

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	161
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	216-TFBGA
Supplier Device Package	216-TFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469nih7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		5.3.25	Temperature sensor characteristics1	61
		5.3.26	V _{BAT} monitoring characteristics	61
		5.3.27	Reference voltage1	61
		5.3.28	DAC electrical characteristics1	62
		5.3.29	FMC characteristics	64
		5.3.30	Quad-SPI interface characteristics	84
		5.3.31	Camera interface (DCMI) timing specifications	85
		5.3.32	LCD-TFT controller (LTDC) characteristics	86
		5.3.33	SD/SDIO MMC card host interface (SDIO) characteristics	88
		5.3.34	RTC characteristics	90
6	Packa	age info	rmation	 91
	6.1	LQFP10	00 package information	91
	6.2	LQFP14	4 package information	94
	6.3	WLCSP	168 package information 19	97
	6.4	UFBGA	169 package information 19	99
	6.5	LQFP17	'6 package information	01
	6.6	UFBGA	176+25 package information 20	05
	6.7	LQFP20	08 package information	07
	6.8	TFBGA	216 package information2	11
	6.9	Therma	I characteristics	13
7	Part r	numberi	ng2 [·]	14
Appendix	A R	ecomm	endations when using internal reset OFF	15
	A.1	Operati	ng conditions	15
Revision	histor	у		16

Figure 46. I ² S master timing diagram (Philips protocol) ⁽¹⁾ . Figure 47. SAI master timing waveforms. Figure 48. SAI slave timing waveforms. Figure 49. SAI slave timing waveforms.	. 146 . 148 . 148 . 150 . 151
Figure 47. SAI master timing waveforms. Figure 48. SAI slave timing waveforms. Figure 48. SAI slave timing waveforms.	. 148 . 148 . 150 . 151
Figure 48. SAI slave timing waveforms	. 148 . 150 . 151
Figure 40 LICD OTO full around timinger definition of data signal rise and fall time	. 150 . 151
Figure 49. USB UIG Tull speed timings: definition of data signal rise and fall time	. 151
Figure 50. ULPI timing diagram	
Figure 51. Ethernet SMI timing diagram	. 152
Figure 52. Ethernet RMII timing diagram	. 153
Figure 53. Ethernet MII timing diagram	. 154
Figure 54. ADC accuracy characteristics	. 159
Figure 55. Typical connection diagram using the ADC	. 159
Figure 56. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})	. 160
Figure 57. Power supply and reference decoupling $(V_{\text{REF+}} \text{ connected to } V_{\text{DDA}})$.	. 160
Figure 58. 12-bit buffered/non-buffered DAC.	. 164
Figure 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	. 165
Figure 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	. 167
Figure 61. Asynchronous multiplexed PSRAM/NOR read waveforms.	. 168
Figure 62. Asynchronous multiplexed PSRAM/NOR write waveforms	. 170
Figure 63. Synchronous multiplexed NOR/PSRAM read timings	. 172
Figure 64. Synchronous multiplexed PSRAM write timings.	. 174
Figure 65. Synchronous non-multiplexed NOR/PSRAM read timings	. 176
Figure 66. Synchronous non-multiplexed PSRAM write timings	. 177
Figure 67. NAND controller waveforms for read access	. 178
Figure 68. NAND controller waveforms for write access	. 179
Figure 69. NAND controller waveforms for common memory read access	. 179
Figure 70. NAND controller waveforms for common memory write access.	. 180
Figure 71. SDRAM read access waveforms (CL = 1)	. 181
Figure 72. SDRAM write access waveforms	. 182
Figure 73. Quad-SPI SDR timing diagram.	. 184
Figure 74. Quad-SPI DDR timing diagram.	. 185
Figure 75. DCMI timing diagram	. 186
Figure 76. LCD-TFT horizontal timing diagram	. 187
Figure 77. LCD-TFT vertical timing diagram	. 188
Figure 78. SDIO high-speed mode	. 188
Figure 79. SD default mode	. 189
Figure 80. LQFP100 - 100-pin, 14 x 14 mm low-profile guad flat package outline	. 191
Figure 81. LQFP100 - 100-pin. 14 x 14 mm low-profile guad flat	
recommended footprint.	. 193
Figure 82. LQFP100 marking example (package top view)	. 193
Figure 83. LQFP144 - 144-pin, 20 x 20 mm low-profile guad flat package outline	. 194
Figure 84. LQFP144 - 144-pin.20 x 20 mm low-profile guad flat package	
recommended footprint.	. 196
Figure 85. LQFP144 marking example (package top view)	. 196
Figure 86. WLCSP168 - 168-pin, 4,891 x 5,692 mm, 0,4 mm pitch wafer level chip	
scale package outline	. 197
Figure 87. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid	
arrav package outline	. 199
Figure 88. UFBGA169 marking example (package top view)	. 200
Figure 89. LQFP176, 24 x 24 mm, 176-pin low-profile guad flat package outline	. 201
Figure 90. LQFP176 recommended footprint	. 203
Figure 91. LQFP176 marking example (package top view)	. 204
Figure 92. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch,	

1.1.2 LQFP208 package

i iguic z.	meempatible board	accigit for East 200 pac	nago
STM32F469xx/479xx LQFP208	138 PC6 137 VDDUSB 136 VSS 135 PG8 134 PG7 133 PG6 132 PG5 131 PG4 130 PG3 129 PG2 128 VSSDSI 127 DSIHOST_D1N 126 DSIHOST_D1P 125 VDD12DSI 124 DSIHOST_CKP 122 VSSDSI 121 DSIHOST_D0N 120 DSIHOST_D0P 119 VCAPDSI 118 VDDDSI 117 PD15 116 PD14	STM32F42x/STM32F43x LQFP208	138 PC6 137 VDD 136 VSS 135 PG8 134 PG7 133 PG6 132 PG5 131 PG4 130 PG3 129 PG2 128 PK2 127 PK1 126 PK0 125 VSS 124 VDD 123 PJ11 122 PJ10 123 PJ11 122 PJ10 121 PJ9 120 PJ8 119 PJ7 118 PJ6 117 PD15 116 PD14
			MS38295V1

Figure 2. Incompatible board design for LQFP208 package

1. Pins from 118 to 128 and pin 137 are not compatible

The DSI Host main features:

- Compliant with MIPI[®] Alliance standards
- Interface with MIPI[®] D-PHY
- Supports all commands defined in the MIPI[®] Alliance specification for DCS:
 - Transmission of all Command mode packets through the APB interface
 - Transmission of commands in low-power and high-speed during Video Mode
- Supports up to two D-PHY data lanes
- Bidirectional communication and escape mode support through data lane 0
- Supports non-continuous clock in D-PHY clock lane for additional power saving
- Supports Ultra Low-Power mode with PLL disabled
- ECC and Checksum capabilities
- Support for End of Transmission Packet (EoTp)
- Fault recovery schemes
- 3D transmission support
- Configurable selection of system interfaces:
 - AMBA APB for control and optional support for Generic and DCS commands
 - Video Mode interface through LTDC
 - Adapted Command Mode interface through LTDC
 - Independently programmable Virtual Channel ID in
 - Video Mode
 - Adapted Command Mode
 - APB Slave

Video Mode interfaces features:

- LTDC interface color coding mappings into 24-bit interface:
 - 16-bit RGB, configurations 1, 2, and 3
 - 18-bit RGB, configurations 1 and 2
 - 24-bit RGB
- Programmable polarity of all LTDC interface signals
- Extended resolutions beyond the DPI standard maximum resolution of 800x480 pixels: maximum resolution is limited by available DSI physical link bandwidth:
 - Number of lanes: 2
 - Maximum speed per lane: 500Mbps

Adapted interface features:

- Support for sending large amounts of data through the memory_write_start (WMS) and memory_write_continue (WMC) DCS commands
- LTDC interface color coding mappings into 24-bit interface:
 - 16-bit RGB, configurations 1, 2, and 3
 - 18-bit RGB, configurations 1 and 2
 - 24-bit RGB

Pinouts and pin description

STM32F469xx

	Table 12. Alternate function (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ETH	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
	PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-		EVENT OUT
	PH2	-	-	-	-	-	-	-	-	-	QUADSPI_ BK2_IO0	-	ETH_MII_CRS	FMC_SDC KE0	-	LCD_R0	EVENT OUT
	PH3	-	-	-	-	-	-	-	-	-	QUADSPI_ BK2_IO1	-	ETH_MII_COL	FMC_SDN E0	-	LCD_R1	EVENT OUT
	PH4	-	-	-	-	I2C2_SCL	-	-	-	-	LCD_G5	OTG_HS _ULPI_N _XT	-	-	-	LCD_G4	EVENT OUT
	PH5	-	-	-	-	I2C2_SDA	SPI5_NSS	-	-	-	-	-	-	FMC_SDN WE	-	-	EVENT OUT
	PH6	-	-	-	-	I2C2_SMBA	SPI5_SCK	-	-	-	TIM12_CH1	-	ETH_MII_RXD 2	FMC_SDN E1	-	-	EVENT OUT
Port	PH7	-	-	-	-	I2C3_SCL	SPI5_MISO	-	-	-	-	-	ETH_MII_RXD 3	FMC_SDC KE1	DCMI_D9	-	EVENT OUT
н	PH8	-	-	-	-	I2C3_SDA	-	-	-	-	-	-	-	FMC_D16	DCMI_HS YNC	LCD_R2	EVENT OUT
	PH9	-	-	-	-	I2C3_SMBA	-	-	-	-	TIM12_CH2	-	-	FMC_D17	DCMI_D0	LCD_R3	EVENT OUT
	PH10	-	-	TIM5_CH1	-	-	-	-	-	-	-	-	-	FMC_D18	DCMI_D1	LCD_R4	EVENT OUT
	PH11	-	-	TIM5_CH2	-	-	-	-	-	-	-	-	-	FMC_D19	DCMI_D2	LCD_R5	EVENT OUT
	PH12	-	-	TIM5_CH3	-	-	-	-	-	-	-	-	-	FMC_D20	DCMI_D3	LCD_R6	EVENT OUT
	PH13	-	-	-	TIM8_CH1 N	-	-	-	-	-	CAN1_TX	-	-	FMC_D21	-	LCD_G2	EVENT OUT
	PH14	-	-	-	TIM8_CH2 N	-	-	-	-	-	-	-	-	FMC_D22	DCMI_D4	LCD_G3	EVENT OUT
	PH15	-	-	-	TIM8_CH3 N	-	-	-	-	-	-	-	-	FMC_D23	DCMI_D11	LCD_G4	EVENT 'OUT

DocID028196 Rev 4

5

80/217

4 Memory mapping

The memory map is shown in *Figure 21*.

Figure 21. Memory map

DocID028196 Rev 4

Symbol	Parameter	Conditions		Тур	Max	Unit				
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19					
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08					
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37					
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25					
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51					
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39					
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65					
N/	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V				
V PVD	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	v				
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71					
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99					
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92					
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10					
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99					
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	-				
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09					
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV				
M	Power-on/power-down	ver-down Falling edge		1.68	1.76	V				
V POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	v				
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV				
N.	Brownout lovel 1 threshold	Falling edge	2.13	2.19	2.24					
VBOR1		Rising edge	2.23	2.29	2.33					
V	Prownout lovel 2 threshold	Falling edge	2.44	2.50	2.56	V				
VBOR2		Rising edge	2.53	2.59	2.63	v				
V	Prownout lovel 2 threshold	Falling edge	2.75	2.83	2.88					
VBOR3	Brownout level 5 threshold	Rising edge	2.85	2.92	2.97					
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV				
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	POR reset temporization	-	0.5	1.5	3.0	ms				
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA				
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC				

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

Perinheral			11			
F	reripheral	Scale 1	Scale 2	Scale 3	Unit	
	GPIOA	3.16	3.00	2.58		
	GPIOB	2.67	2.62	2.25		
	GPIOC	2.42	2.31	2.10		
	GPIOD	2.22	2.10	1.79		
	GPIOE	2.60	2.48	2.23		
	GPIOF	2.39	2.27	2.08		
	GPIOG	2.27	2.13	1.98		
	GPIOH	2.34	2.20	2.02		
	GPIOI	2.52	2.37	2.17		
AHB1 (up to 180 MHz)	GPIOJ	2.16	2.03	1.86		
	GPIOK	2.20	2.06	1.89	μΑ/MHz	
	OTG_HS+ULPI	36.49	33.89	29.90		
	CRC	0.62	0.55	0.50		
	BKPSRAM	0.83	0.74	0.63		
	DMA1 ⁽²⁾	3.3 x N + 6.8	3 x N + 6.3	2.7 x N + 5.5		
	DMA2 ⁽²⁾	3.4 x N + 5.7	3.1 x N + 5.3	2.8 x N + 4.6		
	DMA2D	33.33	30.66	26.98		
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	22.30	20.69	18.19		
AHB2	USB_OTG_FS	34.33	31.96	28.35		
(up to	DVCMI	3.61	3.35	2.98	µA/MHz	
180 MHz)	RNG	1.94	1.82	1.61		
AHB3	QUADSPI	16.83	15.57	13.83		
(up to 180 MHz)	FMC	17.22	15.92	14.00	μηνινισιΖ	
B	us matrix ⁽³⁾	12.17	11.19	9.97	µA/MHz	

Table 33. Peripheral current consumption

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{LPX}	Transmitted length of any Low- Power state period	-	50	-	-	
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	38	-	95	ns
T _{CLK-PREPARE} + T _{CLK-ZERO}	Time that the transmitter drives the HS-0 state prior to starting the clock.	-	300	-	-	
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	-	8	-	-	UI
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode.	-	62+52*UI	-	-	
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of an HS transmission burst.	-	60	-	-	
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	40+4*UI	-	85+6*UI	
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE+} Time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	-	145+10*UI	-	-	ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst.	-	Max (n*8*UI, 60+n*4*UI)	-	-	
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	-	100	-	-	
T _{REOT}	30%-85% rise time and fall time	-	-	-	35	
T _{EOT}	Transmitted time interval from the start of $T_{HS-TRAIL}$ or $T_{CLK-TRAIL}$, to the start of the LP-11 state following a HS burst.	-	-	-	105+ n*12UI	

Table to will I D-I III AC characteristics Li moue and ho/Li transitions	Table 46.	MIPI D-PHY	AC characteristics	LP mode and	d HS/LP transitions	;(1)
--	-----------	-------------------	--------------------	-------------	---------------------	------

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			$C_L = 30 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	100 ⁽⁴⁾	
11			C _L = 30 pF, V _{DD} ≥ 1.8 V	-	-	50	
	f	Maximum frequency ⁽³⁾	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	42.5	MHz
	Imax(IO)out		C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 30 pF, V _{DD} ≥ 2.7 V	-	-	4	- ns
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6	
			C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7	
			C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5	
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4	
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns

Table 60. I/O AC characteristics ⁽¹⁾⁽²⁾	(continued)
--	-------------

1. Guaranteed by design.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 40*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 40. I/O AC characteristics definition

Figure 42. SPI timing diagram - slave mode and CPHA = 0

USB OTG full speed (FS) characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB OTG full speed transceiver startup time	1	μs

Table 67. USB OTG full speed startup time

1. Guaranteed by design.

Sym	bol	Parameter	Conditions Min. ⁽¹⁾ Typ		Тур.	Max. ⁽¹⁾	Unit	
V _{DD} USB OTG full s transceiver ope voltage		USB OTG full speed transceiver operating voltage	-	3.0 ⁽²⁾	-	3.6		
Input	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-		
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V	
	$V_{SE}^{(3)}$	Single ended receiver threshold	-	1.3	-	2.0		
Output	V _{OL}	Static output level low	$\rm R_L$ of 1.5 k\Omega to 3.6 $\rm V^{(4)}$	-	-	0.3	1	
levels	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(4)}$	2.8	-	3.6		
Р		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	1, PA12, PB14, PB15 3_FS_DP/DM, 17 3_HS_DP/DM)		21	24		
κ _Ε	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	0.65	1.1	2.0	kΩ			
		PA12, PB15 (USB_FS_DP, USB_HS_DP)	P, V _{IN} = V _{SS} 1.5		1.8	2.1		
R _F	νU	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55		

Table 68. USB OTG full speed DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

3. Guaranteed by design.

4. RL is the load connected on the USB OTG full speed drivers.

Note:

When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 μ A current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time	-	2.0	-	-	
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	-	1.5	-	-	
t _{SD}	Data in setup time	-	1.0	-	-	
t _{HD}	Data in hold time	-	1.0	-	-	
		2.7 V < V _{DD} < 3.6 V, C _L = 20 pF	-	7.5	9.0	ns
t _{DC} /t _{DD}	Data/control output delay	$2.7 V < V_{DD} < 3.6 V,$ $C_{L} = 15 \text{ pF and}$ $-40 < T < 125^{\circ}C$	-	7.5	12.0	
		1.7 V < V _{DD} < 3.6 V, C _L = 15 pF and -40 < T < 90°C	-	7.5	11.5	

Table 72. Dynamic characteristics: USB ULPI⁽¹⁾

Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 73*, *Table 74* and *Table 75* for SMI, RMII and MII are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}.

Refer to Section 5.3.20 for more details on the input/output characteristics.

Table 73 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 51* shows the corresponding timing diagram.

	able 75. Dynamics characterist		INAC Signal		
Symbol	Parameter	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time(2.38 MHz)	400	400	403	
T _{d(MDIO)}	Write data valid time	T _{HCLK} - 1	T _{HCLK}	T _{HCLK} + 1.5	ne
t _{su(MDIO)}	Read data setup time	12.5	-	-	115
t _{h(MDIO)}	Read data hold time	0	-	-	

Table 73. Dynamics characteristics: Ethernet MAC signals for SMI⁽¹⁾

Table 74 gives the list of Ethernet MAC signals for the RMII and *Figure 52* shows the corresponding timing diagram.

Figure 52. Ethernet RMII timing diagram

Symbol	Parameter	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	2.5	-	-	
t _{ih(RXD)}	Receive data hold time	2.0	-	-	
t _{su(CRS)}	Carrier sense setup time	0.5	-	-	ne
t _{ih(CRS)}	Carrier sense hold time	1.5	-	-	115
t _{d(TXEN)}	Transmit enable valid delay time	5.5	6.5	11	
t _{d(TXD)}	Transmit data valid delay time	6.0	6.5	11	

Table 74. Dynamics characteristics: Ethernet MAC signals for RMII⁽¹⁾

Table 75 gives the list of Ethernet MAC signals for MII and *Figure 52* shows the corresponding timing diagram.

Table 75. Dynamics characteristics: Ethernet MAC signals for MII⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	1	1		
t _{ih(RXD)}	Receive data hold time	ceive data hold time 3		-	
t _{su(DV)}	Data valid setup time	etup time 0		-	
t _{ih(DV)}	Data valid hold time	2.5	-	-	ne
t _{su(ER)}	Error setup time	0	-	-	115
t _{ih(ER)}	Error hold time	2	-	-	
t _{d(TXEN)}	Transmit enable valid delay time	0	7	13	
t _{d(TXD)}	Transmit data valid delay time	0	7	13	

1. Guaranteed based on test during characterization.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	fade =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR Signal-to-noise ratio Input F	Input Frequency = 20 KHz	64	65	-	dB	
THD Total harmonic distortion		Temperature = 25 °C	- 67	- 72	-	

Table 80. ADC dynamic accur	acy at f _{ADC} = 18 MHz ·	 limited test conditions⁽¹⁾
-----------------------------	------------------------------------	---

Table 81. ADC dynamic accuracy at $f_{ADC} = 36 \text{ MHz} - \text{limited test conditions}^{(1)}$

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	fade =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$ Input Frequency = 20 KHz	66	67	-	
SNR	Signal-to noise ratio		64	68	-	dB
THD	Total harmonic distortion	Iemperature = 25 °C	- 70	- 72	-	

1. Guaranteed based on test during characterization.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.20 does not affect the ADC accuracy.

Figure 63. Synchronous multiplexed NOR/PSRAM read timings

Table 99. Synchronous non-multiplexed PSRAM write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit	
t _(CLK)	FMC_CLK period	2T _{HCLK} – 1	-		
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	0.5		
t _(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-		
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0		
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high 0 -				
t _{d(CLKL-AV)}	d(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=1625) - 0		0	Ī	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	625) 0 -			
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	115	
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	Ī	
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	2.5	Ī	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	Ī	
t _{d(CLKH-NBLH)}	t _{d(CLKH-NBLH)} FMC_CLK high to FMC_NBL high T _{HC}		-		
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4	-		
t _{h(CLKH-NWAIT)}	IWAIT) FMC_NWAIT valid after FMC_CLK high		-	Ī	

1. Based on test during characterization.

6.4 UFBGA169 package information

Figure 87. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not in scale.

grid array package meenanear data						
Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	-	0.130	-	-	0.0051	-
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.230	0.280	0.330	0.0091	0.0110	0.0130
D	6.950	7.000	7.050	0.2736	0.2756	0.2776
D1	5.950	6.000	6.050	0.2343	0.2362	0.2382
E	6.950	7.000	7.050	0.2736	0.2756	0.2776
E1	5.950	6.000	6.050	0.2343	0.2362	0.2382
е	-	0.500	-	-	0.0197	-
F	0.450	0.500	0.550	0.0177	0.0197	0.0217

Table 116. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch bal
grid array package mechanical data

6.6 UFBGA176+25 package information

Figure 92. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 118. UFBGA176+25, - 201-ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.230	0.280	0.330	0.0091	0.0110	0.0130
D	9.950	10.000	10.050	0.3917	0.3937	0.3957
E	9.950	10.000	10.050	0.3917	0.3937	0.3957
е	-	0.650	-	-	0.0256	-
F	0.400	0.450	0.500	0.0157	0.0177	0.0197
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

