

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

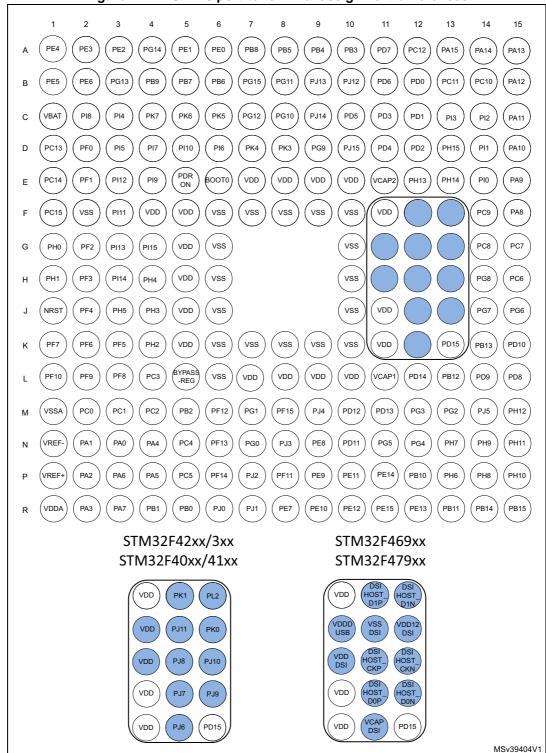
Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I2S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-UFBGA
Supplier Device Package	169-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469aih6

Description STM32F469xx

Table 2. STM32F469xx features and peripheral counts (continued)

Peripherals	STM32F469Vx	STM32F469Zx	STM32F469Ax	STM32F469lx	STM32F469Bx	STM32F469Nx			
MIPI-DSI Host			Y	es					
LCD-TFT			Y	es					
Chrom-ART Accelerator™ (DMA2D)	Yes								
GPIOs	71	106	114	131	161	161			
12-bit ADC	3								
Number of channels	14	20	24	16	24	24			
12-bit DAC Number of channels				es 2					
Maximum CPU frequency			180	MHz					
Operating voltage			1.7 to	3.6V ⁽²⁾					
Operating temperatures	Ambient operating temperature: -40 to 85 °C / -40 to 105 °C Junction temperature: -40 to 105 °C / -40 to 125 °C								
Package	LQFP100	LQPF144	UFBGA169 WLCSP168	LQFP176 UFBGA176	LQFP208	TFBGA216			


^{1.} The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

^{2.} VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.19.2).

STM32F469xx Description

1.1.4 TFBGA216 package

Figure 4. TFBGA216 port-to-terminal assignment differences

1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.

Functional overview STM32F469xx

2.4 **Embedded Flash memory**

The devices embed a Flash memory of up to 2 Mbytes available for storing programs and data.

2.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.6 **Embedded SRAM**

All devices embed:

- Up to 384Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM
 - RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, QUADSPI, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

DocID028196 Rev 4 22/217

3 Pinouts and pin description

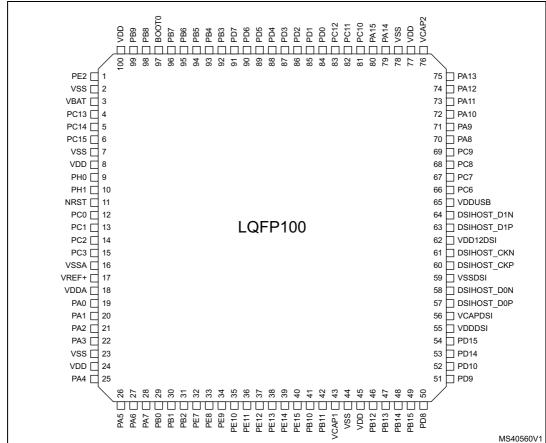
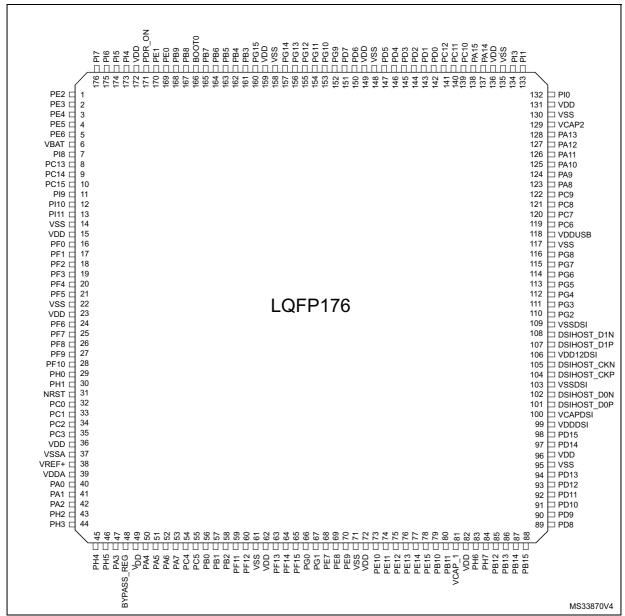



Figure 13. STM32F46x LQFP100 pinout

1. The above figure shows the package top view.

Figure 18. STM32F46x LQFP176 pinout

1. The above figure shows the package top view.

						T	able 12.	Alterna	te funct	ion (cc	ntinued						
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Р	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	sys
	PJ0	-	-	-	-	ı	-	ı	-	-	LCD_R7	-	-	-	-	LCD_R1	EVENT OUT
	PJ1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R2	EVENT OUT
	PJ2	-	-	-	-	-	-	-	-	-	-	-	-	-	DSIHOST _TE	LCD_R3	EVENT OUT
	PJ3	-	-	-	-	ı	-	1	-	-	-	-	-	-	-	LCD_R4	EVENT OUT
Port	PJ4	-	-	-	-	ı	-	1	-	-	-	-	-	-	-	LCD_R5	EVENT OUT
J	PJ5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R6	EVENT OUT
	PJ12	-	-	-	-	-	-	-	-	-	LCD_G3	-	-	-	-	LCD_B0	EVENT OUT
	PJ13	-	-	-	-	ı	-	ı	-	-	LCD_G4	-	-	-	-	LCD_B1	EVENT OUT
	PJ14	-	-	-	-	1	-	ı	-	-	-	-	-	-	-	LCD_B2	EVENT OUT
	PJ15	-	-	-	-	ı	-	1	-	-	-	-	-	-	-	LCD_B3	EVENT OUT
	PK3	-	-	-	-	ı	-	1	-	-	-	-	-	-	-	LCD_B4	EVENT OUT
	PK4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B5	EVENT OUT
Port K	PK5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B6	EVENT OUT
	PK6	-	-	-	-	1	-	ı	-	-	-	-	-	-	-	LCD_B7	EVENT OUT
	PK7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DE	EVENT OUT

Table 15. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V _{DD_x} power lines (source) ⁽¹⁾	290	
Σ I _{VSS}			
Σ I _{VDDUSB}			
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	I _{VSS} Maximum current out of each V _{SS_x} ground line (sink) ⁽¹⁾		
1.	Output current sunk by any I/O and control pin	25	
I _{IO}	Output current sourced by any I/Os and control pin	- 25	
	Total output current sunk by sum of all I/O and control pins (2)	120	mA
ΣI_{IO}	Total output current sunk by sum of all USB I/Os	25	
	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	- 120	
	Injected current on FT pins (4)	54.0	
I _{INJ(PIN)} (3)	Injected current on NRST and BOOT0 pins (4)	- 5/+0	
	Injected current on TTa pins ⁽⁵⁾	±5	
$\Sigma I_{\text{INJ(PIN)}}^{(5)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±25	

- All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
- This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
- 3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.24.
- 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- 5. A positive injection is induced by $V_{IN} > V_{DDA}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 14* for the values of the maximum allowed input voltage.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the
 positive and negative injected currents (instantaneous values).

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	- 65 to +150	°C
T _J	Maximum junction temperature	125	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 17. General operating conditions

Symbol	Parameter	Conditions ⁽¹⁾		Min	Тур	Max	Unit
	Internal AHB clock frequency	register = 0x01),	Power Scale 3 (VOS[1:0] bits in PWR_CR register = 0x01), Regulator ON, over-drive OFF			120	
		Power Scale 2 (VOS[1:0] bits in PWR CR register = 0x10),	Over-drive OFF	0	-	144	
f _{HCLK}		Regulator ON	Over-drive ON		-	168	
		Power Scale 1 (VOS[1:0] bits in PWR CR register= 0x11),	Over-drive OFF	0	-	168	MHz
		Regulator ON	Over-drive ON		-	180	
f	Internal ADD1 alook fraguency	Over-drive OFF			-	42	
f _{PCLK1}	Internal APB1 clock frequency	Over-drive ON		0	-	45	
f	Internal ADD2 alook fraguency	Over-drive OFF		0	-	84	
f _{PCLK2}	Internal APB2 clock frequency	Over-drive ON	0	-	90		
V _{DD}	Standard operating voltage	-		1.7 ⁽²⁾	-	3.6	
V _{DDA} ⁽³⁾⁽⁴⁾	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as	V (5)	1.7 ⁽²⁾	-	2.4	
VDDA' / /	Analog operating voltage (ADC limited to 2.4 M samples)	niusi pe ine same potential as	vDD, ,	2.4	-	3.6	
.,	USB supply voltage	USB not used			3.3	3.6	
V _{DDUSB}	(supply voltage for PA11, PA12, PB14 and PB15 pins)	USB used	3.0	-	3.6		
V _{DDDSI}	DSI system operating voltage	-	1.7 ⁽²⁾	-	3.6		
V_{BAT}	Backup operating voltage	-	1.65	-	3.6		

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to f_{HCLK} frequency and V_{DD} range (see *Table 18: Limitations depending on the operating power supply range*).
- When the regulator is OFF, the V₁₂ is provided externally, as described in *Table 17:* General operating conditions.
- The voltage scaling and over-drive mode are adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for f_{HCLK} ≤ 120 MHz
 - Scale 2 for 120 MHz < f_{HCLK} \le 144 MHz
 - Scale 1 for 144 MHz < f_{HCLK} ≤ 180 MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
- External clock frequency is 25 MHz and PLL is ON when f_{HCLK} is higher than 25 MHz.
- The typical current consumption values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and for ambient temperature T_A= 25 °C unless otherwise specified.
- The maximum values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and a maximum ambient temperature (T_A), unless otherwise specified.
- For the voltage range 1.7 V \leq V_{DD} \leq 2.1 V the maximum frequency is 168 MHz.

Table 30. Typical and maximum current consumption in Standby mode

				Typ ⁽¹⁾			Max ⁽²⁾			
Symbol	Parameter	Conditions	T _A = 25 °C			T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} = 3.3 V				
		Backup SRAM ON, RTC and LSE oscillator OFF	1.7	2.5	2.9	6 ⁽³⁾	18	35 ⁽³⁾		
	Supply current in Standby mode	Backup SRAM OFF, RTC and LSE oscillator OFF	1.0	1.8	2.20	5 ⁽³⁾	15	30 ⁽³⁾	μΑ	
		Backup SRAM OFF, RTC ON and LSE oscillator in Power Drive mode	1.7	2.7	3.2	7	20	39		
I _{DD_STBY}		Backup SRAM ON, RTC ON and LSE oscillator in Power Drive mode	2.4	3.4	4.0	8	25	48		
		Backup SRAM ON, RTC ON and LSE oscillator in High Drive mode	3.2	4.2	4.8	10	29	57		
		Backup SRAM OFF, RTC ON and LSE oscillator in High Drive mode	2.5	3.5	4.1	8	25	48		

^{1.} PDR is off for V_{DD} =1.7 V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μA

^{2.} Based on characterization, not tested in production unless otherwise specified.

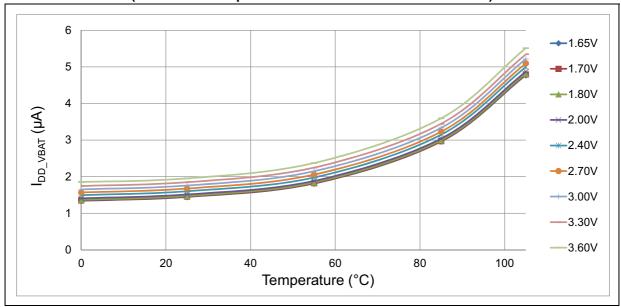

^{3.} Based on characterization, tested in production.

Table 31. Typical and maximum current consumption in $\ensuremath{V_{BAT}}$ mode

				Тур						
Symbol	Parameter	Conditions ⁽¹⁾	T _A = 25 °C			T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			V _{BAT} = 1.7 V	V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	V _{BAT} = 3.3 V				
		Backup SRAM ON, RTC ON and LSE oscillator in Low Power mode	1.431	1.577	1.825	1.9	12.0	24.0		
	Backup	Backup SRAM OFF, RTC ON and LSE oscillator in Low Power mode	0.720	0.849	1.060	1.1	7.0	13.9	μΑ	
I _{DD_VBAT}		Backup SRAM ON, RTC ON and LSE oscillator in High Drive mode	2.212	2.368	2.630	2.80	17.3	34.6		
Ct		Backup SRAM OFF, RTC ON and LSE oscillator in High Drive mode	1.499	1.637	1.862	2.0	12.3	24.5		
		Backup SRAM ON, RTC and LSE OFF	0.710	0.720	0.760	0.8 ⁽³⁾	5.0	10.0 ⁽³⁾		
		Backup SRAM OFF, RTC and LSE OFF	0.018	0.020	0.024	0.2 ⁽³⁾	2.0	4.0 ⁽³⁾		

- 1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a $\rm C_L$ of 6 pF for typical values.
- 2. Based on characterization, tested in production.
- 3. Based on test during characterization.

Figure 27. Typical V_{BAT} current consumption (RTC ON / backup SRAM ON and LSE in Low drive mode)

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the informations given in this paragraph are based on characterization results obtained with typical external components specified in Table 38.

In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

(LSE									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
R _F	Feedback resistor	-	-	18.4	-	МΩ			
I _{DD}	LSE current consumption	Low power mode ⁽²⁾	-	-	1	^			
	LSE current consumption	High drive mode ⁽²⁾	-	-	3	μΑ			
ACC _{LSE} ⁽³⁾	LSE accuracy	-	- 500	-	500	ppm			
C crit may	Maximum critical crystal g _m	Low power mode ⁽²⁾	-	-	0.56	μΑ/V			
G _m _crit_max		High drive mode ⁽²⁾	-	-	1.5	μΑνν			
t _{SU(LSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	s			

Table 38. LSE oscillator characteristics $(f_{LSE} = 32.768 \text{ kHz})^{(1)}$

- 2. LSE mode cannot be changed "on the fly" otherwise, a glitch can be generated on OSCIN pin.
- 3. This parameter depends on the crystal used in the application. Refer to application note AN2867.
- $t_{SU(LSE)}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For information on selecting the crystal, refer to the application note AN2867 "Oscillator Note: design guide for ST microcontrollers" available from www.st.com.

Figure 32. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors Cı fLSE . OSC32_IN Bias 32.768 kHz RF controlled resonator gain OSC32 OUT STM32F ai17531

^{1.} Guaranteed by design.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 39*.

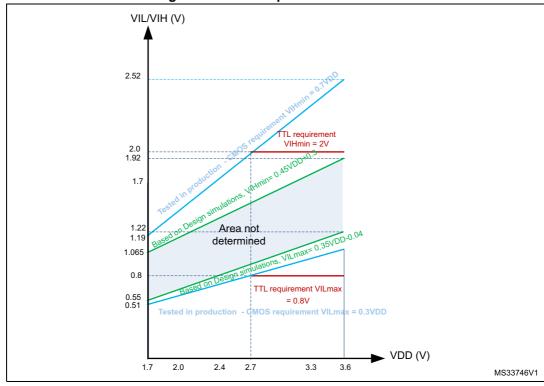


Figure 39. FT I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14, PC15 and PI8 which can sink or source up to ± 3 mA. When using the PC13 to PC15 and PI8 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 15*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 15*).

5.3.21 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PLI} (see *Table 58*).

Unless otherwise specified, the parameters given in *Table 61* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter Conditions		Min	Тур	Max	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	113
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 61. NRST pin characteristics

2. Guaranteed by design.

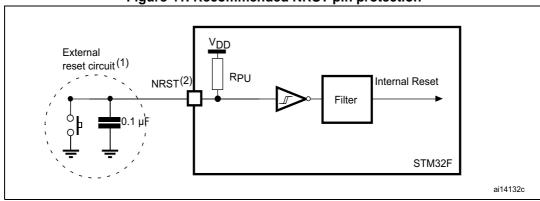


Figure 41. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 61. Otherwise the reset is not taken into account by the device.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	
t _{CONV} ⁽²⁾		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	116
		f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				
	Sampling rate $(f_{ADC} = 30 \text{ MHz, and } t_S = 3 \text{ ADC cycles})$	12-bit resolution Single ADC	-	-	2	
f _S ⁽²⁾		12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	
I _{VREF+} (2)	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μА
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode	-	-	1.6	1.8	mA

- 1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).
- 2. Based on test during characterization.
- 3. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .
- 4. R_{ADC} maximum value is given for V_{DD} =1.7 V, and minimum value for V_{DD} =3.3 V.
- 5. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 76*.

Equation 1: R_{AIN} max formula

$$R_{AIN} = \frac{(k - 0.5)}{f_{ADC} \times C_{ADC} \times ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

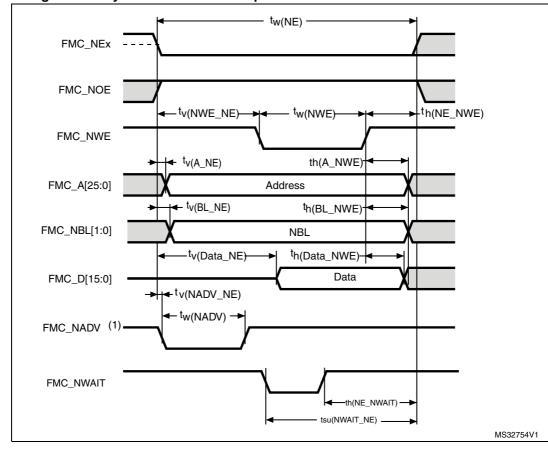


Figure 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾

Table 90. Asynchronous non-multiplexed Strawn Strawnon write tillings						
Symbol	Parameter	Min	Max	Unit		
t _{w(NE)}	FMC_NE low time	3T _{HCLK}	3T _{HCLK} +1			
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} - 0.5	T _{HCLK} + 0.5			
t _{w(NWE)}	FMC_NWE low time	T _{HCLK}	T _{HCLK} + 0.5			
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} +1.5	-			
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0			
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} +0.5	-			
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	1.5	ns		
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} +0.5	-			
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{HCLK} + 2			
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-			
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5			
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} + 0.5			

^{1.} Based on test during characterization.

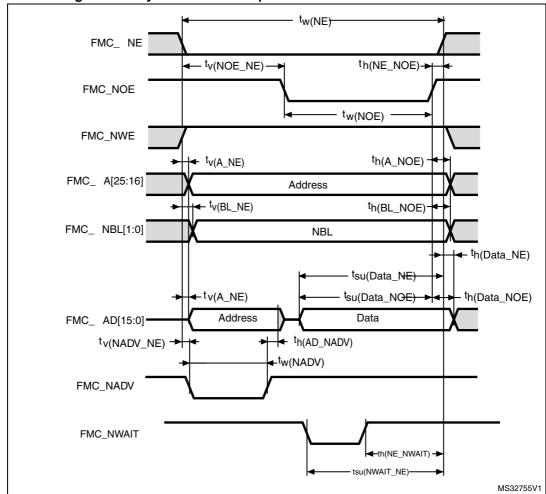


Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +1	8T _{HCLK} +2	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} - 1	6T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	1.0
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

^{1.} Based on test during characterization.

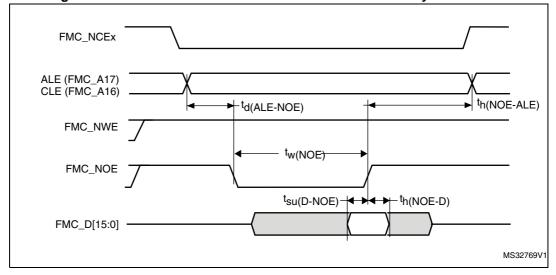
Figure 61. Asynchronous multiplexed PSRAM/NOR read waveforms

FMC_NCEX

ALE (FMC_A17)
CLE (FMC_A16)

FMC_NWE

FMC_NOE (NRE)


Th(NWE-ALE)

FMC_D[15:0]

MS32768V1

Figure 68. NAND controller waveforms for write access

Package information 6

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

LQFP100 package information 6.1

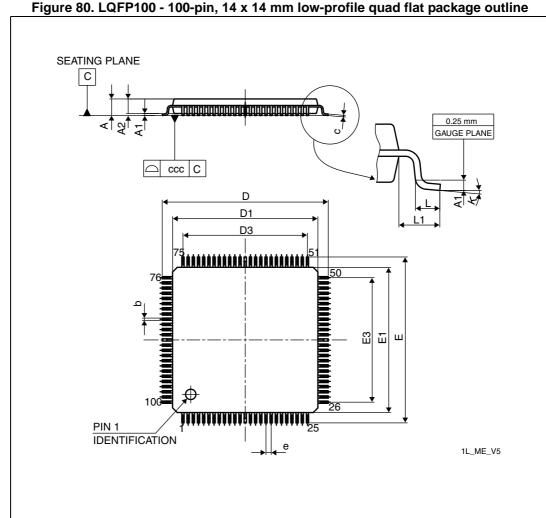


Figure 80. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

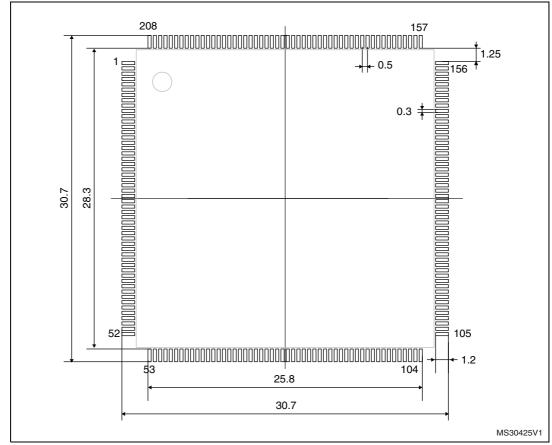


Figure 95. LQFP208 recommended footprint

1. Dimensions are expressed in millimeters.

