

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	106
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469zgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 LQFP208 package

right 2. meompatible board design for Earl 200 package							
STM32F469xx/479xx LQFP208	138 PC6 137 VDDUSB 136 VSS 135 PG8 134 PG7 133 PG6 132 PG5 131 PG4 130 PG3 129 PG2 128 VSSDSI 127 DSIHOST_D1N 126 DSIHOST_D1P 125 VDD12DSI 124 DSIHOST_CKP 122 VSSDSI 121 DSIHOST_D0N 120 DSIHOST_D0P 119 VCAPDSI 118 VDDDSI 117 PD15 116 PD14	STM32F42x/STM32F43x LQFP208	138 PC6 137 VDD 136 VSS 135 PG8 134 PG7 133 PG6 132 PG5 131 PG4 130 PG3 129 PG2 128 PK2 127 PK1 126 PK0 125 VSS 124 VDD 123 PJ11 122 PJ10 123 PJ11 122 PJ10 121 PJ9 120 PJ8 119 PJ7 118 PJ6 117 PD15 116 PD14				
			MS38295V1				

Figure 2. Incompatible board design for LQFP208 package

1. Pins from 118 to 128 and pin 137 are not compatible

2.10 Quad-SPI memory interface (QUADSPI)

All STM32F469xx devices embeds a Quad-SPI memory interface, which is a specialized communication interface targeting Single, Dual, Quad or Dual-flash SPI memories. It can work in direct mode through registers, external flash status register polling mode and memory mapped mode. Up to 256 Mbytes external Flash memory are mapped, supporting 8, 16 and 32-bit access. Code execution is supported.

The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.

2.11 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 displays layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 Input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events.

2.12 DSI Host (DSIHOST)

The DSI Host is a dedicated peripheral for interfacing with MIPI[®] DSI compliant displays. It includes a dedicated video interface internally connected to the LTDC and a generic APB interface that can be used to transmit information to the display.

These interfaces are as follows:

- LTDC interface:
 - Used to transmit information in Video Mode, in which the transfers from the host processor to the peripheral take the form of a real-time pixel stream (DPI).
 - Through a customized for mode, this interface can be used to transmit information in full bandwidth in the Adapted Command Mode (DBI).
- APB slave interface:
 - Allows the transmission of generic information in Command mode, and follows a proprietary register interface.
 - Can operate concurrently with either LTDC interface in either Video Mode or Adapted Command Mode.
- Video mode pattern generator:
 - Allows the transmission of horizontal/vertical color bar and D-PHY BER testing pattern without any kind of stimuli.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Operating conditions*. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Section 2.18*.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

Figure 10. Regulator OFF

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 11*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 12*).
- If V_{CAP_1} and V_{CAP_2} go below V₁₂ minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V₁₂ depends on the maximum frequency targeted in the application (see Operating conditions).

Figure 14. STM32F46x LQFP144 pinout

Figure 15. STM32F46x WLCSP168 pinout

1. The above figure shows the package bottom view.

Figure 20. STM32F46x TFBGA216 ballout

1. The above figure shows the package top view.

			Pin n	umber			e v						
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structur	Notes	Alternate functions	Additional functions
77	110	D10	C2	G13	131	150	F11	VDD	S	-	-	-	-
-	-	D9	B1	-	-	151	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	C13	D3	-	-	152	E13	PH14	I/O	FT	-	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	C12	E4	-	-	153	D13	PH15	I/O	FT	-	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	B13	E5	E14	132	154	E14	P10	I/O	FT	-	TIM5_CH4, SPI2_NSS/I2S2_WS ⁽⁷⁾ , FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-
-	-	C11	C3	D14	133	155	D14	PI1	I/O	FT	-	SPI2_SCK/I2S2_CK ⁽⁷⁾ , FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-
-	-	B12	A1	-	NC (2)	156	C14	PI2	I/O	FT	-	TIM8_CH4, SPI2_MISO, I2S2ext_SD, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT	-
-	-	B10	B2	C13	134	157	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI/I2S2_SD, FMC_D27, DCMI_D10, EVENTOUT	-
78	-	-	-	D9	135	-	F9	VSS	S	-	-	-	-
-	-	-	B5	C9	136	158	E10	VDD	S	-	-	-	-
79	111	A10	D4	A14	137	159	A14	PA14(JTCK- SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
80	112	B11	A2	A13	138	160	A13	PA15(JTDI)	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, SPI1_NSS, SPI3_NSS/I2S3_WS, EVENTOUT	-
81	113	C10	D5	B14	139	161	B14	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDIO_D2, DCMI_D8, LCD_R2, EVENTOUT	-
82	114	В9	В3	B13	140	162	B13	PC11	I/O	FT	-	I2S3ext_SD, SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDIO_D3, DCMI_D4, EVENTOUT	-

Table 10. STM32F469xx pin and ball definitions (continued)

Pin name	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PF8	-	-	-	-
PF9	-	-	-	-
PF10	-	-	-	-
PG6	-	-	-	-
PG7	-	-	INT	-
PE0	NBL0	NBL0	-	NBL0
PE1	NBL1	NBL1	-	NBL1
PI4	NBL2	-	-	NBL2
PI5	NBL3	-	-	NBL3
PG8	-	-	-	SDCLK
PC0	-	-	-	SDNWE
PF11	-	-	-	SDNRAS
PG15	-	-	-	SDNCAS
PH2	-	-	-	SDCKE0
PH3	-	-	-	SDNE0
PH6	-	-	-	SDNE1
PH7	-	-	-	SDCKE1
PH5	-	-	-	SDNWE
PC2	-	-	-	SDNE0
PC3	-	-	-	SDCKE0
PB5	-	-	-	SDCKE1
PB6	-	-	-	SDNE1

Table 11. FMC pin definition (continued)

5.1.6 Power supply scheme

Figure 24. Power supply scheme

- 1. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.19 and Section 2.20.
- 2. The two 2.2 μF ceramic capacitors on V_{CAP_1} and V_{CAP_2} should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.
- 3. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pin.
- 4. V_{DDA} and V_{SSA} must be connected to V_{DD} and $V_{SS},$ respectively.
- **Caution:** Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19			
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08			
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37			
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25			
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51			
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39			
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65			
N/	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V		
V PVD	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	v		
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71			
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99			
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92			
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10			
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99			
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21			
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09			
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV		
V _{POR/PDR}	Power-on/power-down	Falling edge	1.60	1.68	.68 1.76			
	reset threshold	Rising edge	1.64	1.72	1.80			
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV		
N.	Brownout lovel 1 threshold	Falling edge	2.13	2.19	2.24	v		
VBOR1		Rising edge	2.23	2.29	2.33			
V	Prownout lovel 2 threshold	Falling edge	2.44	2.50	2.56			
VBOR2		Rising edge	2.53	2.59	2.63			
V	Prownout lovel 2 threshold	Falling edge	2.75	2.83	2.88			
VBOR3	Brownout level 5 threshold	Rising edge	2.85	2.92	2.97			
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV		
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	POR reset temporization	-	0.5	1.5	3.0	ms		
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA		
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC		

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

Table 24. Typical and maximum current consumption in Run mode, code with data processing					
running from Flash memory (ART accelerator enabled except prefetch) or RAM,					
regulator ON					

						Max ⁽¹⁾			
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			180	103	109 ⁽⁴⁾	142	175 ⁽⁴⁾		
			168	94	99	124	149		
			150	84	89	114	140		
			144	77	81	104	127		
			120	57	60	79	98		
		All	90	43	46	64	84		
		Peripherals	60	30	33	51	70		
		enabled ⁽²⁾⁽³⁾	30	16	19	37	57		
	Supply current in RUN mode		25	14	16	34	54	mA	
			16	7	10	28	48		
			8	4	7	26	46		
			4	3	6	24	44		
1			2	3	5	23	43		
'DD			180	50	56 ⁽⁴⁾	89	124 ⁽⁴⁾		
			168	45	51	75	102		
			150	41	46	70	97		
			144	37	42	63	88		
			120	28	31	49	69		
		All	90	21	24	42	63		
		Peripherals	60	15	17	36	56		
		disabled ⁽²⁾	30	9	11	29	49		
			25	7	10	28	48		
			16	4	7	25	45		
			8	3	6	22	44		
			4	3	5	23	43		
			2	2	5	23	43		

1. Guaranteed based on test during characterization.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

4. Guaranteed by test in production.

Symbol	Parameter		f						
		Conditions	'HCLK (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			168	97	102	128	154		
			150	87	92	118	143		
			144	80	84	108	131		
		All Peripherals	120	65	68	88	108		
	Supply current in RUN mode	enabled ⁽²⁾⁽³⁾	90	51	54	73	93	mA	
			60	37	41	59	79		
			30	21	23	42	62		
I			25	18	20	39	59		
DD			168	49	55	79	105		
			150	44	49	44	100		
			144	40	45	68	92		
		All Peripherals	120	36	39	58	78		
		disabled	90	29	32	51	71		
			60	22	25	44	64		
			30	13	15	34	54		
			25	11	13	32	52		

Table 25. Typical and maximum current consumption in Run mode, code with data processingrunning from Flash memory (ART accelerator disabled), regulator ON

1. Guaranteed based on test during characterization.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Symbol	Parameter	Conditions	I/O toggling frequency (fsw)	Тур	Unit
			2 MHz	0.0	
			8 MHz	0.2	
			25 MHz	0.6	
	I/O switching Current	V _{DD} = 3.3 V C= C _{INT} ⁽²⁾	50 MHz	1.1	mA
			60 MHz	1.3	
			84 MHz	1.8	
סוסס			90 MHz	1.9	
		V _{DD} = 3.3 V	2 MHz	0.1	
			8 MHz	0.4	
			25 MHz	1.23	
		C _{EXT} = 0 pF	50 MHz	2.43	
		$C = C_{INT} + C_{EXT} + C_S$	60 MHz	2.93	
			84 MHz	3.86	
			90 MHz	4.07	

Table 32. Switching output I/C) current consumption ⁽¹⁾
--------------------------------	--------------------------------------

Low-speed internal (LSI) RC oscillator

Table 40. LS	oscillator	characteristics	(1))
--------------	------------	-----------------	-----	---

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	17	32	47	kHz
t _{su(LSI)} ⁽³⁾	Startup time	-	15	40	μs
I _{DD(LSI)} ⁽³⁾	Power consumption	-	0.4	0.6	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Based on test during characterization.

3. Guaranteed by design.

Figure	34.	ACCLSI	versus	temperature
--------	-----	--------	--------	-------------

5.3.11 PLL characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 4	41.	Main	PLL	characteristics
I GINIO -		mann		0110100100100

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	
f _{PLL_OUT}	PLL multiplier output clock	-	24	-	180	
f _{PLL48_OUT}	48 MHz PLL multiplier output clock	-	-	48	75	
f _{VCO_OUT}	PLL VCO output	-	192	-	432]

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC[?] code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

	Table	54.	EMI	characteristics
--	-------	-----	-----	-----------------

Symbol Paramotor		Conditions	Monitored	Max vs. [ˈ	Unit		
Symbol	Falameter	Conditions	frequency band	8/168 MHz	8/180 MHz	Unit	
		$\gamma = 22 \gamma T = 25 \circ C$ TEDCA216	0.1 to 30 MHz	2	2		
S _{EMI}		$v_{DD} = 3.3 v$, $T_A = 25 °$ C, TFBGA216 package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks	30 to 130 MHz	4	1	dBµV	
			130 MHz to 1GHz	10	10		
	Poak lovel	enabled, clock dithening disabled.	SAE EMI Level	3	3	-	
	Feak level	$1/2 = 2.2 1/1 = 25^{\circ} C TEDCA216$	0.1 to 30 MHz	5	-10		
		$v_{DD} = 3.5 v$, $r_A = 25 °$ C, TFBGA210 package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering enabled	30 to 130 MHz	3	-15	dBµV	
			130 MHz to 1GHz	8	0		
			SAE EMI level	2	2	-	

5.3.18 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	116
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μο
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				
f _S ⁽²⁾	Sampling rate (f _{ADC} = 30 MHz, and t _S = 3 ADC cycles)	12-bit resolution Single ADC	-	-	2	
		12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	
I _{VREF+} (2)	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode	-	-	1.6	1.8	mA

Table 76. AD	C characteristics	(continued)
--------------	-------------------	-------------

1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).

2. Based on test during characterization.

3. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .

4. R_{ADC} maximum value is given for $V_{DD}{=}1.7$ V, and minimum value for $V_{DD}{=}3.3$ V.

5. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table* 76.

Equation 1: R_{AIN} max formula

$$R_{AIN} = \frac{(k-0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

5.3.25 Temperature sensor characteristics

Table 82. Temperature sensor characteristic

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5	-	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} ⁽²⁾	Startup time	-	6	10	116
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μ5

1. Based on test during characterization.

2. Guaranteed by design.

Table 83. Temperature sensor calibration values						
Symbol	Parameter	Memory address				
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D				
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V_{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F				

5.3.26 V_{BAT} monitoring characteristics

Table 84. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	4	-	
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽²⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1 mV accuracy	5	-	-	μs

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

5.3.27 Reference voltage

The parameters given in *Table 85* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 85.	internal	reference	voltage
-----------	----------	-----------	---------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.18	1.21	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage		10	-	-	μs
V _{RERINT_s} ⁽²⁾	Internal reference voltage spread over the temperature range	V_{DD} = 3V \pm 10mV	-	3	5	mV

Figure 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 00	Acynchronous non-multi	playad SPAM/P	SPAM/NOD write	o timinac(1)
Table 30.	Asyncinonous non-inulu	piezeu Shaiwi/P	SCAW/NOC WITH	a unninga` 🧉

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK}	3T _{HCLK} +1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} – 0.5	T _{HCLK} + 0.5	
t _{w(NWE)}	FMC_NWE low time	T _{HCLK}	T _{HCLK} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	high hold time T _{HCLK} +1.5		
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} +0.5	-	20
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid -		1.5	115
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	fter FMC_NWE high T _{HCLK} +0.5 -		
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid -		T _{HCLK} + 2	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high		-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} + 0.5	

1. Based on test during characterization.

Table 98. Synchronous non-multi	plexed NOR/PSRAM read timings ⁽¹⁾
---------------------------------	--

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} – 1	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK} – 0.5	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	T _{HCLK} +2	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} – 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	5	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	0	-	
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	4	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	

1. Based on test during characterization.

usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.3 WLCSP168 package information

Figure 86. WLCSP168 - 168-pin, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale package outline

