

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	131
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469iit6g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Description

The STM32F469xx devices are based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex[®]-M4 core features a Floating point unit (FPU) single precision which supports all ARM[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F469xx devices incorporate high-speed embedded memories (Flash memory up to 2 Mbytes, up to 384 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers, and a true random number generator (RNG). They also feature standard and advanced communication interfaces:

- Up to three I²Cs
- Six SPIs, two I²Ss full duplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI),
- Two CANs
- One SAI serial audio interface
- An SDMMC host interface
- Ethernet and camera interface
- LCD-TFT display controller
- Chrom-ART Accelerator™
- DSI Host.

Advanced peripherals include an SDMMC interface, a flexible memory control (FMC) interface, a Quad-SPI Flash memory, and camera interface for CMOS sensors. Refer to *Table 2* for the list of peripherals available on each part number.

The STM32F469xx devices operate in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) only in full speed mode, is available on all packages.

The supply voltage can drop to 1.7 V (refer to Section 2.19.2). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F469xx devices are offered in eight packages, ranging from 100 to 216 pins. The set of included peripherals changes with the device chosen, according to *Table 2*.

1.1.1 LQFP176 package

Figure 1. Incompatible board design for LQFP176 package

1. Pins from 85 to 133 are not compatible.

1.1.3 UFBGA176 package

1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.

DocID028196 Rev 4

2 Functional overview

2.1 ARM[®] Cortex[®]-M4 with FPU and embedded Flash and SRAM

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F46x line is compatible with all ARM tools and software.

Figure 5 shows the general block diagram of the STM32F46x line.

Note: Cortex[®]-M4 with FPU core is binary compatible with the Cortex[®]-M3 core.

2.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator optimized for STM32 industry-standard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 with FPU over Flash memory technologies, which normally require the processor to wait for the Flash memory at higher frequencies.

To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark[®] benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz.

2.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC
- SAI1
- QUADSPI.

2.9 Flexible Memory Controller (FMC)

The Flexible memory controller (FMC) includes three memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller
- The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM
 - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is HCLK/2.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It

supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to

specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high

performance solutions using external controllers with dedicated acceleration.

Figure 17. STM32F46x UFBGA176 ballout

1. The above figure shows the package top view.

			Pin nu	umber						es			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
30	42	K5	N9	R4	57	62	R4	PB1	I/O	FT	(5)	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, LCD_G0, EVENTOUT	ADC12_IN9
31	43	L5	P9	M6	58	63	M5	PB2- BOOT1(PB2)	I/O	FT	-	EVENTOUT	-
-	-	-	-	-	-	64	G4	PI15	I/O	FT	-	LCD_G2, LCD_R0, EVENTOUT	-
-	-	-	-	-	-	65	R6	PJ0	I/O	FT	-	LCD_R7, LCD_R1, EVENTOUT	-
-	-	-	-	-	-	66	R7	PJ1	I/O	FT	-	LCD_R2, EVENTOUT	-
-	-	-	-	-	-	67	P7	PJ2	I/O	FT	-	DSIHOST_TE, LCD_R3, EVENTOUT	-
-	-	-	-	-	-	68	N8	PJ3	I/O	FT	-	LCD_R4, EVENTOUT	-
-	-	-	-	-	-	69	M9	PJ4	I/O	FT	-	LCD_R5, EVENTOUT	-
-	44	M5	K7	R6	59	70	P8	PF11	I/O	FT	-	SPI5_MOSI, FMC_SDNRAS, DCMI_D12, EVENTOUT	-
-	45	N5	M8	P6	60	71	M6	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	-	J6	N8	M8	61	72	K7	VSS	S	-	-	-	-
-	46	K6	P8	N8	62	73	L8	VDD	S	1	-	-	-
-	47	M4	J7	N6	63	74	N6	PF13	I/O	FT	-	FMC_A7, EVENTOUT	-
-	48	H5	L7	R7	64	75	P6	PF14	I/O	FT	-	FMC_A8, EVENTOUT	-
-	49	M6	H8	P7	65	76	M8	PF15	I/O	FT	-	FMC_A9, EVENTOUT	-
-	50	N6	J6	N7	66	77	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	51	M7	P7	M7	67	78	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-
32	52	N7	N7	R8	68	79	R8	PE7	I/O	FT	-	TIM1_ETR, UART7_Rx, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	-
33	53	G6	M7	P8	69	80	N9	PE8	I/O	FT	-	TIM1_CH1N, UART7_Tx, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	-
34	54	H6	K6	P9	70	81	P9	PE9	I/O	FT	-	TIM1_CH1, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	-
-	55	J7	-	M9	71	82	K8	VSS	S	-	-	-	-
-	56	L6	-	N9	72	83	L9	VDD	S	-	-	-	-
35	57	H7	P6	R9	73	84	R9	PE10	I/O	FT	-	TIM1_CH2N, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT	-

Table 10. STM32F469xx pin and ball definitions (continued)

5.1.7 Current consumption measurement

Figure 25. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14*, *Table 15*, and *Table 16* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} , V_{DD} , V_{DDUSB} , V_{DDDSI} and V_{BAT}) ⁽¹⁾	- 0.3	4.0	
V _{IN}	Input voltage on FT pins ⁽²⁾	V _{SS} – 0.3	V _{DD} +4.0	
	Input voltage on TTa pins	V _{SS} – 0.3	4.0	V
	Input voltage on any other pin	V _{SS} – 0.3	4.0	
	Input voltage on BOOT pin	V _{SS}	9.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	m\/
$ V_{SSX} - V_{SS} $	Variations between all the different ground $pins^{(3)}$	-	50	ΠV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	y model) see Section 5.3.18		

Table 14. V	/oltage	characteristics
-------------	---------	-----------------

 All main power (V_{DD}, V_{DDA}, V_{DDUSB}, V_{DDDSI}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

V_{IN} maximum value must always be respected. Refer to *Table 15* for the values of the maximum allowed injected current.

3. Including V_{REF-} pin

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19		
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08		
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37		
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25		
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51		
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39		
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65		
N/	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V	
V PVD	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	v	
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71		
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99		
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92		
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10		
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99		
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21		
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09		
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV	
M	Power-on/power-down	Falling edge	1.60	1.68	1.76	- V	
V POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80		
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV	
N.	Brownout lovel 1 threshold	Falling edge	2.13	2.19	2.24		
VBOR1		Rising edge	2.23	2.29	2.33		
V	Prownout lovel 2 threshold	Falling edge	2.44	2.50	2.56	V	
VBOR2		Rising edge	2.53	2.59	2.63	v	
V	Prownout lovel 2 threshold	Falling edge	2.75	2.83	2.88		
VBOR3	Brownout level 5 threshold	Rising edge	2.85	2.92	2.97		
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV	
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	POR reset temporization	-	0.5	1.5	3.0	ms	
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA	
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC	

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Symbol	Parameter	Conditions	I/O toggling frequency (fsw)	Тур	Unit
			2 MHz	0.0	
			8 MHz	0.2	
			25 MHz	0.6	
		V _{DD} = 3.3 V C= C _{INT} ⁽²⁾	50 MHz	1.1	- mA
Ioidd	I/O switching Current		60 MHz	1.3	
			84 MHz	1.8	
			90 MHz	1.9	
		V _{DD} = 3.3 V	2 MHz	0.1	
			8 MHz	0.4	
			25 MHz	1.23	
		C _{EXT} = 0 pF	50 MHz	2.43	
		$C = C_{INT} + C_{EXT} + C_S$	60 MHz	2.93	
			84 MHz	3.86	
			90 MHz	4.07	

Table 32. Switching output I/C) current consumption ⁽¹⁾
--------------------------------	--------------------------------------

5.3.10 Internal clock source characteristics

The parameters given in *Table 39* and *Table 40* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
ACC _{HSI}	HSI user trimming step ⁽²⁾	-	-	-	1	%
	HSI oscillator accuracy	T _A = –40 to 105 °C ⁽³⁾	- 8	-	4.5	%
		$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		T _A = 25 °C ⁽⁴⁾	- 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

Table 39	. HSI	oscillator	characteristics	(1))
----------	-------	------------	-----------------	-----	---

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design

3. Based on test during characterization.

4. Factory calibrated, parts not soldered.

Figure 33. ACCHSI vs. temperature

1. Based on test during characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{LPX}	Transmitted length of any Low- Power state period	-	50	-	-	
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	38	-	95	ns
T _{CLK-PREPARE} + T _{CLK-ZERO}	Time that the transmitter drives the HS-0 state prior to starting the clock.	-	300	-	-	
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	-	8	-	-	UI
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode.	-	62+52*UI	-	-	
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of an HS transmission burst.	-	60	-	-	
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	40+4*UI	I	85+6*UI	
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE+} Time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	-	145+10*UI	-	-	ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst.	-	Max (n*8*UI, 60+n*4*UI)	-	-	
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	-	100	-	-	
T _{REOT}	30%-85% rise time and fall time	-	-	-	35	
T _{EOT}	Transmitted time interval from the start of $T_{HS-TRAIL}$ or $T_{CLK-TRAIL}$, to the start of the LP-11 state following a HS burst.	-	-	-	105+ n*12UI	

	Table 46. MIPI D-PHY	' AC characteristics LP	mode and HS/LP	transitions ⁽¹⁾
--	----------------------	-------------------------	----------------	----------------------------

1. Guaranteed based on test during characterization.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	4	
00			C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	2	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	8	MHz
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	4	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	3	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.7 V to 3.6 V	-	-	100	ns
			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	25	
		Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} ≥ 1.8 V	-	-	12.5	
	f _{max(IO)} out		C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	10	- MHz
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	50	
01			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	20	
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	12.5	
	t _{f(IO)out} / t _{r(IO)out}		$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	10	- ns
		Output high to low level fall time and output low to high level rise time	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	6	
			$C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	20	
			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	10	
			C_L = 40 pF, $V_{DD} \ge 2.7$ V	-	-	50 ⁽⁴⁾	
			C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	100 ⁽⁴⁾	MHz
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C_L = 40 pF, $V_{DD} \ge 1.7 V$	-	-	25	
			$C_{L} = 10 \text{ pF}, V_{DD} \ge 1.8 \text{ V}$	-	-	50	
10			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	42.5	
			C _L = 40 pF, V _{DD} ≥2.7 V	-	-	6	
	t _{f(IO)out} /	Output high to low level fall	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	4	
	t _{r(IO)out}	level rise time	$C_{L} = 40 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	10	113
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6	

Table 60. I/O AC characteristics⁽¹⁾⁽²⁾

USB OTG full speed (FS) characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB OTG full speed transceiver startup time	1	μs

Table 67. USB OTG full speed startup time

1. Guaranteed by design.

Symbol		Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit	
	V _{DD}	USB OTG full speed transceiver operating voltage	-	3.0 ⁽²⁾	-	3.6		
Input	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-		
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V	
	$V_{SE}^{(3)}$	Single ended receiver threshold	-	1.3	-	2.0		
Output levels	V _{OL}	Static output level low	$\rm R_L$ of 1.5 k\Omega to 3.6 $\rm V^{(4)}$	-	-	0.3		
	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(4)}$	2.8	-	3.6		
R _{PD} R _{PD} PA (O OT		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM))/ = //	17	21	24		
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDD	0.65	1.1	2.0	kΩ	
R _{PU}		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1		
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55		

Table 68. USB OTG full speed DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

3. Guaranteed by design.

4. RL is the load connected on the USB OTG full speed drivers.

Note:

When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 μ A current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time	-	2.0	-	-	
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	-	1.5	-	-	
t _{SD}	Data in setup time	-	1.0	-	-	
t _{HD}	Data in hold time	-	1.0	-	-	
t _{DC} /t _{DD}		2.7 V < V _{DD} < 3.6 V, C _L = 20 pF	-	7.5	9.0	ns
	Data/control output delay	$2.7 V < V_{DD} < 3.6 V,$ $C_{L} = 15 \text{ pF and}$ $-40 < T < 125^{\circ}C$	-	7.5	12.0	
		1.7 V < V _{DD} < 3.6 V, C _L = 15 pF and -40 < T < 90°C	-	7.5	11.5	

Table 72. Dynamic characteristics: USB ULPI⁽¹⁾

1. Guaranteed based on test during characterization.

Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 73*, *Table 74* and *Table 75* for SMI, RMII and MII are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}.

Refer to Section 5.3.20 for more details on the input/output characteristics.

Table 73 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 51* shows the corresponding timing diagram.

Figure 62. Asynchronous multiplexed PSRAM/NOR write waveforms

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK}	4T _{HCLK} +0.5	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 1	T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time	2T _{HCLK}	2T _{HCLK} +0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0.5	1	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{h(AD_NADV)}	FMC_AD (address) valid hold time after FMC_NADV high	T _{HCLK} – 2	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK}	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} – 2	-	
$t_{v(BL_NE)}$	FMC_NEx low to FMC_BL valid	-	2	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} +1.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	

1. Based on test during characterization.

5.3.30 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 106* and *Table 107* for Quad-SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in Table xx, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to *Section 5.3.20* for more details on the input/output alternate function characteristics.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
F _{ck}	Qued SDL clock frequency	2.7 V \leq V _{DD} \leq 3.6 V, C _L = 20 pF	-	-	90		
1/t _(CK)	Quad-SPT Clock frequency	1.71 V ≤ V _{DD} ≤ 3.6 V, C _L = 15 pF	-	-	84	IVIHZ	
t _{w(CKH)}	Quad-SPI clock high time	-	t _(CK) /2-1	-	t _(СК) /2		
t _{w(CKL)}	Quad-SPI clock low time	-	t _(CK) /2	-	t _(CK) /2+1		
t _{s(IN)}	Data input set-up time	-	0.5	-	-	ne	
t _{h(IN)}	Data input hold time	-	3	-	-	115	
t _{v(OUT)}	Data output valid time	-	-	3	4		
t _{h(OUT)}	Data output hold time	-	2.5	-	-		

Table 106. Quad-SPI chara	acteristics in SDR mode ⁽¹⁾
---------------------------	--

1. Guaranteed based on test during characterization.

Figure 73. Quad-SPI SDR timing diagram

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz	
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-	
t _{W(CKL)}	Clock low time	f -50 MHz	9.5	10.5	-	00	
t _{W(CKH)}	Clock high time	1 _{pp} = 50 101 12	8.5	9.5	-	115	
CMD, D inp	uts (referenced to CK) in eMMC mode)					
t _{ISU}	Input setup time HS	f -50 MH-7	0.5	-	-		
t _{IH}	Input hold time HS	1 _{pp} = 50 10112	3.5	-	-	115	
CMD, D outputs (referenced to CK) in eMMC mode							
t _{OV}	Output valid time HS	f -50 MH-7	-	13.5	14.5	ne	
t _{OH}	Output hold time HS		13.0	-	-	115	

Table 111. Dynamic characteristics: SD / MMC characteristics, $V_{DD} = 1.71$ to 1.9 $V^{(1)(2)}$

1. Guaranteed based on test during characterization.

2. C_{load} = 20 pF.

5.3.34 RTC characteristics

Table 112. RTC characteristics

Symbol	Parameter	Conditions	Min	Max
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

6.6 UFBGA176+25 package information

Figure 92. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 118. UFBGA176+25, - 201-ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package mechanical data

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.230	0.280	0.330	0.0091	0.0110	0.0130
D	9.950	10.000	10.050	0.3917	0.3937	0.3957
E	9.950	10.000	10.050	0.3917	0.3937	0.3957
е	-	0.650	-	-	0.0256	-
F	0.400	0.450	0.500	0.0157	0.0177	0.0197
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device Marking for LQFP208

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 96. LQFP208 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

