

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469igh6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Description

The STM32F469xx devices are based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex[®]-M4 core features a Floating point unit (FPU) single precision which supports all ARM[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F469xx devices incorporate high-speed embedded memories (Flash memory up to 2 Mbytes, up to 384 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers, and a true random number generator (RNG). They also feature standard and advanced communication interfaces:

- Up to three I²Cs
- Six SPIs, two I²Ss full duplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI),
- Two CANs
- One SAI serial audio interface
- An SDMMC host interface
- Ethernet and camera interface
- LCD-TFT display controller
- Chrom-ART Accelerator™
- DSI Host.

Advanced peripherals include an SDMMC interface, a flexible memory control (FMC) interface, a Quad-SPI Flash memory, and camera interface for CMOS sensors. Refer to *Table 2* for the list of peripherals available on each part number.

The STM32F469xx devices operate in the -40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) only in full speed mode, is available on all packages.

The supply voltage can drop to 1.7 V (refer to Section 2.19.2). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F469xx devices are offered in eight packages, ranging from 100 to 216 pins. The set of included peripherals changes with the device chosen, according to *Table 2*.

1.1 Compatibility throughout the family

STM32F469xx devices are not compatible with other STM32F4xx devices.

Figure 1 and *Figure 2* show incompatible board designs, respectively, for LQFP176 and LQFP208 packages (highlighted pins).

The UFBGA176 and TFBGA216 ballouts are compatible with other STM32F4xx devices, only few IO port pins are substituted, as shown in *Figure 3* and *Figure 4*.

The LQFP100, LQFP144 and UFBGA169 packages are incompatible with other STM32F4xx devices.

2.4 Embedded Flash memory

The devices embed a Flash memory of up to 2 Mbytes available for storing programs and data.

2.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.6 Embedded SRAM

All devices embed:

- Up to 384Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM
 - RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, QUADSPI, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

The following conditions must be respected:

- During power-on phase (V_{DD} < V_{DD_MIN}), V_{DDUSB} should be always lower than V_{DD}
- During power-down phase (V_{DD} < V_{DD_MIN}), V_{DDUSB} should be always lower than V_{DD}
- V_{DDUSB} rising and falling time rate specifications must be respected.
- In operating mode phase, V_{DDUSB} could be lower or higher than VDD:
 - If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by V_{DDUSB} are operating between V_{DDUSB_MIN} and V_{DDUSB_MAX}. The V_{DDUSB} supplies both USB transceivers (USB OTG_HS and USB OTG_FS).
 - If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by V_{DDUSB}.
 - If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by V_{DDUSB} are operating between V_{DD MIN} and V_{DD MAX}.

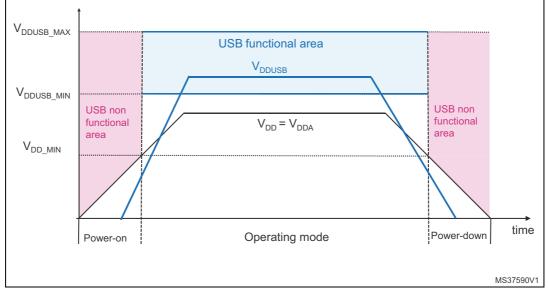


Figure 7. V_{DDUSB} connected to an external independent power supply

The DSI (Display Serial Interface) sub-system uses several power supply pins which are independent from the other supply pins:

- VDDDSI is an independent DSI power supply dedicated for DSI Regulator and MIPI D-PHY. This supply must be connected to global VDD.
- VCAPDSI pin is the output of DSI Regulator (1.2V) which must be connected externally to VDD12DSI.
- VDD12DSI pin is used to supply the MIPI D-PHY, and to supply clock and data lanes pins. An external capacitor of 2.2 uF must be connected on VDD12DSI pin.
- VSSDSI pin is an isolated supply ground used for DSI sub-system.
- If DSI functionality is not used at all, then:
 - VDDDSI pin must be connected to global VDD.
 - VCAPDSI pin must be connected externally to VDD12DSI but the external capacitor is no more needed.
 - VSSDSI pin must be grounded.

Name	Abbreviation	rise specified in brackets below the pin name, the pin function during and aft me as the actual pin name Supply pin Input only pin Input / output pin 5 V tolerant I/O 3.3 V tolerant I/O directly connected to analog parts Dedicated BOOT0 pin Bidirectional reset pin with weak pull-up resistor rise specified by a note, all I/Os are set as floating inputs during and after reserved through GPIOx_AFR registers				
Pin name						
	S	Supply pin				
Pin type	I	Input only pin				
	I/O	Input / output pin				
	FT	5 V tolerant I/O				
I/O structure	TTa 3.3 V tolerant I/O directly connected to analog parts					
I/O structure	В	Dedicated BOOT0 pin				
	RST	Bidirectional reset pin with weak pull-up resistor				
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset				
Alternate functions	Functions selected	d through GPIOx_AFR registers				
Additional functions	Functions directly	selected/enabled through peripheral registers				

Table 9. Legend/abbreviations used in the pinout table

Pin name	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PF8	-	-	-	-
PF9	-	-	-	-
PF10	-	-	-	-
PG6	-	-	-	-
PG7	-	-	INT	-
PE0	NBL0	NBL0	-	NBL0
PE1	NBL1	NBL1	-	NBL1
PI4	NBL2	-	-	NBL2
PI5	NBL3	-	-	NBL3
PG8	-	-	-	SDCLK
PC0	-	-	-	SDNWE
PF11	-	-	-	SDNRAS
PG15	-	-	-	SDNCAS
PH2	-	-	-	SDCKE0
PH3	-	-	-	SDNE0
PH6	-	-	-	SDNE1
PH7	-	-	-	SDCKE1
PH5	-	-	-	SDNWE
PC2	-	-	-	SDNE0
PC3	-	-	-	SDCKE0
PB5	-	-	-	SDCKE1
PB6	-	-	-	SDNE1

Table 11. FMC pin definition (continued)

ST	
M32	
F46	
9xx	

Pinouts and pin description

							Т	able 12.	Alterna	te funct	ion (co	ontinued)					
1			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	P	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	12C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
		PG0	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A10	-	-	EVENT OUT
		PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A11	-	-	EVENT OUT
		PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A12	-	-	EVENT OUT
		PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A13	-	-	EVENT OUT
		PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A14/F MC_BA0	-	-	EVENT OUT
DocID028196 Rev 4		PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A15/F MC_BA1	-	-	EVENT OUT
0281		PG6	-	-	-	-	-	-	-	-	-	-	-	-		DCMI_D12	LCD_R7	EVENT OUT
96 R		PG7	-	-	-	-	-		SAI1 _MCLK_A		USART6 _CK	-	-	-	FMC_INT	DCMI_D13	LCD_CLK	EVENT OUT
ev 4	Port	PG8	-	-	-	-	-	SPI6_NSS	-	-	USART6 _RTS	-	-	ETH_PPS_OU T	FMC_SDCL K		LCD_G7	EVENT OUT
	G	PG9	-	-	-	-	-	-	-	-	USART6 _RX	QUADSPI_ BK2_IO2	-	-	FMC_NE2/ FMC_NCE	DCMI_VS YNC		EVENT OUT
		PG10	-	-	-	-	-	-	-	-		LCD_G3	-	-	FMC_NE3	DCMI_D2	LCD_B2	EVENT OUT
		PG11	-	-	-	-	-	-	-	-	-	-	-	ETH_MII _TX_EN / ETH_RMII _TX_EN	-	DCMI_D3	LCD_B3	EVENT OUT
		PG12	-	-	-	-	-	SPI6_MISO	-	-	USART6 _RTS	LCD_B4	-	-	FMC_NE4	-	LCD_B1	EVENT OUT
		PG13	TRACE D0	-	-	-	-	SPI6_SCK	-	-	USART6 _CTS	-	-	ETH_MII _TXD0 / ETH_RMII _TXD0	FMC_A24	-	LCD_R0	EVENT OUT
79,		PG14	TRACE D1	-	-	-	-	SPI6_MOSI	-	-	USART6 _TX	QUADSPI_ BK2_IO3	-	ETH_MII _TXD1 / ETH_RMII _TXD1	FMC_A25	-	LCD_B0	EVENT OUT
79/217		PG15	-	-	-	-	-	-	-	-	USART6 _CTS	-	-	-	FMC_ SDNCAS	DCMI_D13	-	EVENT 'OUT

S
-
_
~
_
ω
N
_
Π.
•
-+-
6
~
G
~
6.2
×

Pinouts and pin description

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF
Port		SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ETH	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	S
	P10	-	-	TIM5_CH4	-	-	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	FMC_D24	DCMI_D13	LCD_G5	EVE
	PI1	-	-	-	-	-	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	FMC_D25	DCMI_D8	LCD_G6	EVE OL
	Pl2	-	-	-	TIM8_CH4	-	SPI2_MISO	I2S2ext_S D	-	-	-	-	-	FMC_D26	DCMI_D9	LCD_G7	EVE
	PI3	-	-	-	TIM8_ETR	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	FMC_D27	DCMI_D10		EVE
	Pl4	-	-	-	TIM8_BKI N	-	-	-	-	-	-	-	-	FMC_NBL2	DCMI_D5	LCD_B4	EVE
	PI5	-	-	-	TIM8_CH1	-	-	-	-	-	-	-	-	FMC_NBL3	DCMI_VS YNC	LCD_B5	EVI
	PI6	-	-	-	TIM8_CH2	-	-	-	-	-	-	-	-	FMC_D28	DCMI_D6	LCD_B6	EVI
	PI7	-	-	-	TIM8_CH3	-	-	-	-	-	-	-	-	FMC_D29	DCMI_D7	LCD_B7	EVI
Port I	PI8	-	-	-	-	-	-	-	-	-	-	-	-	-	-		EVI
	P19	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FMC_D30	-	LCD_VSY NC	EVE
	PI10	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RX_ ER	FMC_D31	-	LCD_HSY NC	EVE
	PI11	-	-	-	-	-	-	-	-	-	LCD_G6	OTG_HS _ULPI _DIR	-	-	-	-	EVE
	PI12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_HSY NC	EVE
	PI13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_VSY NC	EVI
	PI14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_CLK	EV O
	PI15	-	-	-	-	-	-	-	-	-	LCD_G2	-	-	-	-	LCD_R0	EVI 'O

81/217

Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM,
regulator ON

			regulati			Max ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			180	103	109 ⁽⁴⁾	142	175 ⁽⁴⁾	
			168	94	99	124	149	
			150	84	89	114	140	
			144	77	81	104	127	
			120	57	60	79	98	
		All	90	43	46	64	84	
		Peripherals	60	30	33	51	70	
		enabled ⁽²⁾⁽³⁾	30	16	19	37	57	
			25	14	16	34	54	mA
			16	7	10	28	48	
			8	4	7	26	46	
			4	3	6	24	44	
	Supply current in RUN mode		2	3	5	23	43	
I _{DD}			180	50	56 ⁽⁴⁾	89	124 ⁽⁴⁾	
			168	45	51	75	102	
			150	41	46	70	97	
			144	37	42	63	88	
			120	28	31	49	69	
		All	90	21	24	42	63	
		Peripherals disabled ⁽²⁾	60	15	17	36	56	
		disabled ⁽²⁾	30	9	11	29	49	
			25	7	10	28	48	
			16	4	7	25	45	-
			8	3	6	22	44	
			4	3	5	23	43	
			2	2	5	23	43	

1. Guaranteed based on test during characterization.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

4. Guaranteed by test in production.

DocID028196 Rev 4

				Т	ур							
Symbol	Parameter	Conditions	f _{HCLK} (MHz)			T _A = 2	25 °C	T _A = 85 °C		T _A = 105 °C		Unit
				I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	
			168	70	1	75	1	100	1	126	1	
			150	63	1	70	1	93	1	118	1	
			144	57	1	61	1	84	1	108	1	
		All	120	42	1	45	1	64	1	84	1	
	Supply current	Peripherals enabled	90	32	1	36	1	53	1	73	1	mA
			60	22	1	24	1	43	1	63	1	
			30	12	1	14	1	33	1	53	1	
1 /1			25	10	1	12	1	31	1	51	1	
I _{DD12} / I _{DD}	from V ₁₂ and		168	20	1	24	1	49	1	75	1	
	V_{DD} supply		150	18	1	22	1	47	1	73	1	
			144	16	1	19	1	42	1	66	1	
		All	120	12	1	14	1	33	1	53	1	
		Peripherals disabled	90	10	1	12	1	30	1	50	1	
			60	7	1	9	1	27	1	47	1	
			30	4	1	6	1	24	1	44	1	
			25	4	1	6	1	24	1	44	1	

1. Guaranteed based on test during characterization.

				Typ ⁽¹⁾			Max ⁽²⁾			
Symbol	Parameter	Conditions	Т	A = 25 °	C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v				
		Backup SRAM ON, RTC and LSE oscillator OFF	1.7	2.5	2.9	6 ⁽³⁾	18	35 ⁽³⁾		
	Supply current in Standby mode	Backup SRAM OFF, RTC and LSE oscillator OFF	1.0	1.8	2.20	5 ⁽³⁾	15	30 ⁽³⁾		
		Backup SRAM OFF, RTC ON and LSE oscillator in Power Drive mode	1.7	2.7	3.2	7	20	39		
I _{DD_STBY}		Backup SRAM ON, RTC ON and LSE oscillator in Power Drive mode	2.4	3.4	4.0	8	25	48	μA	
		Backup SRAM ON, RTC ON and LSE oscillator in High Drive mode	3.2	4.2	4.8	10	29	57		
		Backup SRAM OFF, RTC ON and LSE oscillator in High Drive mode	2.5	3.5	4.1	8	25	48		

Table 30. Typical and maximum current consumption in Standby mode

1. PDR is off for V_{DD}=1.7 V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μ A

2. Based on characterization, not tested in production unless otherwise specified.

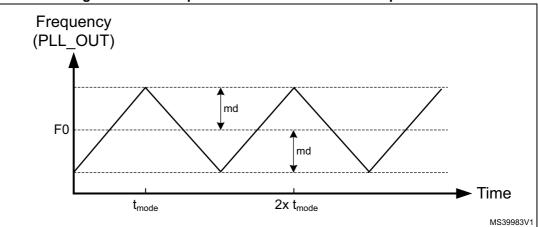

3. Based on characterization, tested in production.

Figure 35 and *Figure 36* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

 T_{mode} is the modulation period. md is the modulation depth.

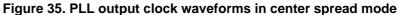
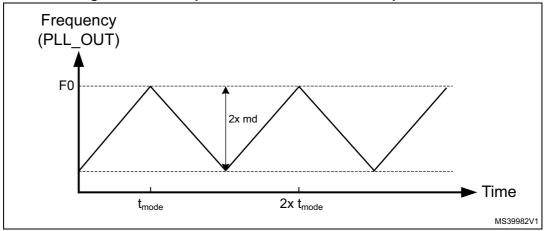



Figure 36. PLL output clock waveforms in down spread mode

5.3.13 MIPI D-PHY characteristics

The parameters given in *Table 45* and *Table 46* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 45. MIPI D-PHY characteristics ⁽¹	Table 45	MIPI	D-PHY	characteristics((1)
--	----------	------	--------------	------------------	-----

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Hi-Speed Input/Output Characteristics						
U _{INST}	UI instantaneous	-	2	-	12.5	ns

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
			C_L = 50 pF, $V_{DD} \ge 2.7 V$	-	-	4			
			$C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	2			
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	8	MHz		
00			$C_L = 10 \text{ pF}, V_{DD} \ge 1.8 \text{ V}$	-	-	4			
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	3			
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.7 V to 3.6 V	-	-	100	ns		
			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	25			
	f _{max(IO)} out	ut Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} ≥ 1.8 V	-	-	12.5	MHz		
			C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	10			
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	50			
04			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	20			
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	12.5			
	t (IO)out/ time			$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	10		
		Output high to low level fall	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	6	ns		
			C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	20			
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	10	1		
			C _L = 40 pF, V _{DD} ≥ 2.7 V	-	-	50 ⁽⁴⁾			
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	100 ⁽⁴⁾	1		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	25	MHz		
10			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	50			
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	42.5			
			C _L = 40 pF, V _{DD} ≥2.7 V	-	-	6			
	t _{f(IO)out} /	Output high to low level fall time and output low to high	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	4			
	t _{r(IO)out}	level rise time	C_L = 40 pF, $V_{DD} \ge 1.7 V$	-	-	10	ns		
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6			

Table 60. I/O AC characteristics⁽¹⁾⁽²⁾

5.3.22 TIM timer characteristics

The parameters given in *Table 62* are guaranteed by design. Refer to *Section 5.3.20* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
t _{res(TIM)}	Timer resolution time	AHB/APBx prescaler=1 or 2 or 4, f _{TIMxCLK} = 180 MHz	1	-	t _{TIMxCLK}
		AHB/APBx prescaler>4, f _{TIMxCLK} = 90 MHz	1	-	t _{TIMxCLK}
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 180 MHz	0	f _{TIMxCLK} /2	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
t _{MAX_COUNT}	Maximum possible count with 32-bit counter		-	65536 × 65536	t _{TIMxCLK}

Table 62. TIMx cha	racteristics ⁽¹⁾⁽²⁾
--------------------	--------------------------------

1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.

2. Guaranteed by design.

 The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx.

5.3.23 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0386 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Refer to Section 5.3.20 for more details on the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	150 ⁽³⁾	ns

Table 63. I2C analog filter characteristics⁽¹⁾

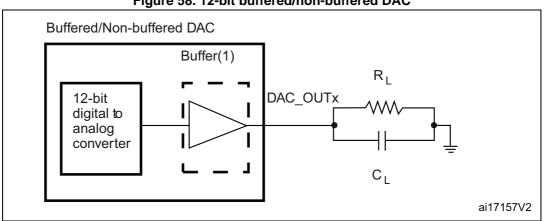


Figure 58. 12-bit buffered/non-buffered DAC

The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 1

5.3.29 **FMC** characteristics

Unless otherwise specified, the parameters given in Tables 88 through 101 for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in Table 17, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.20 for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figures 59 through 62 represent asynchronous waveforms, and Tables 88 through 95 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- Capacitive load C_L = 30 pF

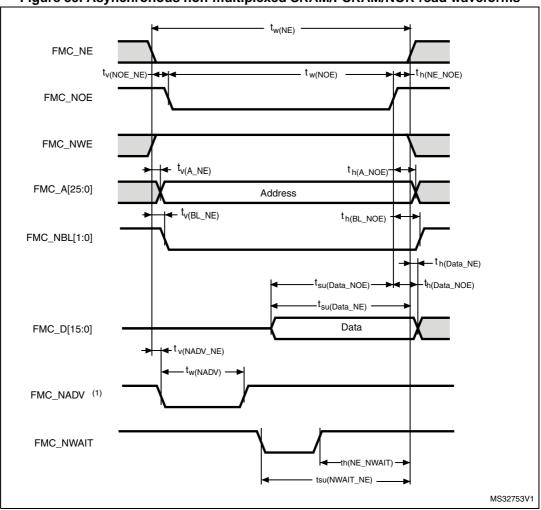


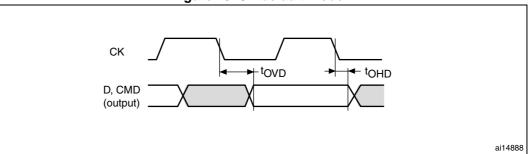
Figure 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

	synchronous non-multiplexed SRAW/P		icaa amings	
Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	2T _{HCLK} – 0.5	2 T _{HCLK} +0.5	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	1	
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK}	2T _{HCLK} + 0.5	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	
t _{h(A_NOE)}	h(A_NOE) Address hold time after FMC_NOE high		-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} + 2.5	-	
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	T _{HCLK} +2	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	t _{h(Data_NE)} Data hold time after FMC_NEx high		-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	1
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +1	

Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings⁽¹⁾

1. Based on test during characterization.


Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT
timings ⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	7T _{HCLK} +0.5	7T _{HCLK} +1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} – 1.5	5T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

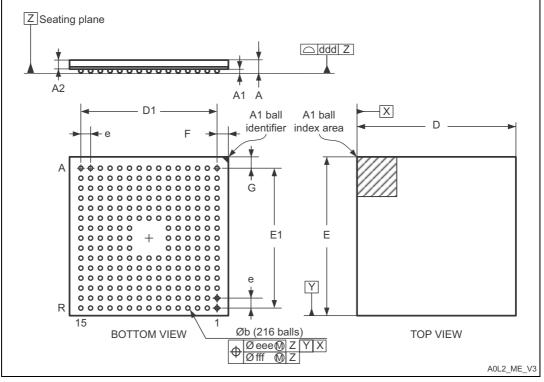
1. Based on test during characterization.

Figure 79. SD default mode

	Table 110. Dynamic characteris	tics: SD / MMC	character	istics, V _{DD}	= 2.7 to 3.	6 V ⁽¹⁾
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-
t _{W(CKL)}	Clock low time	f ========		10.5	-	
t _{W(CKH)}	Clock high time	f _{pp} =50 MHz	8.5	9.5	-	– ns
CMD, D in	puts (referenced to CK) in MMC and SE	OHS mode				
t _{ISU}	Input setup time HS	6 - FO MU-	2.0	-	-	
t _{IH}	Input hold time HS	f _{pp} =50 MHz	2.0	-	-	ns
CMD, D ou	tputs (referenced to CK) in MMC and S	SD HS mode				
t _{OV}	Output valid time HS	£ 50 MUL	-	13	13.5	
t _{OH}	Output hold time HS	f _{pp} =50 MHz	12.5	-	-	– ns
CMD, D in	puts (referenced to CK) in SD default m	node				
t _{ISUD}	Input setup time SD		2.0	-	-	
t _{IHD}	Input hold time SD	Input hold time SD		-	-	ns
CMD, D ou	tputs (referenced to CK) in SD default	mode		-		
t _{OVD}	Output valid default time SD	f -05 ML-	_	1.5	2.0	
t _{OHD}	Output hold default time SD	f _{pp} =25 MHz	1.0	-	-	– ns

1. Guaranteed based on test during characterization.

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.8740
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.6890	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031


Table 114. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

6.8 **TFBGA216** package information

Figure 97. TFBGA216 - thin fine pitch ball grid array 13 x 13 x 0.8mm, package outline

1. Drawing is not to scale.

Table 121. TFBGA216 - thin fine pitch ball grid array 13 × 13 × 0.8mm
package mechanical data

Symbol		millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.100	-	-	0.0433	
A1	0.150	-	-	0.0059	-	-	
A2	-	0.760	-	-	0.0299	-	
A4	-	0.210	-	-	0.0083	-	
b	0.350	0.400	0.450	0.0138	0.0157	0.0177	
D	12.850	13.000	13.150	0.5118	0.5118	0.5177	
D1	-	11.200	-	-	0.4409	-	
E	12.850	13.000	13.150	0.5118	0.5118	0.5177	
E1	-	11.200	-	-	0.4409	-	
е	-	0.800	-	-	0.0315	-	
F	-	0.900	-	-	0.0354	-	
ddd	-	-	0.080	-	-	0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

