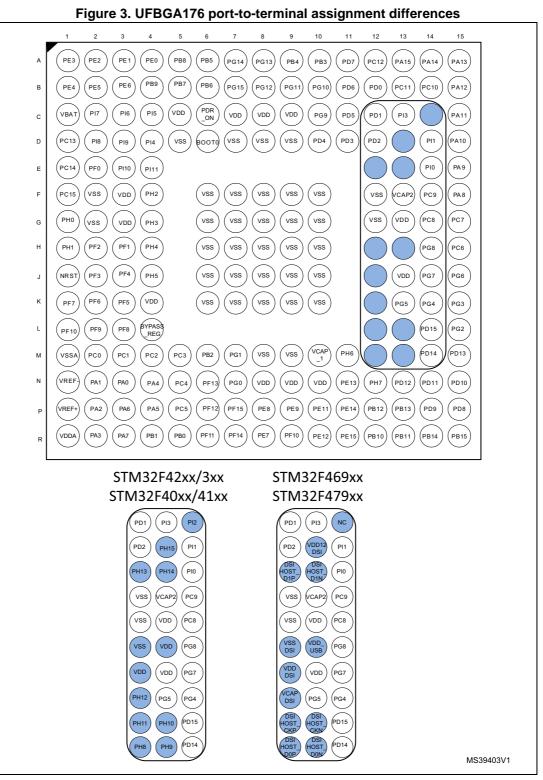
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	71
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469vgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.3 UFBGA176 package

1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.

DocID028196 Rev 4

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

2.22 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5*):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

Table 5. Voltage regulator modes in stop mode

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

2.23 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

2.32 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

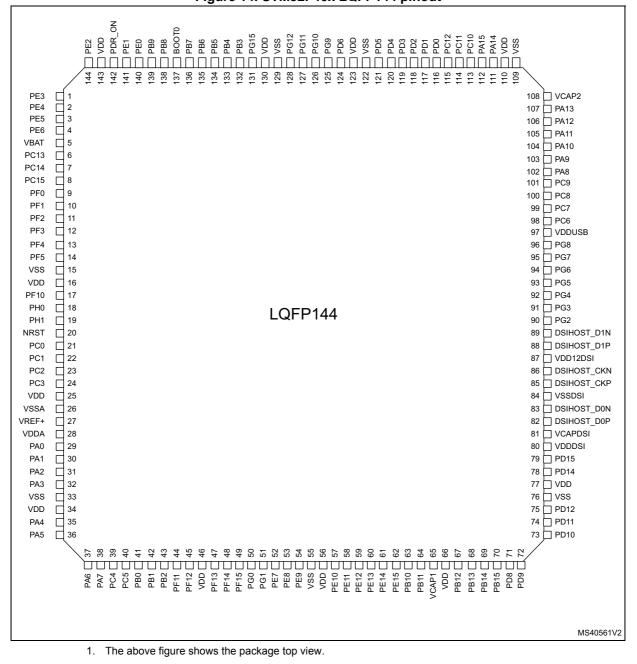
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

2.33 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:


- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F4xx reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

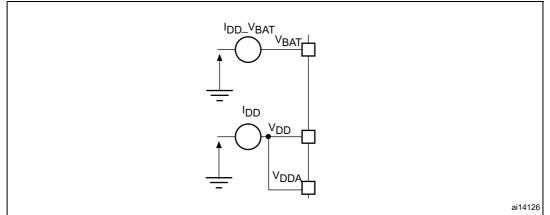
2.34 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive

Figure 14. STM32F46x LQFP144 pinout

Pin name	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PF8	-	-	-	-
PF9	-	-	-	-
PF10	-	-	-	-
PG6	-	-	-	-
PG7	-	-	INT	-
PE0	NBL0	NBL0	-	NBL0
PE1	NBL1	NBL1	-	NBL1
PI4	NBL2	-	-	NBL2
PI5	NBL3	-	-	NBL3
PG8	-	-	-	SDCLK
PC0	-	-	-	SDNWE
PF11	-	-	-	SDNRAS
PG15	-	-	-	SDNCAS
PH2	-	-	-	SDCKE0
PH3	-	-	-	SDNE0
PH6	-	-	-	SDNE1
PH7	-	-	-	SDCKE1
PH5	-	-	-	SDNWE
PC2	-	-	-	SDNE0
PC3	-	-	-	SDCKE0
PB5	-	-	-	SDCKE1
PB6	-	-	-	SDNE1

Table 11. FMC pin definition (continued)



ST	
M32	
F46	
9xx	

Pinouts and pin description

							Т	able 12.	Alterna	te funct	ion (cc	ontinued)					
5			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	P	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ETH	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
		PC0	-	-	-	-	-	-	-	-	-	-	OTG_HS _ULPI_ST P	-	FMC_SDN WE	-	LCD_R5	EVENT OUT
		PC1	TRACE D0	-	-	-	-	SPI2_MOSI /I2S2_SD	SAI1_SD_ A	-	-	-		ETH_MDC	-	-	-	EVENT OUT
		PC2	-	-	_	-	-	SPI2_MISO	l2S2ext_S D	-	-	-	OTG_HS _ULPI_DI _R	ETH_MII_TXD 2	FMC_SDN E0	-	-	EVENT OUT
		PC3	-	-	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	OTG_HS _ULPI_N _XT	ETH_MII_TX_ CLK	FMC_SDC KE0	-	-	EVENT OUT
DocID028196 Rev		PC4	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RXD 0/ETH_RMII_R XD0	FMC_SDN E0	-	-	EVENT OUT
)28196		PC5	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RXD 1/ETH_RMII_R XD1	FMC_SDC KE0	-	-	EVENT OUT
Rev 4		PC6	-	-	TIM3_CH1	TIM8_CH1	-	I2S2_MCK	-	-	USART6 _TX	-	-	-	SDIO_D6	DCMI_D0	LCD_HSY NC	EVENT OUT
-	Port C	PC7	-	-	TIM3_CH2	TIM8_CH2	-	-	I2S3_MCK	-	USART6 _RX	-	-	-	SDIO_D7	DCMI_D1	LCD_G6	EVENT OUT
		PC8	TRACE D1	-	TIM3_CH3	TIM8_CH3	-	-	-	-	USART6 _CK	-	-	-	SDIO_D0	DCMI_D2	-	EVENT OUT
		PC9	MCO2	-	TIM3_CH4	TIM8_CH4	I2C3_SDA	I2S_CKIN	-	-	-	QUADSPI_ BK1_IO0	-	-	SDIO_D1	DCMI_D3	-	EVENT OUT
		PC10	-	-	-	-	-	-	SPI3_SCK/ I2S3_CK	USART3_ TX	UART4_ TX	QUADSPI_ BK1_IO1	-	-	SDIO_D2	DCMI_D8	LCD_R2	EVENT OUT
		PC11	-	-	-	-	-	I2S3ext_SD	SPI3_MIS O	USART3_ RX	UART4_ RX	QUADSPI_ BK2_NCS	-	-	SDIO_D3	DCMI_D4	-	EVENT OUT
		PC12	TRACE D3	-	-	-	-	-	SPI3_MOS I/I2S3_SD	USART3_ CK	UART5_ TX	-	-	-	SDIO_CK	DCMI_D9	-	EVENT OUT
		PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
7		PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
75/217		PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT 'OUT

5.1.7 Current consumption measurement

Figure 25. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14*, *Table 15*, and *Table 16* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	(including v _{DDA} , v _{DD} , v _{DDUSB} , v _{DDDSI} and v _{BAT}), /			
	Input voltage on FT pins ⁽²⁾		V _{DD} +4.0	
V _{IN}	Input voltage on TTa pins	V _{SS} – 0.3	4.0	V
	Input voltage on any other pin	V _{SS} - 0.3	4.0	
	Input voltage on BOOT pin	V _{SS}	9.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
V _{SSX} -V _{SS}	$\langle V_{SS} $ Variations between all the different ground pins ⁽³⁾		50	1110
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio	n 5.3.18	

Table 14. Voltage	characteristics
-------------------	-----------------

 All main power (V_{DD}, V_{DDA}, V_{DDUSB}, V_{DDDSI}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

V_{IN} maximum value must always be respected. Refer to *Table 15* for the values of the maximum allowed injected current.

3. Including V_{REF-} pin

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to f_{HCLK} frequency and V_{DD} range (see *Table 18: Limitations depending on the operating power supply range*).
- When the regulator is OFF, the V₁₂ is provided externally, as described in *Table 17: General operating conditions.*
- The voltage scaling and over-drive mode are adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \le 120$ MHz
 - Scale 2 for 120 MHz < $f_{HCLK} \le 144$ MHz
 - Scale 1 for 144 MHz < $f_{HCLK} \le$ 180 MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
- External clock frequency is 25 MHz and PLL is ON when f_{HCLK} is higher than 25 MHz.
- The typical current consumption values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and for ambient temperature T_A= 25 °C unless otherwise specified.
- The maximum values are obtained for 1.7 V \leq V_{DD} \leq 3.6 V voltage range and a maximum ambient temperature (T_A), unless otherwise specified.
- For the voltage range 1.7 V \leq V_{DD} \leq 2.1 V the maximum frequency is 168 MHz.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		f _{VCO_OUT} = 500 MHz	-	0.55	0.70	
I _{DD(PLL)}	PLL power consumption on V_{DD12}	sumption on V_{DD12} f _{VCO_OUT} = 600 MHz -	-	0.65	0.80	mA
		f _{VCO_OUT} = 1000 MHz	-	0.95	1.20	

Table 47. DSI-PLL	characteristics ⁽¹⁾	(continued)
-------------------	--------------------------------	-------------

5.3.15 MIPI D-PHY regulator characteristics

The parameters given in *Table 48* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DD12DSI}	1.2 V internal voltage on V _{DD12DSI}	-	1.15	1.20	1.30	V
C _{EXT}	External capacitor on V _{CAPDSI}	-	1.1	2.2	3.3	μF
ESR	External Serial Resistor	-	0	25	600	mΩ
IDDDSIREG	Regulator power consumption	-	100	120	125	μA
	DSI system (regulator, PLL and	Ultra Low Power Mode (Reg. ON + PLL OFF)	-	290	600	
I _{DDDSI}	D-PHY) current consumption on V _{DDDSI}	Stop State (Reg. ON + PLL OFF)	-	290	600	μA
1	DSI system current consumption on	10 MHz escape clock (Reg. ON + PLL OFF)	-	4.3	1.30 3.3 600 125 600	mA
IDDDSILP	V _{DDDSI} in LP mode communication ⁽²⁾	20 MHz escape clock (Reg. ON + PLL OFF)	-	4.3	5.0	ША
		300 Mbps - 1 data lane (Reg. ON + PLL ON)	-	8.0	8.8	
	DSI system (regulator, PLL and	300 Mbps - 2data lane (Reg. ON + PLL ON)	-	11.4	12.5	
I _{DDDSIHS}	D-PHY) current consumption on V _{DDDSI} in HS mode communication ⁽³⁾	500 Mbps - 1 data lane (Reg. ON + PLL ON)	-	13.5	14.7	mA
		500 Mbps - 2data lane (Reg. ON + PLL ON)	-	18.0	19.6	
	DSI system (regulator, PLL and D-PHY) current consumption on V _{DDDSI} in HS mode with CLK like payload	500 Mbps - 2data lane (Reg. ON + PLL ON)	-	21.4	1.30 3.3 600 125 600 600 5.0 5.0 8.8 12.5 14.7 19.6 23.3 - 160	
+	Startun dalay	C _{EXT} = 2.2 μF	-	110	-	110
t _{WAKEUP}	Startup delay	C _{EXT} = 3.3 μF	-	-	160	μs
I _{INRUSH}	Inrush current on V _{DDDSI}	External capacitor load at start	-	60	200	mA

Table 48. DSI regulator characteristics⁽¹⁾

1. Based on test during characterization.

2. Values based on an average traffic in LP Command Mode.

3. Values based on an average traffic (3/4 HS traffic & 1/4 LP) in Video Mode.

5.3.16 Memory characteristics

Flash memory

The characteristics are given at TA = -40 to 105 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD} Suppl		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
	Supply current	Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs	
		Program/erase parallelism (PSIZE) = x 8		400	800		
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms	
		Program/erase parallelism (PSIZE) = x 32	-	250	500		
	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	1200	2400		
t _{ERASE64KB}		Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms	
		Program/erase parallelism (PSIZE) = x 32	-	550	1100		
		Program/erase parallelism (PSIZE) = x 8	-	2	4		
t _{erase128kb}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s	
		Program/erase parallelism (PSIZE) = x 32	-	1	2		

Table 50. Flash memory programming

Symbol Parameter		Conditions	Value	Unit		
		Conditions	Min ⁽¹⁾	Unit		
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles		
		1 kcycle ⁽²⁾ at T _A = 85 °C	30			
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years		
		10 kcycles ⁽²⁾ at T _A = 55 °C	20			

 Table 52. Flash memory endurance and data retention

2. Cycling performed over the whole temperature range.

5.3.17 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 53*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, TFBGA216, T _A = +25 °C, f _{HCLK} = 168 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}$, TFBGA216, T _A = +25 °C, f _{HCLK} = 168 MHz, conforming to IEC 61000-4-2	4A

Table 53. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

CAN (controller area network) interface

Refer to Section 5.3.20 for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

5.3.24 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 76* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply		1.7 ⁽¹⁾	-	3.6	
V_{REF} +	Positive reference voltage	V _{DDA} –V _{REF+} < 1.2 V	1.7 ⁽¹⁾	-	V _{DDA}	V
V _{REF-}	Negative reference voltage		-	0	-	
f	ADC alook fraguanov	V _{DDA} = 1.7 ⁽¹⁾ to 2.4 V	0.6	15	18	MHz
f _{ADC}	ADC clock frequency	V _{DDA} = 2.4 to 3.6 V	0.6	30	36	
f _{TRIG} ⁽²⁾ External trigger frequency		f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	v
R _{AIN} ⁽²⁾	External input impedance	Details in Equation 1	-	-	50	kΩ
$R_{ADC}^{(2)(4)}$	Sampling switch resistance	-	-	-	6	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	4	7	pF
+ (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
$t_{lat}^{(2)}$	latency	-	-	-	3 ⁽⁵⁾	1/f _{ADC}
+ (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
t _{latr} (2)	latency		-	-	2 ⁽⁵⁾	1/f _{ADC}
t _S ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
ι _S `-'	Sampling time	-	3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs

Table 76. ADC characteristics

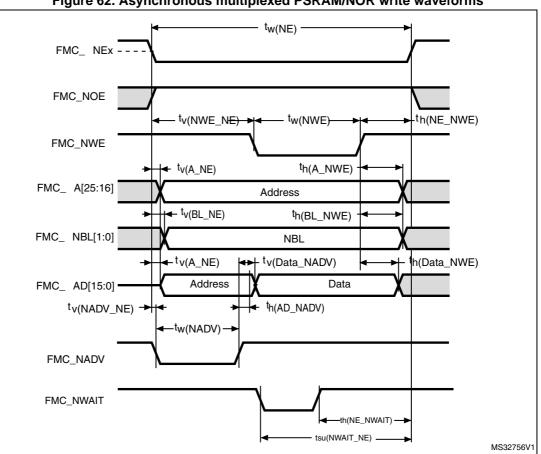


Figure 62. Asynchronous multiplexed PSRAM/NOR write waveforms

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK}	4T _{HCLK} +0.5	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 1	T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time	2T _{HCLK}	2T _{HCLK} +0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0.5	1	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} – 0.5	T _{HCLK} + 0.5	ns
t _{h(AD_NADV)}	FMC_AD (address) valid hold time after FMC_NADV high	T _{HCLK} – 2	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK}	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} – 2	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} +1.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	9T _{HCLK}	9T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time	7T _{HCLK}	7T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} –1	-	

Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾

Synchronous waveforms and timings

Figures 63 through 66 represent synchronous waveforms and *Table 96* through *Table 99* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1;
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
- C_L = 30 pF on data and address lines. C_L = 10 pF on FMC_CLK unless otherwise specified.

In all timing tables, the T_{HCLK} is the HCLK clock period:

- For 2.7 V \leq V_{DD} \leq 3.6 V, maximum FMC_CLK = 90 MHz at C_L = 30 pF (on FMC_CLK).
- For 1.71 V \leq V_{DD}<1.9 V, maximum FMC_CLK = 60 MHz at C_L = 10 pF (on FMC_CLK).

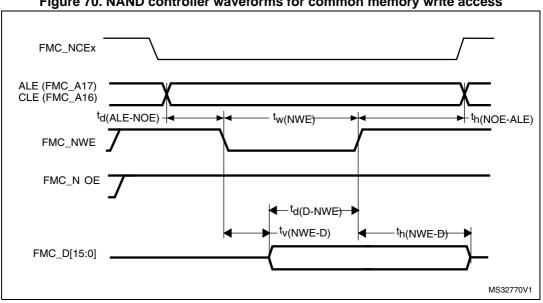
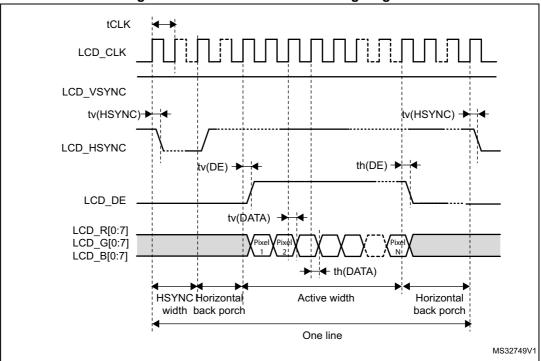


Table 100. Switching characteristics for NAND Flash read cycles

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} – 0.5	4T _{HCLK} +0.5	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	9	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} – 0.5	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} – 2	-	

Table 101. Switching characteristics	for NAND Flash write cycles
--------------------------------------	-----------------------------

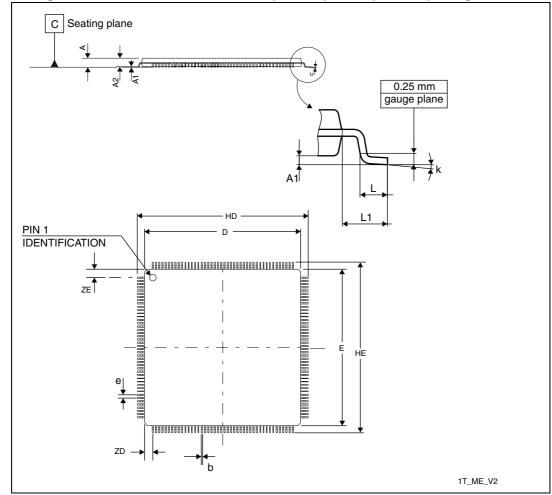
Symbol	Parameter	Min	Мах	Unit
t _{w(NWE)}	FMC_NWE low width	4T _{HCLK}	4T _{HCLK} +1	
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	3T _{HCLK} – 1	-	ns
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{HCLK} – 3	-	115
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	3T _{HCLK} -0.5	
t _{h(NWE-ALE)}			-	


SDRAM waveforms and timings

- C_L = 30 pF on data and address lines.
- C_L = 10 pF on FMC_SDCLK unless otherwise specified. •

Symbol	Parameter	Min	Мах	Unit
f _{CLK}	LTDC clock output frequency	-	65	MHz
D _{CLK}	LTDC clock output duty cycle	45	55	%
t _{w(CLKH)} t _{w(CLKL)}	Clock High time, low time	t _{w(CLK)} /2 – 0.5	t _{w(CLK)} /2+0.5	
t _{v(DATA)}	Data output valid time	-	1.5	
t _{h(DATA)}	Data output hold time	0	-	
t _{v(HSYNC)}				
t _{v(VSYNC)}	HSYNC/VSYNC/DE output valid time	-	0.5	ns
t _{v(DE)}				
t _{h(HSYNC)}				
t _{h(VSYNC)}	HSYNC/VSYNC/DE output hold time	0	-	
th(DE)				

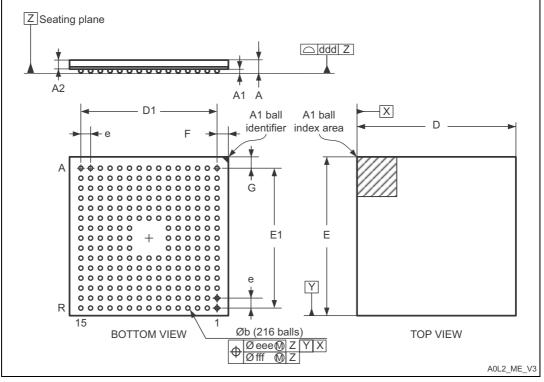
Table 109. LTDC characteristics⁽¹⁾



6.5 LQFP176 package information

Figure 89. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline

1. Drawing is not to scale.


Table 117. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	-	1.450	0.0531	-	0.0060	
b	0.170	-	0.270	0.0067	-	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	23.900	-	24.100	0.9409	-	0.9488	
Е	23.900	-	24.100	0.9409	-	0.9488	

6.8 TFBGA216 package information

Figure 97. TFBGA216 - thin fine pitch ball grid array 13 x 13 x 0.8mm, package outline

1. Drawing is not to scale.

Table 121. TFBGA216 - thin fine pitch ball grid array 13 × 13 × 0.8mm
package mechanical data

Symbol		millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max		
А	-	-	1.100	-	-	0.0433		
A1	0.150	-	-	0.0059	-	-		
A2	-	0.760	-	-	0.0299	-		
A4	-	0.210	-	-	0.0083	-		
b	0.350	0.400	0.450	0.0138	0.0157	0.0177		
D	12.850	13.000	13.150	0.5118	0.5118	0.5177		
D1	-	11.200	-	-	0.4409	-		
E	12.850	13.000	13.150	0.5118	0.5118	0.5177		
E1	-	11.200	-	-	0.4409	-		
е	-	0.800	-	-	0.0315	-		
F	-	0.900	-	-	0.0354	-		
ddd	-	-	0.080	-	-	0.0031		

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7 Part numbering

Table 123. Ordering informa	tion	sche	me					
Example:	STI	M32	F	469	V	ΙT	6	ххх
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
F = general-purpose								
Device subfamily								
469= STM32F469xx, USB OTG FS/HS, camera interface, Ethernet, LCD-TFT, DSIHost, Quad-SPI, Chrom-ART graphical accelerator.								
Pin count								
V = 100 pins								
Z = 144 pins								
A = 168 and 169 pins								
I = 176 pins								
B = 208 pins								
N = 216 pins								
Flash memory size								
E = 512 Kbytes of Flash memory								
G = 1024 Kbytes of Flash memory								
I = 2048 Kbytes of Flash memory								
Package								
T = LQFP								
H = BGA								
Y = WLCSP								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C.								
7 = Industrial temperature range, –40 to 105 °C.								
Options								

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Revision history

Date	Revision	Changes			
01-Sep-2015	1	Initial release.			
13-Oct-2015	2	Updated Table 4: Regulator ON/OFF and internal reset ON/OFF availability and Table 54: EMI characteristics. Updated Figure 35: PLL output clock waveforms in center spread mode and Figure 36: PLL output clock waveforms in down spread mode. Updated title of Section 6.8: TFBGA216 package information.			
08-Mar-2016	3	 Updated cover page with introduction of LQFP100 and LQFP144 packages. Updated Section 1: Description and Section 1.1: Compatibility throughout the family. Updated Figure 1: Incompatible board design for LQFP176 package and its footnote. Updated Table 1: Device summary, Table 2: STM32F469xx features and peripheral counts, Table 4: Regulator ON/OFF and internal reset ON/OFF availability, Table 10: STM32F469xx pin and ball definitions, Table 11: FMC pin definition, Table 12: Alternate function, Table 17: General operating conditions, Table 55: ESD absolute maximum ratings, Table 76: ADC characteristics, Table 122: Package thermal characteristics and Table 123: Ordering information scheme. Removed former Table 73: Ethernet DC electrical characteristics. Added Figure 13: STM32F46x LQFP100 pinout and Figure 14: STM32F46x LQFP144 pinout. Updated Figure 17: STM32F46x UFBGA176 ballout, Figure 18: STM32F46x LQFP176 pinout and Figure 33: ACCHSI vs. temperature. Added Section 6.1: LQFP100 package information and Section 6.2: LQFP144 package information. Replaced former footnote 7 of Table 10: STM32F469xx pin and ball definitions with footnote 2. Added footnote 3 to Table 14: Voltage characteristics. 			
02-Mar-2017	4	Updated Table 12: Alternate function. Corrected maximum characterized wakeup timing values for Stop mode in Table 34: Low-power mode wakeup timings. Updated Figure 14: STM32F46x LQFP144 pinout. Updated Device Marking for LQFP100, Device Marking for UFBGA169, Device Marking for LQFP176, Device Marking for LQFP176 and Device Marking for LQFP176. Updated footnotes of figures 82, 85, 88, 91, 96 and 98 in Section 6: Package information.			

Table 125	. Document	revision	history
-----------	------------	----------	---------

