E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	71
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384К х 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469vet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.1 LQFP176 package

Figure 1. Incompatible board design for LQFP176 package

1. Pins from 85 to 133 are not compatible.

1.1.3 UFBGA176 package

1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.

2.19 Power supply supervisor

2.19.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR}, without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.19.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and NRST and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON must be connected to VSS, as shown in *Figure 8*.

Figure 8. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 9*).

A comprehensive set of power-saving mode allows to design low-power applications.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

2.22 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

2.23 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

2.24.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

2.24.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F46x devices (see *Table 6* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F46x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/down counter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

2.24.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

2.40 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

2.41 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

2.42 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

			Pin nu	umber						es			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
36	58	K7	N6	P10	74	85	P10	PE11	I/O	FT	-	TIM1_CH2, SPI4_NSS, FMC_D8, LCD_G3, EVENTOUT	-
37	59	L7	M6	R10	75	86	R10	PE12	I/O	FT	-	TIM1_CH3N, SPI4_SCK, FMC_D9, LCD_B4, EVENTOUT	-
38	60	J8	L6	N11	76	87	R12	PE13	I/O	FT	-	TIM1_CH3, SPI4_MISO, FMC_D10, LCD_DE, EVENTOUT	-
39	61	K8	J5	P11	77	88	P11	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI, FMC_D11, LCD_CLK, EVENTOUT	-
40	62	L8	P5	R11	78	89	R11	PE15	I/O	FT	-	TIM1_BKIN, FMC_D12, LCD_R7, EVENTOUT	-
41	63	M8	N5	R12	79	90	P12	PB10	I/O	FT	-	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, QUADSPI_BK1_NCS, OTG_HS_ULPI_D3, ETH_MII_RX_ER,LCD_G4, EVENTOUT	-
42	64	N8	K5	R13	80	91	R13	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_RMI I_TX_EN, DSIHOST_TE, LCD_G5, EVENTOUT	-
43	65	N9	N4	M10	81	92	L11	VCAP1	S	-	-	-	-
44	-	M9	P4	-	-	93	K9	VSS	S	-	-	-	-
45	66	L9	P3	N10	82	94	L10	VDD	S	-	-	-	-
-	-	-	-	-	-	95	M14	PJ5	I/O	FT	-	LCD_R6, EVENTOUT	-
-	-	-	-	M11	83	96	P13	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	-	-	-	N12	84	97	N13	PH7	I/O	FT	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-
-	-	H8	M5	-	-	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	-	H9	L5	-	-	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-

Table 10. STM32F469xx pin and ball definitions (continued)

			Pin n	umber	,					es			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
-	75	M13	M2	N13	93	112	M10	PD12	I/O	FT	-	TIM4_CH1, USART3_RTS, QUADSPI_BK1_IO1, FMC_A17/FMC_ALE, EVENTOUT	-
-	-	M12	H4	M15	94	113	M11	PD13	I/O	FT	-	TIM4_CH2, QUADSPI_BK1_IO3, FMC_A18, EVENTOUT	-
-	76	J10	M1	-	95	114	J10	VSS	s	-	-	-	-
-	77	K10	-	J13	96	115	J11	VDD	S	-	-	-	-
53	78	L12	L3	M14	97	116	L12	PD14	I/O	FT	-	TIM4_CH3, FMC_D0, EVENTOUT	-
54	79	L13	L2	L14	98	117	K13	PD15	I/O	FT	-	TIM4_CH4, FMC_D1, EVENTOUT	-
55	80	K13	L1	J12	99	118	H11	VDDDSI	S	-	-	-	-
-	-	-	-	-	-	-	H10	VSS	S	-	-	-	-
56	81	K12	K1	K12	100	119	K12	VCAPDSI	S	-	-	-	-
-	-	-	K2	D13	-	-	G13	VDD12DSI	S	-	-	-	-
57	82	J12	K3	M12	101	120	J12	DSIHOST_D0P	I/O	-	-	-	-
58	83	J13	J3	M13	102	121	J13	DSIHOST_DON	I/O	-	-	-	-
59	84	K11	H1	H12	103	122	G12	VSSDSI	S	-	-	-	-
60	85	H12	J1	L12	104	123	H12	DSIHOST_CKP	I/O	-	-	-	-
61	86	H13	J2	L13	105	124	H13	DSIHOST_CKN	I/O	-	-	-	-
62	87	J11	-	D13	106	125	-	VDD12DSI	S	-	-	-	-
63	88	G12	H3	E12	107	126	F12	DSIHOST_D1P	I/O	-	-	-	-
64	89	G13	H2	E13	108	127	F13	DSIHOST_D1N	I/O	-	-	-	-
-	-	H11	-	H12	109	128	-	VSSDSI	S	-	-	-	-
-	90	F13	G5	L15	110	129	M13	PG2	I/O	FT	-	FMC_A12, EVENTOUT	-
-	91	F12	G4	K15	111	130	M12	PG3	I/O	FT	-	FMC_A13, EVENTOUT	-
-	92	E13	G2	K14	112	131	N12	PG4	I/O	FT	-	FMC_A14/FMC_BA0, EVENTOUT	-
-	93	E12	G1	K13	113	132	N11	PG5	I/O	FT	-	FMC_A15/FMC_BA1, EVENTOUT	-
-	94	F11	G3	J15	114	133	J15	PG6	I/O	FT	-	DCMI_D12, LCD_R7, EVENTOUT	-
-	95	E11	H6	J14	115	134	J14	PG7	I/O	FT	-	SAI1_MCLK_A, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT	-

Table 10. STM32F469xx pin and ball definitions (continued)

			Pin n	umber						es			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
83	115	A9	C4	A12	141	163	A12	PC12	I/O	FT	-	TRACED3, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDIO_CK, DCMI_D9, EVENTOUT	-
84	116	C9	E6	B12	142	164	B12	PD0	I/O	FT	-	CAN1_RX, FMC_D2, EVENTOUT	-
85	117	C7	A3	C12	143	165	C12	PD1	I/O	FT	-	CAN1_TX, FMC_D3, EVENTOUT	-
86	118	B8	C5	D12	144	166	D12	PD2	I/O	FT	-	TRACED2, TIM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT	-
87	119	C8	D6	D11	145	167	C11	PD3	I/O	FT	-	SPI2_SCK/I2S2_CK, USART2_CTS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT	-
88	120	C6	B4	D10	146	168	D11	PD4	I/O	FT	-	USART2_RTS, FMC_NOE, EVENTOUT	-
89	121	B7	C6	C11	147	169	C10	PD5	I/O	FT	-	USART2_TX, FMC_NWE, EVENTOUT	-
-	122	F8	A4	D8	148	170	F8	VSS	S	-	-	-	-
-	123	F7	-	C8	149	171	E9	VDD	S	-	-	-	-
90	124	D7	E7	B11	150	172	B11	PD6	I/O	FT	-	SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT	-
91	-	A8	A5	A11	151	173	A11	PD7	I/O	FT	-	USART2_CK, FMC_NE1, EVENTOUT	-
-	-	-	-	-	-	174	B10	PJ12	I/O	FT	-	LCD_G3, LCD_B0, EVENTOUT	-
-	-	-	-	-	-	175	B9	PJ13	I/O	FT	-	LCD_G4, LCD_B1, EVENTOUT	-
-	-	-	-	-	-	176	C9	PJ14	I/O	FT	-	LCD_B2, EVENTOUT	-
-	-	-	-	-	-	177	D10	PJ15	I/O	FT	-	LCD_B3, EVENTOUT	-
-	125	E6	D7	C10	152	178	D9	PG9	I/O	FT	-	USART6_RX, QUADSPI_BK2_IO2, FMC_NE2/FMC_NCE, DCMI_VSYNC, EVENTOUT	-
-	126	E7	C7	B10	153	179	C8	PG10	I/O	FT	-	LCD_G3, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT	-
-	127	B6	B6	В9	154	180	B8	PG11	I/O	FT	-	ETH_MII_TX_EN/ETH_RMI I_TX_EN, DCMI_D3, LCD_B3, EVENTOUT	-

Table 10. STM32F469xx pin and ball definitions (continued)

			Pin nu	umber	•					es			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
96	136	B4	A9	B5	165	196	B5	PB7	I/O	FT	-	TIM4_CH2, I2C1_SDA, USART1_RX, FMC_NL, DCMI_VSYNC, EVENTOUT	-
97	137	A5	F8	D6	166	197	E6	BOOT0	Ι	В	-	-	VPP
98	138	D4	В9	A5	167	198	A7	PB8	I/O	FT	-	TIM4_CH3, TIM10_CH1, I2C1_SCL, CAN1_RX, ETH_MII_TXD3, SDIO_D4, DCMI_D6, LCD_B6, EVENTOUT	-
99	139	C4	E9	B4	168	199	B4	PB9	I/O	FT	-	TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, CAN1_TX, SDIO_D5, DCMI_D7, LCD_B7, EVENTOUT	-
NC (2)	140	A4	A10	A4	169	200	A6	PE0	I/O	FT	-	TIM4_ETR, UART8_Rx, FMC_NBL0, DCMI_D2, EVENTOUT	-
NC (2)	141	A3	C9	A3	170	201	A5	PE1	I/O	FT	-	UART8_Tx, FMC_NBL1, DCMI_D3, EVENTOUT	-
-	-	E3	B10	D5	-	202	F6	VSS	S	-	-	-	-
-	142	C3	D9	C6	171	203	E5	PDR_ON	S	-	-	-	-
100	143	D3	A11	C5	172	204	E7	VDD	S	-	-	-	-
-	-	В3	D10	D4	173	205	C3	PI4	I/O	FT	-	TIM8_BKIN, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT	-
-	-	A2	C10	C4	174	206	D3	PI5	I/O	FT	-	TIM8_CH1, FMC_NBL3, DCMI_VSYNC, LCD_B5, EVENTOUT	-
-	-	A1	B11	C3	175	207	D6	Pl6	I/O	FT	-	TIM8_CH2, FMC_D28, DCMI_D6, LCD_B6, EVENTOUT	-
-	-	B1	A12	C2	176	208	D4	PI7	I/O	FT	-	TIM8_CH3, FMC_D29, DCMI_D7, LCD_B7, EVENTOUT	-

Table 10. STM32F469xx pin and ball definitions (continued)

1. Function availability depends on the chosen device.

2. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to "0" in the output data register to avoid extra current consumption in low power modes.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF.

- These I/Os must not be used as a current source (e.g. to drive an LED).

4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com.

5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

Electrical characteristics

- 7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 8. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 9. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} .

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs. Flash memory wait states ⁽¹⁾⁽²⁾	I/O operation	Possible Flash memory operations
V _{DD} = 1.7 to 2.1 V ⁽³⁾	Conversion time	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	No I/O	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	up to 1.2 Msps	22 MHz	180 MHz with 8 wait states and over-drive ON	compensation	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	24 MHz w Conversion time		180 MHz with 7 wait states and over-drive ON	I/O compensation	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽⁵⁾	up to 2.4 Msps	30 MHz	180 MHz with 5 wait states and over-drive ON	works	32-bit erase and program operations

Table 16. Limitations depending on the operating power supply range	Table 18. Limitations de	pending on the	operating power	supply range
---	--------------------------	----------------	-----------------	--------------

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

 Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

- 3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).
- 4. Prefetch is not available.
- 5. When V_{DDUSB} is connected to V_{DD} , the voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

5.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 19*.

1. Legend: ESR is the equivalent series resistance.

5.3.6 Over-drive switching characteristics

When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The over-drive switching characteristics are given in *Table 23*. They are subject to general operating conditions for T_A .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		HSI	-	45	-	
T _{od_swen}	Over_drive switch	HSE max for 4 MHz and min for 26 MHz	45	-	100	
		External HSE 50 MHz	-	40	-	116
T _{od_swdis}		HSI	-	20	-	μο
	Over_drive switch disable time	HSE max for 4 MHz and min for 26 MHz.	20	-	80	
		External HSE 50 MHz	-	15	-	

Table 23. Over-drive switching characteristics⁽¹⁾

1. Guaranteed by design.

5.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in Figure 25.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark[®] code.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
			$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	4		
			C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	2		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	$ \begin{array}{ c c c c c } \hline \mbox{Min} & \mbox{Min} & \mbox{Typ} & \mbox{Max} & \mbox{Unit} \\ \hline \mbox{C}_{L} = 50 \mbox{ pF}, \mbox{V}_{DD} \ge 2.7 \mbox{V} & - & - & 4 \\ \hline \mbox{C}_{L} = 50 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 4 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 4 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 3 \\ \hline \mbox{C}_{L} = 50 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 3 \\ \hline \mbox{C}_{L} = 50 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 3 \\ \hline \mbox{C}_{L} = 50 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 25 \\ \hline \mbox{C}_{L} = 50 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 50 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 50 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 10 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 100 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 100 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 100 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 100 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 50 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 50 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 2.7 \mbox{V} & - & - & 50 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 1.7 \mbox{V} & - & - & 50 \\ \hline \mbox{C}_{L} = 10 \mbox{ pF}, \mbox{V}_{DD} \ge 2.7 \mbox{V} &$					
00			C _L = 10 pF, V _{DD} ≥ 1.8 V	JitionsMinTypMaxUnit $V_{DD} \ge 2.7 \lor$ 4 $V_{DD} \ge 1.7 \lor$ 2 $V_{DD} \ge 1.7 \lor$ 4 $V_{DD} \ge 1.8 \lor$ 4 $V_{DD} \ge 1.7 \lor$ 3 $V_{DD} \ge 1.7 \lor$ 3 $V_{DD} \ge 1.7 \lor$ 3 $V_{DD} \ge 1.7 \lor$ 100 $V_{DD} \ge 2.7 \lor$ 25 $V_{DD} \ge 1.7 \lor$ 10 $V_{DD} \ge 1.7 \lor$ 50 $V_{DD} \ge 1.7 \lor$ 10 $V_{DD} \ge 1.7 \lor$ 10 $V_{DD} \ge 1.7 \lor$ 10 $V_{DD} \ge 1.7 \lor$ -10 $V_{DD} \ge 1.7 \lor$ -10 $V_{DD} \ge 1.7 \lor$ -100 $V_{DD} \ge 1.7 \lor$ -50(4) $V_{DD} \ge 1.7 \lor$ -50(4) $V_{DD} \ge 1.7 \lor$ -50 $V_{DD} \ge 1.7 \lor$ $V_{DD} \ge 2.7 \lor$ $V_{DD} \ge 1.7 \lor$ $V_{DD} \ge 1.7 \lor$ $V_{DD} \ge 2.7 \lor$ $V_{DD} \ge 2.7 \lor$ $V_{DD} \ge 1.7 \lor$ $V_{DD} \ge 1.7 \lor$ $V_{DD} \ge 1.7 \lor$ $V_{DD} $				
			neter Conditions Min Typ Max Unit $C_L = 50 \ PF, \ V_{DD} \ge 2.7 \ V$ - - 4 $C_L = 50 \ PF, \ V_{DD} \ge 1.7 \ V$ - 2 $C_L = 10 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 4 $C_L = 10 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 4 $C_L = 10 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 4 $C_L = 10 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 4 ow level fall low to high $C_L = 50 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 3 $P_L = 50 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 3 ency(3) $C_L = 50 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 100 ns ency(3) $C_L = 50 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 100 ns ency(3) $C_L = 10 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 100 ns ow level fall low to high $C_L = 50 \ PF, \ V_{DD} \ge 1.7 \ V$ - - 100 - ow level fall low to high $C_L = 10 \ PF, \ V_{DD} \ge 1.7 \ V$ - 100 - -					
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.7 V to 3.6 V	-	-	100	ns	
			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	25		
			C _L = 50 pF, V _{DD} ≥ 1.8 V	-	-	12.5		
01 t _{f(IO)out} / t _{r(IO)out} /	£	Movimum froquency (3)	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	10	MHz	
	Imax(IO)out		C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	50		
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	20		
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	12.5		
			$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	10		
	t _{f(IO)out} /	Output high to low level fall	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	6	ns	
	t _{r(IO)out}	level rise time	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	10		
			C_L = 40 pF, $V_{DD} \ge 2.7$ V	-	-	50 ⁽⁴⁾		
			C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	100 ⁽⁴⁾		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C_L = 40 pF, $V_{DD} \ge 1.7 V$	-	-	25	MHz	
			$C_{L} = 10 \text{ pF}, V_{DD} \ge 1.8 \text{ V}$	-	-	50		
10			C_L = 10 pF, $V_{DD} \ge 1.7 V$	-	-	42.5		
			C _L = 40 pF, V _{DD} ≥2.7 V	-	-	6		
	t _{f(IO)out} /	Output high to low level fall	C_L = 10 pF, $V_{DD} \ge 2.7 V$	-	-	4	ne	
	t _{r(IO)out}	level rise time	$C_{L} = 40 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	10	ns	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6		

Table 60. I/O AC characteristics⁽¹⁾⁽²⁾

5.3.25 Temperature sensor characteristics

Table 82. Temperature sensor characteristic

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5	-	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} ⁽²⁾	Startup time	-	6	10	116
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μ5

1. Based on test during characterization.

2. Guaranteed by design.

Table 83. Temperature sensor calibration values						
Symbol	Parameter	Memory address				
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D				
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V_{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F				

5.3.26 V_{BAT} monitoring characteristics

Table 84. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	4	-	
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽²⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1 mV accuracy	5	-	-	μs

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

5.3.27 Reference voltage

The parameters given in *Table 85* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 85.	internal	reference	voltage
-----------	----------	-----------	---------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.18	1.21	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage		10	-	-	μs
V _{RERINT_s} ⁽²⁾	Internal reference voltage spread over the temperature range	V_{DD} = 3V \pm 10mV	-	3	5	mV

Figure 62. Asynchronous multiplexed PSRAM/NOR write waveforms

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK}	4T _{HCLK} +0.5	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 1	T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time	2T _{HCLK}	2T _{HCLK} +0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0.5	1	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{h(AD_NADV)}	FMC_AD (address) valid hold time after FMC_NADV high	T _{HCLK} – 2	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK}	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} – 2	-	
$t_{v(BL_NE)}$	FMC_NEx low to FMC_BL valid	-	2	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} +1.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	

1. Based on test during characterization.

Table 99. Synchronous non-multiplexed PSRAM write timings⁽¹⁾

			-	
Symbol	Parameter	Min	Max	Unit
t _(CLK)	FMC_CLK period	2T _{HCLK} – 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	
t _(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	Ī
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	Ī
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	115
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	Ī
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	2.5	Ī
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	Ī
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	Ī

1. Based on test during characterization.

In all timing tables, the T_{HCLK} is the HCLK clock period.

- For 2.7 V \leq V_{DD} \leq 3.6 V, maximum FMC_SDCLK = 90 MHz, at C_L = 30 pF (on FMC_SDCLK).
- For 1.71 V≤ V_{DD} <1.9 V, maximum FMC_SDCLK = 75 MHz when CAS Latency = 3 and 60 MHz for CAS latency 1 or 2. C_L = 10 pF (on FMC_SDCLK).

Figure 71. SDRAM read access waveforms (CL = 1)

Table 102. SDRAM read timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH _Data)}	Data input setup time	2	-	
t _{h(SDCLKH_Data)}	Data input hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	0.5	ne
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	0.5	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

1. Guaranteed based on test during characterization.

Table 116. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ballgrid array package mechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device Marking for UFBGA169

The following figure gives an example of topside marking orientation versus ball A1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 88. UFBGA169 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
е	-	0.500	-	-	0.0197	-	
HD	25.900	-	26.100	1.0200	-	1.0276	
HE	25.900	-	26.100	1.0200	-	1.0276	
L	0.450	-	0.750	0.0177	-	0.0295	
L1	-	1.000	-	-	0.0394	-	
ZD	-	1.250	-	-	0.0492	-	
ZE	-	1.250	-	-	0.0492	-	
CCC	-	-	0.080	-	-	0.0031	
k	0 °	-	7 °	0 °	-	7 °	

Table 117. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

