ICx pin
- Capture timer value on every rising edge of input, applied at the ICx pin

- Capture timer value on every fourth rising edge of input, applied at the ICx pin
- Capture timer value on every 16th rising edge of input, applied at the ICx pin
- Capture timer value on every rising and every falling edge of input, applied at the ICx pin
- Device wake-up from capture pin during CPU Sleep and Idle modes

The input capture module has a four-level FIFO buffer. The number of capture events required to generate a CPU interrupt can be selected by the user.

FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM

REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	_	OCSIDL	—	—	—	_	—
bit 15							bit 8

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT ⁽¹⁾	OCTSEL ⁽¹⁾	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare x Module Stop in Idle Control bit 1 = Output capture x will halt in CPU Idle mode 0 = Output capture x will continue to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit ⁽¹⁾
	 1 = PWM Fault condition has occurred (cleared in HW only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare x Timer Select bit ⁽¹⁾
	 1 = Timer3 is the clock source for output Compare x 0 = Timer2 is the clock source for output Compare x
bit 2-0	OCM<2:0>: Output Compare x Mode Select bits 111 = PWM mode on OCx, Fault pin is enabled ⁽²⁾ 110 = PWM mode on OCx, Fault pin is disabled ⁽²⁾ 101 = Initialize the OCx pin low, generate continuous output pulses on the OCx pin 100 = Initialize the OCx pin low, generate single output pulse on the OCx pin 011 = Compare event toggles OCx pin 010 = Initialize the OCx pin high, a compare event forces the OCx pin low 001 = Initialize the OCx pin low, a compare event forces the OCx pin high 000 = Output compare channel is disabled
Note 1:	Refer to the device data sheet for specific time bases available to the output compare module.

2: The OCFA pin controls the OC1-OC4 channels; OCFB pin controls the OC5 channel.

R/W-0	U-0	R/W-0	U-0	U-0	R-0	R-0	R-0	
SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	
bit 15		0			0	01.12201	bit 8	
R/W-0	R/C-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	
bit 7	•	•				•	bit 0	
Legend: C = Clearable bit								
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown	
bit 15 bit 14	SPIEN: SPIx 1 = Enables n 0 = Disables n Unimplement	Enable bit nodule and con module ted: Read as '(figures SCKx	, SDOx, SDIx	and SSx as seri	al port pins		
bit 13	SPISIDL: Stop	p in Idle Mode	bit					
	1 = Discontinu 0 = Continues	ues module opera s module opera	eration when o tion in Idle mo	device enters	Idle mode			
bit 12-11	Unimplemen	ted: Read as 'd)'					
bit 10-8	SPIBEC<2:0>	SPIx Buffer E	Element Coun	t bits				
	Master mode: Number of SF	l transfers pen	ding.					
	<u>Slave mode:</u> Number of SF	PI transfers unro	ead.					
bit 7	SRMPT: Shift	Register (SPIx	SR) Empty bi	t (valid in Enha	anced Buffer mo	ode)		
	1 = SPIx Shif 0 = SPIx Shif	ft register is em ft register is not	pty and ready empty; read	v to send or ree as '0'	ceive			
bit 6	SPIROV: Rec	eive Overflow l	Flag bit					
	1 = A new by data in the 0 = No overfle	te/word is comp e SPIxBUF reg ow has occurre	oletely received ister ed	d and discarde	d; the user softw	are has not rea	d the previous	
bit 5	SRXMPT: Re	ceive FIFO Em	pty bit (valid i	n Enhanced B	uffer mode)			
	1 = Receive I	FIFO is empty	ntv'					
bit 4-2	SISEL<2:0>:	SPIx Buffer Int	errupt Mode b	oits (valid in Er	nhanced Buffer r	mode)		
	 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when the last bit is shifted into SPIxSR, as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR, now the transmit is complete 100 = Interrupt when one data is shifted into the SPIxSR, as a result, the TX FIFO has one open spot 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when the SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read, and as a result, the buffer is empty (SRXMPT bit set) 							

REGISTER 15-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

REGISTER 15-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty In Standard Buffer mode: Automatically set in hardware when the CPU writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR. In Enhanced Buffer mode: Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write. SPIRBF: SPIx Receive Buffer Full Status bit bit 0 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty In Standard Buffer mode: Automatically set in hardware when the SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB. In Enhanced Buffer mode:

Automatically set in hardware when the SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

18.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 13. "Parallel Master Port (PMP)" (DS39713) in the "PIC24F Family Reference Manual" for more information.

The Parallel Master Port (PMP) module is a parallel, 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable. Key features of the PMP module include:

- Up to 16 Programmable Address Lines
- · Up to Two Chip Select Lines
- Programmable Strobe Options
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 18-1: PMP MODULE OVERVIEW

RE 19-2: ALARM MASK	SETTINGS				
Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours	Minutes	Seconds
0000 – Every half second 0001 – Every second				:	
0010 – Every 10 seconds				:	s
0011 – Every minute				:	s s
0100 – Every 10 minutes				: m	s s
0101 – Every hour				: m m ;	S S
0110 – Every day			hh	: m m ;	s s
0111 – Every week	d		hh	: m m ;	s s
1000 – Every month		/ d	hh	: m m ;	s s
1001 – Every year ⁽¹⁾		m m / d d	hh	: m m ;	s s
Note 1: Annually, except when	configured fo	r February 29.			

		D/C 0			DAMA				
	0-0								
LIVIIDL	—	C2EVI	CIEVI	C2EN	GIEN	C20UTEN	LIUUIEN		
							υπ δ		
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS		
bit 7	bit 0								
. .							ı		
Legend:	ala hit	C = Clearable	bit	II – Unimplon	aantad hit raad				
		'1' = Rit is set	אנ	$0^{\circ} = 0$	arod	as U	0.000		
		I – DILIS SEL			areu		OWIT		
bit 15	CMIDL: Stop i	n Idle Mode bit							
	1 = When the	device enters l	dle mode, the	module does r	not generate inte	errupts; module	is still enabled		
	0 = Continues	s normal modul	e operation in	Idle mode					
bit 14	Unimplement	ed: Read as '0	,						
bit 13	C2EVT: Comp	barator 2 Event	bit red states						
	0 = Comparat	tor output chang	jed states ot change stat	es					
bit 12	C1EVT: Comp	arator 1 Event	bit						
	1 = Comparat	tor output chang	ged states						
	0 = Comparat	tor output did no	ot change stat	es					
bit 11	C2EN: Compa	arator 2 Enable	bit						
	1 = Comparat 0 = Comparat	tor is enabled							
bit 10	C1EN: Compa	arator 1 Enable	bit						
	1 = Comparat 0 = Comparat	tor is enabled tor is disabled							
bit 9	C2OUTEN: Co	omparator 2 Ou	tput Enable b	it					
	1 = Comparat 0 = Comparat	tor output is driv tor output is not	ven on the out driven on the	put pad output pad					
bit 8	C1OUTEN: Co	omparator 1 Ou	tput Enable b	it					
	1 = Comparat 0 = Comparat	tor output is driv tor output is not	ven on the out driven on the	put pad output pad					
bit 7	C2OUT: Comp	parator 2 Outpu	t bit						
	When C2INV	<u>= 0:</u>							
	1 = C2 VIN+>	C2 VIN-							
	When C2INV:	= 1:							
	0 = C2 VIN+ >	• C2 VIN-							
	1 = C2 VIN+ <	C2 VIN-							
bit 6	C1OUT: Comp	parator 1 Outpu	t bit						
	$\frac{\text{VVhen C1INV}}{1 = C1 \text{VIN} + 2}$	<u>= 0:</u> • C1 VIN-							
	0 = C1 VIN + <	C1 VIN-							
	When C1INV :	<u>= 1:</u>							
	0 = C1 VIN+ > 1 = C1 VIN+ <	• C1 VIN- < C1 VIN-							

REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER

24.2 On-Chip Voltage Regulator

All of the PIC24FJ128GA010 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ128GA010 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as tantalum) must be connected to the VDDCORE/VCAP pin (Figure 24-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor, CEFC, is provided in **Section 27.1 "DC Characteristics"**.

If ENVREG is tied to Vss, the regulator is disabled. In this case, separate power for the core logic, at a nominal 2.5V, must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 24-1 for possible configurations.

24.2.1 ON-CHIP REGULATOR AND POR

When the voltage regulator is enabled, it takes approximately 20 μ s for it to generate output. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down, including Sleep mode.

If the regulator is disabled, a separate Power-up Timer (PWRT) is automatically enabled. The PWRT adds a fixed delay of 64 ms nominal delay at device start-up.

24.2.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC24FJ128GA010 devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<0>). The brown-out voltage specifications can be found in the "*PIC24F Family Reference Manual*" in **Section 7. "Reset"** (DS39712).

24.2.3 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE must never exceed VDD by 0.3 volts.

FIGURE 24-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

NOTES: