

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	84
Program Memory Size	96КВ (32К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj96ga010t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued))

Face of		Pin Number			Input	Presed at
Function	64-Pin	80-Pin	100-Pin	I/O	Buffer	Description
RA0	-	—	17	I/O	ST	PORTA Digital I/O.
RA1	_	—	38	I/O	ST	
RA2	_	—	58	I/O	ST	
RA3	-	—	59	I/O	ST	
RA4	_	—	60	I/O	ST	
RA5	_	—	61	I/O	ST	
RA6	-	—	91	I/O	ST	
RA7	-	—	92	I/O	ST	
RA9		23	28	I/O	ST	
RA10	-	24	29	I/O	ST	
RA14		52	66	I/O	ST	
RA15	_	53	67	I/O	ST	
RB0	16	20	25	I/O	ST	PORTB Digital I/O.
RB1	15	19	24	I/O	ST	
RB2	14	18	23	I/O	ST	
RB3	13	17	22	I/O	ST	
RB4	12	16	21	I/O	ST	
RB5	11	15	20	I/O	ST	
RB6	17	21	26	I/O	ST	
RB7	18	22	27	I/O	ST	
RB8	21	27	32	I/O	ST	
RB9	22	28	33	I/O	ST	
RB10	23	29	34	I/O	ST	
RB11	24	30	35	I/O	ST	
RB12	27	33	41	I/O	ST	
RB13	28	34	42	I/O	ST	
RB14	29	35	43	I/O	ST	
RB15	30	36	44	I/O	ST	
RC1	_	4	6	I/O	ST	PORTC Digital I/O.
RC2	_	—	7	I/O	ST	
RC3		5	8	I/O	ST	
RC4	_	—	9	I/O	ST	
RC12	39	49	63	I/O	ST	
RC13	47	59	73	I/O	ST	
RC14	48	60	74	I/O	ST	
RC15	40	50	64	I/O	ST]

TABLE 1-2: PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, $l^2C^{TM} = l^2C/SMB$ us input buffer

TABLE 4-5: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	—	_	_	—	_	_	—	_	_	CN21IE ⁽¹⁾	CN20IE ⁽¹⁾	CN19IE ⁽¹⁾	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	—	_	—	_	_	_	_	_	_	CN21PUE ⁽¹⁾	CN20PUE ⁽¹⁾	CN19PUE ⁽¹⁾	CN18PUE	CN17PUE	CN16PUE	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal

Note 1: Implemented in 80-pin and 100-pin devices only.

TABLE 4-6: TIMER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		Timer1 Register										xxxx					
PR1	0102								Period	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—	0000
TMR2	0106		Timer2 Register									xxxx						
TMR3HLD	0108						Tim	er3 Holding	Register (F	or 32-bit time	er operations	s only)						xxxx
TMR3	010A								Timer	B Register								xxxx
PR2	010C	Period Register 2									FFFF							
PR3	010E								Period	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	—	_	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Т	Timer5 Holdi	ng Register	(For 32-bit of	operations of	nly)						xxxx
TMR5	0118								Timer	5 Register								xxxx
PR4	011A								Period	Register 4								FFFF
PR5	011C								Period	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	_	_	_	_	_		TGATE	TCKPS1	TCKPS0	T32	_	TCS		0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	—	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	Notes
POR	EC, FRC, FRCDIV, LPRC	TPOR + TSTARTUP + TRST	_	_	1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	Tost + Tlock	TFSCM	1, 2, 3, 4, 5, 6
BOR	EC, FRC, FRCDIV, LPRC	TSTARTUP + TRST	—	_	2, 3
	ECPLL, FRCPLL	TSTARTUP + TRST	TLOCK	TFSCM	2, 3, 5, 6
	XT, HS, SOSC	TSTARTUP + TRST	Tost	TFSCM	2, 3, 4, 6
	XTPLL, HSPLL	TSTARTUP + TRST	Tost + Tlock	TFSCM	2, 3, 4, 5, 6
MCLR	Any Clock	Trst	—	_	3
WDT	Any Clock	Trst	—	_	3
Software	Any Clock	Trst	—	_	3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	—	—	3
Trap Conflict	Any Clock	Trst	—	_	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μ s nominal).

2: TSTARTUP = TVREG (10 μs nominal) if the on-chip regulator is enabled or TPWRT (64 ms nominal) if an on-chip regulator is disabled.

3: TRST = Internal state Reset time (20 μs nominal).

4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.

5: TLOCK = PLL lock time.

6: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has NOT expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, will automatically be inserted after the POR and PWRT delay times. The FSCM will not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 100 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay will prevent an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Device Configuration register (see Table 6-2). The RCFGCAL and NVMCON registers are only affected by a POR.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to **Section 8. "Interrupts"** (DS39707) in the *"PIC24F Family Reference Manual"* for more information.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ128GA010 family devices implement nonmaskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F device clears its registers in response to a Reset which forces the PC to zero. The microcontroller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0
bit 15			·	-			bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	OC3IP2	OC3IP1	OC3IP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as	ʻ0'				
bit 14-12	T4IP<2:0>: ⊺	Timer4 Interrup	t Priority bits				
	111 = Interru	upt is Priority 7	(highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is Priority 1					
	000 = Interru	ipt source is dis	sabled				
bit 11	Unimplemer	nted: Read as	ʻ0'				
bit 10-8	OC4IP<2:0>	: Output Comp	are Channel 4	Interrupt Prior	rity bits		
	111 = Interru	upt is Priority 7	(highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is Priority 1					
	000 = Interru	ipt source is dis	sabled				
bit 7	Unimplemer	nted: Read as	ʻ0'				
bit 6-4	OC3IP<2:0>	: Output Comp	are Channel 3	Interrupt Prior	rity bits		
	111 = Interru	pt is Priority 7	(highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is Priority 1					
	000 = Interru	pt source is dis	sabled				
bit 3-0	Unimplemer	nted: Read as	0'				

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

REGISTER 7-31: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	iown
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
Legend:							
Dit /							bit 0
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
bit 15							bit 8
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0
R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0

bit 15	CPUIRQ: Interrupt Request from Interrupt Controller CPU bit
	 1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when the CPU priority is higher than the interrupt priority 0 = No interrupt request is unacknowledged
hit 14	Inimplemented: Read as '0'
bit 13	VHOLD: Vector Number Capture Configuration bit
bit 13	 1 = The VECNUM bits contain the value of the highest priority pending interrupt 0 = The VECNUM bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that has occurred with higher priority than the CPU, even if other interrupts are pending)
bit 12	Unimplemented: Read as '0'
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits
	1111 = CPU Interrupt Priority Level is 15
	•
	•
	• 0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0
bit 7	Unimplemented: Read as '0'
bit 6-0	VECNUM<6:0>: Pending Interrupt Vector ID bits (pending vector number is VECNUM + 8)
	0111111 = Interrupt Vector pending is number 135
	•
	0000001 = Interrupt Vector pending is number 9 0000000 = Interrupt Vector pending is number 8

To set up the SPI module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 5. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- 6. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - Clear the SPIxIF bit in the respective IFSx register.
 - Set the SPIxIE bit in the respective IECx register.
 - Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 8. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-1: SPIX MODULE BLOCK DIAGRAM (STANDARD MODE)

REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

			11.0	11.0	11.0	11.0	11.0
			0-0	0-0	0-0	0-0	0-0
bit 15	SFIFSD	SFIFFUL					bit 8
bit 15							bit 0
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	—	—	_	—	SPIFE	SPIBEN
bit 7		1			L		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit				
	1 = Framed S	Plx support is	enabled				
	0 = Framed S	Plx support is	disabled				
bit 14	SPIFSD: Fran	ne Sync Pulse	Direction Cor	ntrol on SSx Pi	n bit		
	1 = Frame sy	nc pulse input	(slave)				
	0 = Frame sy	nc pulse outpu	t (master)				
bit 13	SPIFPOL: Fra	ame Sync Puls	e Polarity bit ((Frame mode o	only)		
	1 = Frame syl	nc pulse is acti	ve-high				
hit 10 0	0 = Frame Sy	ted. Deed ee f	ve-iow				
		Curre Dulee F	J Idao Coloct hi				
DICI	SPIFE: Frame	e Sync Puise E	age Select bi	l Insthitelesk			
	\perp = Frame syl	nc puise coinci	des with the li	it clock			
bit 0	SPIREN. Enh	anced Buffer F	inable hit	IT CIOCK			
Situ	1 = Enhanced	l Ruffer is enab	led				
	0 = Enhanced	Buffer is disat	bled (Legacy i	mode)			
			(5.0)	- /			

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. Refer to Section 21. "UART"
	(DS39708) in the "PIC24F Family
	Reference Manual" for more information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UARTx is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission Through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins

- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx is shown in Figure 17-1. The UARTx module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 17-1: UARTX SIMPLIFIED BLOCK DIAGRAM

REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

bi	t	7	
_	_	_	_

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; Contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'

bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; Contains a value from 0 to 2

bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; Contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; Contains a value from 0 to 5

bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; Contains a value from 0 to 9 bit 7 Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; Contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; Contains a value from 0 to 9

		D/C 0	D/0.0		DAALO			
	0-0							
LIVIIDL	—	C2EVI	CIEVI	C2EN	GIEN	C20UTEN	CIUUIEN	
							υπ δ	
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	
bit 7							bit 0	
. .							ı	
Legend:	ala hit	C = Clearable	DIT	II – Unimplon	aantad hit raad	aa 'O'		
		'1' = Rit is set	אנ	$0^{\circ} = 0$	arod	as u	0)4/12	
		I – DILIS SEL			areu		OWIT	
bit 15	CMIDL: Stop i	n Idle Mode bit						
	1 = When the	device enters l	dle mode, the	module does r	not generate inte	errupts; module	is still enabled	
	0 = Continues	s normal modul	e operation in	Idle mode				
bit 14	Unimplement	ed: Read as '0	,					
bit 13	C2EVT: Comp	barator 2 Event	bit red states					
	0 = Comparat	tor output chang	jed states ot change stat	es				
bit 12	C1EVT: Comp	arator 1 Event	bit					
	1 = Comparat	tor output chang	ged states					
	0 = Comparat	tor output did no	ot change stat	es				
bit 11	C2EN: Compa	arator 2 Enable	bit					
	1 = Comparat 0 = Comparat	tor is enabled						
bit 10	C1EN: Compa	arator 1 Enable	bit					
	1 = Comparat 0 = Comparat	tor is enabled tor is disabled						
bit 9	C2OUTEN: C	omparator 2 Ou	tput Enable b	it				
	1 = Comparat 0 = Comparat	tor output is driv tor output is not	ven on the out driven on the	put pad output pad				
bit 8	C1OUTEN: C	omparator 1 Ou	tput Enable b	it				
	1 = Comparat 0 = Comparat	tor output is driv tor output is not	ven on the out driven on the	put pad output pad				
bit 7	C2OUT: Com	parator 2 Outpu	t bit					
	When C2INV	<u>= 0:</u>						
	1 = C2 VIN+ > C2 VIN-							
	When $C2INV = 1$:							
	0 = C2 VIN+ > C2 VIN-							
	1 = C2 VIN+ <	C2 VIN-						
bit 6	C1OUT: Comp	parator 1 Outpu	t bit					
	$\frac{\text{When C1INV} = 0}{1 = C1 \text{Vin} + 2 C1 \text{Vin}}$							
	0 = C1 VIN + <	C1 VIN-						
	When C1INV	<u>= 1:</u>						
	0 = C1 VIN+ > 1 = C1 VIN+ >	> C1 VIN- < C1 VIN-						

REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER

24.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. Refer to Section 32. "High-Level Device Integration" (DS39719) in the "PIC24F Family Reference Manual" for more information.

PIC24FJ128GA010 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

24.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list is shown in Table 24-1. A detailed explanation of the various bit functions is provided in Register 24-1 through Register 24-4.

Note that address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using table reads and table writes.

24.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ128GA010 FAMILY DEVICES

In PIC24FJ128GA010 family devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the two words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 24-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among five locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

TABLE 24-1:FLASH CONFIGURATION
WORD LOCATIONS

Device	Configuration Word Addresses			
	1	2		
PIC24FJ64GA	00ABFEh	00ABFCh		
PIC24FJ96GA	00FFFEh	00FFFCh		
PIC24FJ128GA	0157FEh	0157FCh		

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The Configuration bits are reloaded from the Flash Configuration Word on any device Reset.

The upper byte of both Flash Configuration Words in program memory should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

REGISTER 24-1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	U-1	R/PO-1
r	JTAGEN ⁽¹⁾	GCP	GWRP	DEBUG	r	_	ICS
bit 15							bit 8

R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	WINDIS	—	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:	x = Bit is unknown	r = Reserved	
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read as '0'	
-n = Value when device is unprogrammed		'1' = Bit is set	'0' = Bit is cleared

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: Program as '0'. Read value is unknown.
bit 14	JTAGEN: JTAG Port Enable bit ⁽¹⁾
	 1 = JTAG port is enabled 0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	 1 = Code protection is disabled 0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	 1 = Writes to program memory are allowed 0 = Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	 1 = Device resets into Operational mode 0 = Device resets into Debug mode
bit 10	Reserved: Program as '1'
bit 9	Unimplemented: Read as '1'
bit 8	ICS: Emulator Pin Placement Select bit
	1 = Emulator/debugger uses EMUC2/EMUD2 0 = Emulator/debugger uses EMUC1/EMUD1
bit 7	FWDTEN: Watchdog Timer Enable bit
	 1 = Watchdog Timer is enabled 0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled; FWDTEN must be '1'
bit 5	Unimplemented: Read as '1'
bit 4	FWPSA: WDT Prescaler Ratio Select bit 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32
Note 1	ITACEN bit can not be medified using ITAC programming. It can only change using In Circuit Se

Note 1: JTAGEN bit can not be modified using JTAG programming. It can only change using In-Circuit Serial Programming[™] (ICSP[™]).

24.2 On-Chip Voltage Regulator

All of the PIC24FJ128GA010 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ128GA010 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as tantalum) must be connected to the VDDCORE/VCAP pin (Figure 24-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor, CEFC, is provided in **Section 27.1 "DC Characteristics"**.

If ENVREG is tied to Vss, the regulator is disabled. In this case, separate power for the core logic, at a nominal 2.5V, must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 24-1 for possible configurations.

24.2.1 ON-CHIP REGULATOR AND POR

When the voltage regulator is enabled, it takes approximately 20 μ s for it to generate output. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down, including Sleep mode.

If the regulator is disabled, a separate Power-up Timer (PWRT) is automatically enabled. The PWRT adds a fixed delay of 64 ms nominal delay at device start-up.

24.2.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC24FJ128GA010 devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<0>). The brown-out voltage specifications can be found in the "*PIC24F Family Reference Manual*" in **Section 7. "Reset"** (DS39712).

24.2.3 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE must never exceed VDD by 0.3 volts.

FIGURE 24-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \end{array}$				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions			
Operating Cur	Operating Current (IDD) ⁽²⁾						
DC20	1.6	4.0	mA	-40°C			
DC20a	1.6	4.0	mA	+25°C	2.5∨ ⁽³⁾	1 MIPS	
DC20b	1.6	4.0	mA	+85°C			
DC20d	1.6	4.0	mA	-40°C			
DC20e	1.6	4.0	mA	+25°C	3.6V ⁽⁴⁾		
DC20f	1.6	4.0	mA	+85°C			
DC23	6.0	12	mA	-40°C		4 MIPS	
DC23a	6.0	12	mA	+25°C	2.5∨ ⁽³⁾		
DC23b	6.0	12	mA	+85°C			
DC23d	6.0	12	mA	-40°C			
DC23e	6.0	12	mA	+25°C	3.6V ⁽⁴⁾		
DC23f	6.0	12	mA	+85°C			
DC24	20	32	mA	-40°C			
DC24a	20	32	mA	+25°C	2.5∨ ⁽³⁾	16 MIPS	
DC24b	20	32	mA	+85°C			
DC24d	20	32	mA	-40°C			
DC24e	20	32	mA	+25°C	3.6V ⁽⁴⁾		
DC24f	20	32	mA	+85°C			
DC31	70	150	μA	-40°C			
DC31a	100	200	μA	+25°C	2.5∨ ⁽³⁾		
DC31b	200	400	μA	+85°C			
DC31d	70	150	μA	-40°C			
DC31e	100	200	μA	+25°C	3.6∨ ⁽⁴⁾		
DC31f	200	400	μA	+85°C			

TABLE 27-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail-to-rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and PMD bits are set.
- 3: On-chip voltage regulator is disabled (ENVREG tied to Vss).
- 4: On-chip voltage regulator is enabled (ENVREG tied to VDD).

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions			
Power-Down	Current (IPD)	(2)					
DC60	3	25	μA	-40°C			
DC60a	3	45	μA	+25°C	2.0V (3)	- Base Power-Down Current ⁽⁵⁾	
DC60b	100	600	μA	+85°C			
DC60f	20	40	μA	-40°C			
DC60g	27	60	μA	+25°C	3.6V ⁽⁴⁾		
DC60h	120	600	μA	+85°C			
Module Differ	ential Curren	ıt					
DC61	10	25	μΑ	-40°C			
DC61a	10	25	μΑ	+25°C	2.0V ⁽³⁾	– Watchdog Timer Current: ∆lwD⊤ ⁽⁵⁾	
DC61b	10	25	μΑ	+85°C			
DC61f	10	25	μA	-40°C			
DC61g	10	25	μA	+25°C	3.6V ⁽⁴⁾		
DC61h	10	25	μA	+85°C			
DC62	8	15	μA	-40°C	2.0V (3)		
DC62a	8	15	μA	+25°C		RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC ⁽⁵⁾	
DC62b	8	15	μA	+85°C			
DC62f	8	15	μA	-40°C			
DC62g	8	15	μA	+25°C	3.6V ⁽⁴⁾		
DC62h	8	15	μΑ	+85°C			

TABLE 27-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (II
--

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off. Unused PMD bits are set. VREGS bit is clear.

3: On-chip voltage regulator is disabled (ENVREG tied to Vss).

4: On-chip voltage regulator is enabled (ENVREG tied to VDD).

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

80-Lead TQFP (12x12x1 mm)

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

Example

Example

Example

Legend	: XXX	Customer-specific information			
	Y	Year code (last digit of calendar year)			
	ΥY	Year code (last 2 digits of calendar year)			
	WW	Week code (week of January 1 is week '01')			
	NNN	Alphanumeric traceability code			
		Pb-free JEDEC designator for Matte Tin (Sn)			
	*	This package is Pb-free. The Pb-free JEDEC designator ((e3))			
		can be found on the outer packaging for this package.			
Note:	In the ever	nt the full Microchip part number cannot be marked on one line, it will			
	be carried over to the next line, thus limiting the number of availab characters for customer-specific information.				

64-Lead QFN (9x9x0.9 mm)

Example

