

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

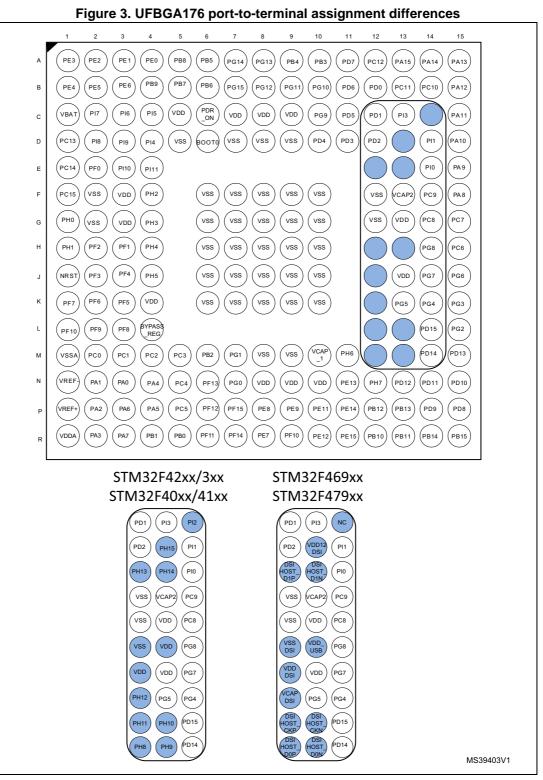
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	161
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	216-TFBGA
Supplier Device Package	216-TFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469nih6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Compatibility throughout the family

STM32F469xx devices are not compatible with other STM32F4xx devices.


Figure 1 and *Figure 2* show incompatible board designs, respectively, for LQFP176 and LQFP208 packages (highlighted pins).

The UFBGA176 and TFBGA216 ballouts are compatible with other STM32F4xx devices, only few IO port pins are substituted, as shown in *Figure 3* and *Figure 4*.

The LQFP100, LQFP144 and UFBGA169 packages are incompatible with other STM32F4xx devices.

1.1.3 UFBGA176 package

1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.

DocID028196 Rev 4

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

2.22 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

2.23 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

2.24.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

2.24.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F46x devices (see *Table 6* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F46x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/down counter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

2.24.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

DocID028196 Rev 4

2.24.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

2.24.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.24.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

2.25 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the standard (up to 100 KHz), and fast (up to 400 KHz) modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see Table 7).

Filter	Analog	Digital
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks

Table 7. Comparison of I2C analog and digital filters

2.26 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to

DocID028196 Rev 4

			Pin nı	umber						S		, ,	
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
83	115	A9	C4	A12	141	163	A12	PC12	I/O	FT	-	TRACED3, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDIO_CK, DCMI_D9, EVENTOUT	-
84	116	C9	E6	B12	142	164	B12	PD0	I/O	FT	-	CAN1_RX, FMC_D2, EVENTOUT	-
85	117	C7	A3	C12	143	165	C12	PD1	I/O	FT	-	CAN1_TX, FMC_D3, EVENTOUT	-
86	118	B8	C5	D12	144	166	D12	PD2	I/O	FT	-	TRACED2, TIM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT	-
87	119	C8	D6	D11	145	167	C11	PD3	I/O	FT	-	SPI2_SCK/I2S2_CK, USART2_CTS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT	-
88	120	C6	B4	D10	146	168	D11	PD4	I/O	FT	-	USART2_RTS, FMC_NOE, EVENTOUT	-
89	121	B7	C6	C11	147	169	C10	PD5	I/O	FT	-	USART2_TX, FMC_NWE, EVENTOUT	-
-	122	F8	A4	D8	148	170	F8	VSS	S	-	-	-	-
-	123	F7	-	C8	149	171	E9	VDD	S	-	-	-	-
90	124	D7	E7	B11	150	172	B11	PD6	I/O	FT	-	SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT	-
91	-	A8	A5	A11	151	173	A11	PD7	I/O	FT	-	USART2_CK, FMC_NE1, EVENTOUT	-
-	-	-	-	-	-	174	B10	PJ12	I/O	FT	-	LCD_G3, LCD_B0, EVENTOUT	-
-	-	-	-	-	-	175	B9	PJ13	I/O	FT	-	LCD_G4, LCD_B1, EVENTOUT	-
-	-	-	-	-	-	176	C9	PJ14	I/O	FT	-	LCD_B2, EVENTOUT	-
-	-	-	-	-	-	177	D10	PJ15	I/O	FT	-	LCD_B3, EVENTOUT	-
-	125	E6	D7	C10	152	178	D9	PG9	I/O	FT	-	USART6_RX, QUADSPI_BK2_IO2, FMC_NE2/FMC_NCE, DCMI_VSYNC, EVENTOUT	-
-	126	E7	C7	B10	153	179	C8	PG10	I/O	FT	-	LCD_G3, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT	-
-	127	B6	B6	В9	154	180	B8	PG11	I/O	FT	-	ETH_MII_TX_EN/ETH_RMI I_TX_EN, DCMI_D3, LCD_B3, EVENTOUT	-

Table 10. STM32F469xx pin and ball definitions (continued)

			Pin nu	umber				S S					
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types I/O structures Notes		Notes	Alternate functions	Additional functions
-	128	A7	A6	B8	155	181	C7	PG12	I/O	FT	-	SPI6_MISO, USART6_RTS, LCD_B4, FMC_NE4, LCD_B1, EVENTOUT	-
-	-	A6	E8	A8	156	182	В3	PG13	I/O	FT	-	TRACED0, SPI6_SCK, USART6_CTS, ETH_MII_TXD0/ETH_RMII _TXD0, FMC_A24, LCD_R0, EVENTOUT	-
-	-	-	-	A7	157	183	A4	PG14	TRACED1, SPI6_MOSI, USART6_TX, OUADSPI_BK2_IO3		-		
-	129	-	B7	D7	158	184	F7	VSS	S	-	-	-	-
-	130	-	A7	C7	159	185	E8	VDD	S	I	-	-	-
-	-	-	-	-	-	186	D8	PK3	I/O	FT	-	LCD_B4, EVENTOUT	-
-	-	-	-	-	-	187	D7	PK4	I/O	FT	-	LCD_B5, EVENTOUT	-
-	-	-	-	-	-	188	C6	PK5	I/O	FT	-	LCD_B6, EVENTOUT	-
-	-	-	-	-	-	189	C5	PK6	I/O	FT	-	LCD_B7, EVENTOUT	-
-	-	-	-	-	-	190	C4	PK7	I/O	FT	-	LCD_DE, EVENTOUT	-
-	131	F6	D8	B7	160	191	B7	PG15	I/O	FT	-	USART6_CTS, FMC_SDNCAS, DCMI_D13, EVENTOUT	-
92	132	В5	A8	A10	161	192	A10	PB3(JTDO/TRA CESWO)	I/O	FT	-	JTDO/TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK/I2S3_CK, EVENTOUT	-
93	133	D6	C8	A9	162	193	A9	PB4(NJTRST)	I/O	FT	-	NJTRST, TIM3_CH1, SPI1_MISO, SPI3_MISO, I2S3ext_SD, EVENTOUT	-
94	134	D5	B8	A6	163	194	A8	PB5	I/O	FT	-	TIM3_CH2, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI/I2S3_SD, CAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, FMC_SDCKE1,DCMI_D10, LCD_G7, EVENTOUT	-
95	135	C5	G8	B6	164	195	B6	PB6	I/O	FT	-	TIM4_CH1, I2C1_SCL, USART1_TX, CAN2_TX, QUADSPI_BK1_NCS, FMC_SDNE1, DCMI_D5, EVENTOUT	-

Table 10. STM32F469xx pin and ball definitions (continued)

Pin name	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PF8	-	-	-	-
PF9	-	-	-	-
PF10	-	-	-	-
PG6	-	-	-	-
PG7	-	-	INT	-
PE0	NBL0	NBL0	-	NBL0
PE1	NBL1	NBL1	-	NBL1
PI4	NBL2	-	-	NBL2
PI5	NBL3	-	-	NBL3
PG8	-	-	-	SDCLK
PC0	-	-	-	SDNWE
PF11	-	-	-	SDNRAS
PG15	-	-	-	SDNCAS
PH2	-	-	-	SDCKE0
PH3	-	-	-	SDNE0
PH6	-	-	-	SDNE1
PH7	-	-	-	SDCKE1
PH5	-	-	-	SDNWE
PC2	-	-	-	SDNE0
PC3	-	-	-	SDCKE0
PB5	-	-	-	SDCKE1
PB6	-	-	-	SDNE1

Table 11. FMC pin definition (continued)

S
-
_
~
_
ω
N
_
Π.
•
-+-
6
~
G
~
6.2
×

Pinouts and pin description

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF
Р	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ETH	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	S
	P10	-	-	TIM5_CH4	-	-	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	FMC_D24	DCMI_D13	LCD_G5	EVE
	PI1	-	-	-	-	-	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	FMC_D25	DCMI_D8	LCD_G6	EVE OL
	Pl2	-	-	-	TIM8_CH4	-	SPI2_MISO	I2S2ext_S D	-	-	-	-	-	FMC_D26	DCMI_D9	LCD_G7	EVE
	PI3	-	-	-	TIM8_ETR	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	FMC_D27	DCMI_D10		EVE
	Pl4	-	-	-	TIM8_BKI N	-	-	-	-	-	-	-	-	FMC_NBL2	DCMI_D5	LCD_B4	EVE
	PI5	-	-	-	TIM8_CH1	-	-	-	-	-	-	-	-	FMC_NBL3	DCMI_VS YNC	LCD_B5	EVI
	PI6	-	-	-	TIM8_CH2	-	-	-	-	-	-	-	-	FMC_D28	DCMI_D6	LCD_B6	EVI
	PI7	-	-	-	TIM8_CH3	-	-	-	-	-	-	-	-	FMC_D29	DCMI_D7	LCD_B7	EVI
Port I	PI8	-	-	-	-	-	-	-	-	-	-	-	-	-	-		EVI
	P19	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FMC_D30	-	LCD_VSY NC	EVE
	PI10	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RX_ ER	FMC_D31	-	LCD_HSY NC	EVE
	PI11	-	-	-	-	-	-	-	-	-	LCD_G6	OTG_HS _ULPI _DIR	-	-	-	-	EVE
	PI12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_HSY NC	EVE
	PI13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_VSY NC	EVI
	PI14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_CLK	EV O
	PI15	-	-	-	-	-	-	-	-	-	LCD_G2	-	-	-	-	LCD_R0	EVI 'O

81/217

5.3.12 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 54*). It is available only on the main PLL.

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	-	-	-	2 ¹⁵ – 1	-

Table 44. SSCG parameters constraint

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

```
MODEPER = round[f_{PLL \ IN} / \ (4 \times f_{Mod})]
```

 $f_{\text{PLL}\ \text{IN}}$ and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round
$$[10^{6}/(4 \times 10^{3})] = 250$$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[
$$((2^{15}-1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

 $f_{VCO OUT}$ must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/ ((2¹⁵ - 1) × PLLN)

As a result:

 $md_{guantized}$ % = $(250 \times 126 \times 100 \times 5)/((2^{15} - 1) \times 240) = 2.002\%$ (peak)

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit		
		Program/erase parallelism (PSIZE) = x 8	-	16	32			
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22			
		Program/erase parallelism (PSIZE) = x 32	-	8	16			
t _{BE}		Program/erase parallelism (PSIZE) = x 8	-	16	32	S		
	Bank erase time	time Program/erase parallelism - 11						
		Program/erase parallelism (PSIZE) = x 32	-	8	16			
		32-bit program operation	2.7	-	3.6			
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V		
		8-bit program operation	1.7	-	3.6			

Table 50. Flash memory programming (continued)

1. Based on test during characterization.

2. The maximum programming time is measured after 100K erase operations.

		eniory programming	<u>,</u>	<u> </u>		
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	$T_A = 0$ to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	6.9	-	S
t _{BE}	Bank erase time	-	-	6.9	-	s
V _{prog}	Programming voltage	-	2.7	-	3.6	V
V _{PP}	V _{PP} voltage range	-	7	-	9	v
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour

Table 51. Flash memory programming with V_{PP}

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parar	neter	Conditions	Min	Тур	Max	Unit
	FT, TTa and NR hysteresis	ST I/O input	1.7 V≤V _{DD} ≤3.6 V	10%V _{DD} ⁽³⁾	-	-	
V _{HYS}	BOOT0 I/O inpu	t hysteresis	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	0.1			V
			1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.1	-	-	
L.	I/O input leakage current (4)		$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA
l _{lkg}	I/O FT input leal	kage current ⁽⁵⁾	$V_{IN} = 5 V$	-	-	3	μΑ
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	V _{IN} = V _{SS}	30	40	50	
resistor	16313101	PA10/PB12 (OTG_FS_ID, OTG_HS_ID)		7	10	14	- kΩ
R _{PD} do	equivalent resistor ⁽⁷⁾ PA10/PB12 (OTG_FS_II	weak pull- down	V _{IN} = V _{DD}	30	40	50	- K22
		PA10/PB12 (OTG_FS_ID, OTG_HS_ID)		7	10	14	
C _{IO} ⁽⁸⁾	I/O pin capacita	nce	-	-	5	-	pF

Table 58. I/	O static	characteristics	(continued)
--------------	----------	-----------------	-------------

1. Guaranteed by design.

2. Tested in production.

3. With a minimum of 200 mV.

4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 57

- 5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to *Table 57*
- 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Based on test during characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit				
ET	Total unadjusted error	((0))	±3	±4					
EO	Offset error	f _{ADC} =18 MHz V _{DDA} = 1.7 to 3.6 V	±2	±3					
EG	Gain error	V_{REF} = 1.7 to 3.6 V	±1	±3	LSB				
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±1	±2					
EL	Integral linearity error		±2	±3					

Table 77. ADC static accuracy at $f_{ADC} = 18 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

2. Based on test during characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	f _{ADC} = 30 MHz, R _{AIN} < 10 kΩ,	±1.5	±2.5	
EG	Gain error	V _{DDA} = 2.4 to 3.6 V,	±1.5	±3	LSB
ED	Differential linearity error	V _{REF} = 1.7 to 3.6 V, V _{DDA} –V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±1.5	±3	

Table 78. ADC static accuracy at $f_{ADC} = 30 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

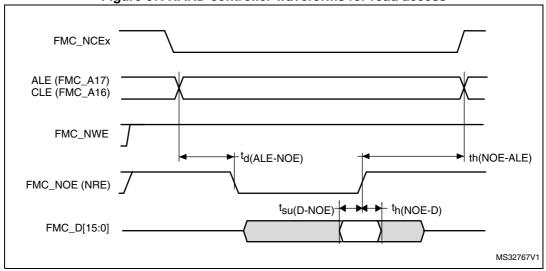
2. Based on test during characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±4	±7	
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V,	±2	±3	
EG	Gain error	V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V	±3	±6	LSB
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3	
EL	Integral linearity error		±3	±6	

Table 79. ADC static accuracy at $f_{ADC} = 36 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted $V_{\text{DD}},$ frequency and temperature ranges.

2. Based on test during characterization.



NAND controller waveforms and timings

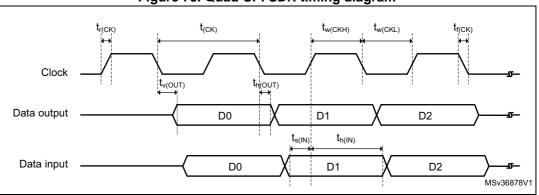
Figures 67 through 70 represent synchronous waveforms, and *Table 100* and *Table 101* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x01;
- COM.FMC_WaitSetupTime = 0x03;
- COM.FMC_HoldSetupTime = 0x02;
- COM.FMC_HiZSetupTime = 0x01;
- ATT.FMC_SetupTime = 0x01;
- ATT.FMC_WaitSetupTime = 0x03;
- ATT.FMC_HoldSetupTime = 0x02;
- ATT.FMC_HiZSetupTime = 0x01;
- Bank = FMC_Bank_NAND;
- MemoryDataWidth = FMC_MemoryDataWidth_16b;
- ECC = FMC_ECC_Enable;
- ECCPageSize = FMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0;
- Capacitive load C_L = 30 pF.

In all timing tables, the T_{HCLK} is the HCLK clock period.

Figure 67. NAND controller waveforms for read access

5.3.30 Quad-SPI interface characteristics


Unless otherwise specified, the parameters given in *Table 106* and *Table 107* for Quad-SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in Table xx, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to *Section 5.3.20* for more details on the input/output alternate function characteristics.

Symbol	Parameter	Parameter Test conditions		Тур	Max	Unit
F _{ck}	Qued SDL cleak frequency	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ C}_{\text{L}} = 20 \text{ pF}$	-	-	90	
1/t _(CK)	Quad-SPI clock frequency	PI clock frequency $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ C}_{\text{L}} = 15 \text{ pF}$		-	84	MHz
t _{w(CKH)}	Quad-SPI clock high time	-	t _(CK) /2-1	-	t _(CK) /2	
t _{w(CKL)}	Quad-SPI clock low time	-	t _(CK) /2	-	t _(CK) /2+1	
t _{s(IN)}	Data input set-up time	-	0.5	-	-	ns
t _{h(IN)}	Data input hold time	-	3	-	-	115
t _{v(OUT)}	Data output valid time	-	-	3	4	
t _{h(OUT)}	Data output hold time	-	2.5	-	-	

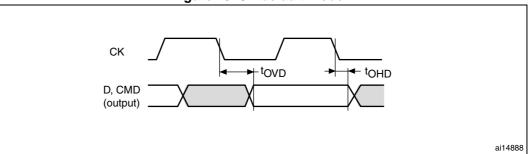

1. Guaranteed based on test during characterization.

Figure 73. Quad-SPI SDR timing diagram

Figure 79. SD default mode

	Table 110. Dynamic characteris	tics: SD / MMC	character	istics, V _{DD}	= 2.7 to 3.	6 V ⁽¹⁾
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-
t _{W(CKL)}	Clock low time	f -50 MHz	9.5	10.5	-	
t _{W(CKH)}	Clock high time	f _{pp} =50 MHz	8.5	9.5	-	– ns
CMD, D in	puts (referenced to CK) in MMC and SE	OHS mode				
t _{ISU}	Input setup time HS	6 - FO MU-	2.0	-	-	
t _{IH}	Input hold time HS	f _{pp} =50 MHz	2.0	-	-	ns ns
CMD, D ou	tputs (referenced to CK) in MMC and S	SD HS mode				
t _{OV}	Output valid time HS	£ 50 MUL	-	13	13.5	
t _{OH}	Output hold time HS	f _{pp} =50 MHz	12.5	-	-	ns ns
CMD, D in	puts (referenced to CK) in SD default m	node				
t _{ISUD}	Input setup time SD	(05 MH	2.0	-	-	
t _{IHD}	Input hold time SD	f _{pp} =25 MHz	2.5	-	-	ns
CMD, D ou	tputs (referenced to CK) in SD default	mode		-		
t _{OVD}	Output valid default time SD	6 05 14	_	1.5	2.0	
t _{OHD}	Output hold default time SD	f _{pp} =25 MHz	1.0	-	-	– ns

1. Guaranteed based on test during characterization.

package mechanical data								
Symbol	millimeters			inches ⁽¹⁾				
Symbol	Min	Тур	Max	Min	Тур	Max		
А	0.525	0.555	0.585	0.0207	0.0219	0.0230		
A1	-	0.170	-	-	0.0067	-		
A2	-	0.380	-	-	0.0150	-		
A3 ⁽²⁾	-	0.025	-	-	0.0010	-		
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110		
D	4.856	4.891	4.926	0.1912	0.1926	0.1939		
Е	5.657	5.692	5.727	0.2227	0.2241	0.2255		
е	-	0.400	-	-	0.0157	-		
e1	-	4.400	-	-	0.1732	-		
e2	-	5.200	-	-	0.2047	-		
F	-	0.2455	-	-	0.0097	-		
G	-	0.246	-	-	0.0097	-		
aaa	-	-	0.100	-	-	0.0039		
bbb	-	-	0.100	-	-	0.0039		
CCC	-	-	0.100	-	-	0.0039		
ddd	-	-	0.050	-	-	0.0020		
eee	-	-	0.050	-	-	0.0020		

Table 115. WLCSP168 - 168-pin, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

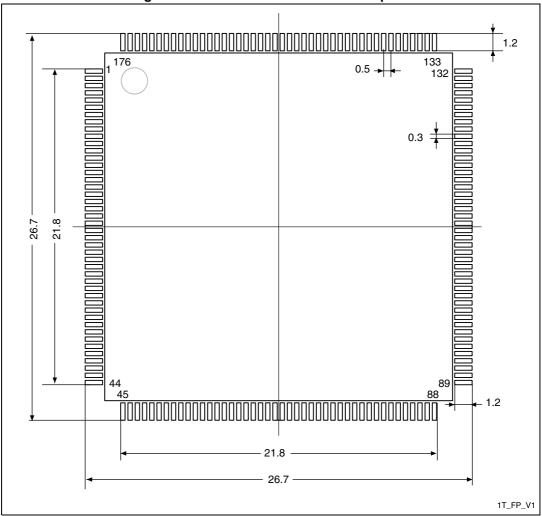


Figure 90. LQFP176 recommended footprint

^{1.} Dimensions are expressed in millimeters.

	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
С	0.090	-	0.200	0.0035	-	0.0079
D	29.800	30.000	30.200	1.1732	1.1811	1.1890
D1	27.800	28.000	28.200	1.0945	1.1024	1.1102
D3	-	25.500	-	-	1.0039	-
E	29.800	30.000	30.200	1.1732	1.1811	1.1890
E1	27.800	28.000	28.200	1.0945	1.1024	1.1102
E3	-	25.500	-	-	1.0039	-
e	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7.0°	0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031

Table 120. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Appendix A Recommendations when using internal reset OFF

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- The embedded programmable voltage detector (PVD) is disabled.
- V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD}.
- The over-drive mode is not supported.

A.1 Operating conditions

Table 124. Limitations depending on the operating power supply range

Opera pow supp rang	er oly	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Possible Flash memory operations
V _{DD} =1 2.1 V ⁽³⁾	.7 to	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	 No I/O compensation 	8-bit erase and program operations only

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

3. V_{DD}/V_{DDA} minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 2.19.1: Internal reset ON).

4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.

