

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	161
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469bit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.3 UFBGA176 package

1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.

DocID028196 Rev 4

Figure 5. STM32F469xx block diagram

 The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2.4 Embedded Flash memory

The devices embed a Flash memory of up to 2 Mbytes available for storing programs and data.

2.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.6 Embedded SRAM

All devices embed:

- Up to 384Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM
 - RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, QUADSPI, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Figure 6. STM32F469xx Multi-AHB matrix

2.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC
- SAI1
- QUADSPI.

2.9 Flexible Memory Controller (FMC)

The Flexible memory controller (FMC) includes three memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller
- The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM
 - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is HCLK/2.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It

supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to

specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high

performance solutions using external controllers with dedicated acceleration.

The major features are:

- Combined Rx and Tx FIFO size of 4 KB with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.37 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image black & white.

2.38 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

2.39 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 90 MHz.

Figure 18. STM32F46x LQFP176 pinout

1. The above figure shows the package top view.

ST	
M3	
ŽF	
469	
X	

Pinouts and pin description

b							Т	able 12.	Alterna	te funct	ion (cc	ontinued)					
			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	P	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
		PC0	-	-	-	-	-	-	-	-	-	-	OTG_HS _ULPI_ST P	-	FMC_SDN WE	-	LCD_R5	EVENT OUT
		PC1	TRACE D0	-	-	-	-	SPI2_MOSI /I2S2_SD	SAI1_SD_ A	-	-	-		ETH_MDC	-	-	-	EVENT OUT
DocID028196		PC2	-	-	-	-	-	SPI2_MISO	I2S2ext_S D	-	-	-	OTG_HS _ULPI_DI _R	ETH_MII_TXD 2	FMC_SDN E0	-	-	EVENT OUT
		PC3	-	-	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	OTG_HS _ULPI_N _XT	ETH_MII_TX_ CLK	FMC_SDC KE0	-	-	EVENT OUT
		PC4	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RXD 0/ETH_RMII_R XD0	FMC_SDN E0	-	-	EVENT OUT
		PC5	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RXD 1/ETH_RMII_R XD1	FMC_SDC KE0	-	-	EVENT OUT
Rev 4	Dort	PC6	-	-	TIM3_CH1	TIM8_CH1	-	I2S2_MCK	-	-	USART6 _TX	-	-	-	SDIO_D6	DCMI_D0	LCD_HSY NC	EVENT OUT
-	C	PC7	-	-	TIM3_CH2	TIM8_CH2	-	-	I2S3_MCK	-	USART6 _RX	-	-	-	SDIO_D7	DCMI_D1	LCD_G6	EVENT OUT
		PC8	TRACE D1	-	ТІМ3_СНЗ	TIM8_CH3	-	-	-	-	USART6 _CK	-	-	-	SDIO_D0	DCMI_D2	-	EVENT OUT
		PC9	MCO2	-	TIM3_CH4	TIM8_CH4	I2C3_SDA	I2S_CKIN	-	-	-	QUADSPI_ BK1_IO0	-	-	SDIO_D1	DCMI_D3	-	EVENT OUT
		PC10	-	-	-	-	-	-	SPI3_SCK/ I2S3_CK	USART3_ TX	UART4_ TX	QUADSPI_ BK1_IO1	-	-	SDIO_D2	DCMI_D8	LCD_R2	EVENT OUT
		PC11	-	-	-	-	-	I2S3ext_SD	SPI3_MIS O	USART3_ RX	UART4_ RX	QUADSPI_ BK2_NCS	-	-	SDIO_D3	DCMI_D4	-	EVENT OUT
		PC12	TRACE D3	-	-	-	-	-	SPI3_MOS I/I2S3_SD	USART3_ CK	UART5_ TX	-	-	-	SDIO_CK	DCMI_D9	-	EVENT OUT
		PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
7		PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
5/217		PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT 'OUT

DocID028196 Rev 4

75/217

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 22.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure* 23.

Table 26. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch), regulator OFF

				Т	ур			Ма	x ⁽¹⁾			
Symbol	Parameter	Conditions	f _{HCLK} (MHz)			T _A = 2	25 °C	T _A =	85 °C	T _A = 1	05 °C	Unit
			. ,	DD12	DD	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	
			168	93	1	98	1	123	1	148	1	
			150	83	1	88	1	113	1	138	1	
			144	76	1	80	1	103	1	126	1	
		All Peripherals	120	56	1	59	1	78	1	97	1	
		enabled ^{(2) (3)}	90	43	1	45	1	64	1	83	1	
	Cupply ourrant		60	29	1	32	1	50	1	70	1	
			30	15	1	18	1	36	1	56	1	
1 /1	in RUN mode		25	13	1	15	1	34	1	53	1	m۸
'DD12 / 'DD	from V_{12} and V_{22}		168	44	1	50	1	72	1	94	1	ШA
	ADD Subbia		150	40	1	45	1	68	1	90	1	
			144	36	1	40	1	62	1	82	1	
		AllPeripherals	120	27	1	30	1	48	1	66	1	
		disabled	90	20	1	23	1	41	1	60	1	
			60	14	1	16	1	35	1	53	1	
			30	8	1	10	1	28	1	47	1	
			25	7	1	9	1	27	1	46	1	

1. Guaranteed based on test during characterization.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, DSI regulator, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

				Т	ур		Max ⁽¹⁾						
Symbol	Parameter	Conditions	f _{HCLK} (MHz)			T _A = 2	25 °C	T _A = 85 °C		T _A = 105 °C		Unit	
				DD12	DD	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}		
			168	70	1	75	1	100	1	126	1		
			150	63	1	70	1	93	1	118	1		
			144	57	1	61	1	84	1	108	1		
		All	120	42	1	45	1	64	1	84	1		
		enabled	90	32	1	36	1	53	1	73	1		
	Supply current in RUN mode from V ₁₂ and		60	22	1	24	1	43	1	63	1		
			30	12	1	14	1	33	1	53	1		
1 /1			25	10	1	12	1	31	1	51	1	mΑ	
DD12 / DD			168	20	1	24	1	49	1	75	1	ШA	
	v DD Sabbiy		150	18	1	22	1	47	1	73	1		
			144	16	1	19	1	42	1	66	1		
		All	120	12	1	14	1	33	1	53	1		
		disabled	90	10	1	12	1	30	1	50	1		
			60	7	1	9	1	27	1	47	1		
			30	4	1	6	1	24	1	44	1		
			25	4	1	6	1	24	1	44	1		

Table 28.	Typical a	and maximum	current	consumption i	n Sleep	mode, r	egulator	OFF
				•				

1. Guaranteed based on test during characterization.

time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	-	26	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
I _{DD}	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω, C _L =5 pF@25 MHz	-	450	-	
		V _{DD} =3.3 V, ESR= 30 Ω, C _L =10 pF@25 MHz	-	530	-	μΛ
ACC _{HSE} ⁽²⁾	HSE accuracy	-	- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	1	mA/V
t _{SU(HSE)} ⁽³⁾	Startup time	V_{DD} is stabilized	-	2	-	ms

 Table 37. HSE 4-26 MHz oscillator characteristics ⁽¹⁾

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 31*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from www.st.com.

1. R_{EXT} value depends on the crystal characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD(PLL)}		f _{VCO_OUT} = 500 MHz	-	0.55	0.70	
	PLL power consumption on V_{DD12}	f _{VCO_OUT} = 600 MHz	-	0.65	0.80	mA
		f _{VCO_OUT} = 1000 MHz	-	0.95	1.20	

Table 47. DSI-PLL characteristics⁽¹⁾ (continued)

1. Based on test during characterization.

5.3.15 MIPI D-PHY regulator characteristics

The parameters given in *Table 48* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DD12DSI}	1.2 V internal voltage on V _{DD12DSI}	-	1.15	1.20	1.30	V	
C _{EXT}	External capacitor on V _{CAPDSI}	-	1.1	2.2	3.3	μF	
ESR	External Serial Resistor	-	0	25	600	mΩ	
IDDDSIREG	Regulator power consumption	-	100	120	125	μA	
1	DSI system (regulator, PLL and	Ultra Low Power Mode (Reg. ON + PLL OFF)	-	290	600		
IDDDSI	D-PHY) current consumption on V _{DDDSI}	Stop State (Reg. ON + PLL OFF)	-	290	600	μA	
	DSI system current consumption on	10 MHz escape clock (Reg. ON + PLL OFF)	-	4.3	5.0	mA	
IDDDSILP	V _{DDDSI} in LP mode communication ⁽²⁾	20 MHz escape clock (Reg. ON + PLL OFF)	-	4.3	5.0	mA	
		300 Mbps - 1 data lane (Reg. ON + PLL ON)	-	8.0	8.8		
	DSI system (regulator, PLL and	300 Mbps - 2data lane (Reg. ON + PLL ON)	-	11.4	12.5		
I _{DDDSIHS}	in HS mode communication ⁽³⁾	500 Mbps - 1 data lane (Reg. ON + PLL ON)	-	13.5	14.7	mA	
		500 Mbps - 2data lane (Reg. ON + PLL ON)	-	18.0	19.6		
	DSI system (regulator, PLL and D-PHY) current consumption on V _{DDDSI} in HS mode with CLK like payload	500 Mbps - 2data lane (Reg. ON + PLL ON)	-	21.4	23.3		
t	Startun delay	C _{EXT} = 2.2 μF	-	110	-		
WAKEUP		C _{EXT} = 3.3 μF	-	-	160	μο	
I _{INRUSH}	Inrush current on V _{DDDSI}	External capacitor load at start	-	60	200	mA	

Table 48. DSI regulator characteristics⁽¹⁾

1. Based on test during characterization.

2. Values based on an average traffic in LP Command Mode.

3. Values based on an average traffic (3/4 HS traffic & 1/4 LP) in Video Mode.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC[?] code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

	Table	54.	EMI	characteristics
--	-------	-----	-----	-----------------

Symbol	Paramotor	Conditions	Monitored	Max vs. [ˈ	Unit	
Symbol	Falameter	Conditions	frequency band	8/168 MHz	8/180 MHz	onit
		$\gamma = 2.2 \sqrt{T} = 25^{\circ} C$ TEDCA216	0.1 to 30 MHz	2	2	
		$v_{DD} = 3.3 v$, $T_A = 25 °C$, TFBGA210 package, conforming to SAE J1752/3	30 to 130 MHz	4	1	dBµV
		EEMBC, ART ON, all peripheral clocks	130 MHz to 1GHz	10	10	
S	Poak lovel	enabled, clock dithening disabled.	SAE EMI Level	3	3	-
SEMI	Feak level	$V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, TFBGA216$ package, conforming to SAE J1752/3	0.1 to 30 MHz	5	-10	
			30 to 130 MHz	3	-15	dBµV
		EEMBC, ART ON, all peripheral clocks	130 MHz to 1GHz	8	0	
		chabled, clock dimening enabled	SAE EMI level	2	2	-

5.3.18 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.

SAI characteristics

Unless otherwise specified, the parameters given in *Table 66* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and VDD supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C=30 pF
- Measurement points are performed at CMOS levels: 0.5 V_{DD}

Refer to <u>Section 5.3.20</u> for more details on the input/output alternate function characteristics (SCK,SD,WS).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCKL}	SAI Main clock output	-	256 x 8K	256xFs	
f	SAL clock frequency ⁽²⁾	Master data: 32 bits	-	128xFs ⁽³⁾	MHz
^I CK	SAI CLOCK ITEQUENCY	Slave data: 32 bits	-	128xFs	
+	ES valid time	Master mode, 2.7V ≤ V _{DD} ≤ 3.6V	-	17	
۷(FS)		Master mode, 1.71V ≤ V _{DD} ≤ 3.6V	-	23	
t _{su(FS)}	FS setup time	Slave mode	10	-	
t _{h(FS)}	FS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input sotup timo	Master receiver	1	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	2	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	6	-	
t _{h(SD_SR)}	Data input noid time	Slave receiver	1	-	ns
+	Data output valid timo	Slave transmitter (after enable edge), $2.7V \le V_{DD} \le 3.6V$	-	14	
^ı h(SD_B_ST)		Slave transmitter (after enable edge), $1.71V \le V_{DD} \le 3.6V$	-	23	
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	9	-	
+	Data output valid timo	Master transmitter (after enable edge), $2.7V \le V_{DD} \le 3.6V$	-	20	
t _{v(SD_A_MT)}		Master transmitter (after enable edge), $1.71V \le V_{DD} \le 3.6V$	-	26	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	10	-	

Table 66. SAI characteristics⁽¹⁾

1. Guaranteed based on test during characterization.

2. APB clock frequency must be at least twice SAI clock frequency.

3. With Fs = 192 kHz.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{conv} (2)	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	
		f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				1/f _{ADC}
f _S ⁽²⁾	Sampling rate (f _{ADC} = 30 MHz, and t _S = 3 ADC cycles)	12-bit resolution Single ADC	-	-	2	
		12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	
I _{VREF+} (2)	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode	-	-	1.6	1.8	mA

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).

2. Based on test during characterization.

3. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .

4. R_{ADC} maximum value is given for $V_{DD}{=}1.7$ V, and minimum value for $V_{DD}{=}3.3$ V.

5. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table* 76.

Equation 1: R_{AIN} max formula

$$R_{AIN} = \frac{(k-0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

In all timing tables, the T_{HCLK} is the HCLK clock period.

- For 2.7 V \leq V_{DD} \leq 3.6 V, maximum FMC_SDCLK = 90 MHz, at C_L = 30 pF (on FMC_SDCLK).
- For 1.71 V≤ V_{DD} <1.9 V, maximum FMC_SDCLK = 75 MHz when CAS Latency = 3 and 60 MHz for CAS latency 1 or 2. C_L = 10 pF (on FMC_SDCLK).

Figure 71. SDRAM read access waveforms (CL = 1)

Table 102. SDRAM read timings⁽¹⁾

Symbol	Parameter	Parameter Min Max		Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH _Data)}	Data input setup time	2	-	
t _{h(SDCLKH_Data)}	Data input hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	0.5	ne
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	0.5	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

1. Guaranteed based on test during characterization.

Symbol	Parameter	Min	Мах	Unit
f _{CLK}	LTDC clock output frequency	-	65	MHz
D _{CLK}	LTDC clock output duty cycle	45	55	%
t _{w(CLKH)} t _{w(CLKL)}	Clock High time, low time	t _{w(CLK)} /2 – 0.5	t _{w(CLK)} /2+0.5	
t _{v(DATA)}	Data output valid time	-	1.5	
t _{h(DATA)}	Data output hold time	0	-	
t _{v(HSYNC)}				
t _{v(VSYNC)}	NC) HSYNC/VSYNC/DE output valid time		0.5	ns
t _{v(DE)}				
t _{h(HSYNC)}				
t _{h(VSYNC)}	HSYNC/VSYNC/DE output hold time	0	-	
th(DE)				

Table 109. LTDC characteristics⁽¹⁾

1. Based on test during characterization.

Figure 90. LQFP176 recommended footprint

^{1.} Dimensions are expressed in millimeters.

Device Marking for LQFP176

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

