E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, SAI, SDIO, SPI, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	106
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f469zit6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 46. I ² S master timing diagram (Philips protocol) ⁽¹⁾ . Figure 47. SAI master timing waveforms. Figure 48. SAI slave timing waveforms. Figure 49. SAI slave timing waveforms.	. 146 . 148 . 148 . 150 . 151
Figure 47. SAI master timing waveforms. Figure 48. SAI slave timing waveforms. Figure 48. SAI slave timing waveforms.	. 148 . 148 . 150 . 151
Figure 48. SAI slave timing waveforms	. 148 . 150 . 151
Figure 40 LICD OTO full around timinger definition of data signal rise and fall time	. 150 . 151
Figure 49. USB UIG Tull speed timings: definition of data signal rise and fall time	. 151
Figure 50. ULPI timing diagram	
Figure 51. Ethernet SMI timing diagram	. 152
Figure 52. Ethernet RMII timing diagram	. 153
Figure 53. Ethernet MII timing diagram	. 154
Figure 54. ADC accuracy characteristics	. 159
Figure 55. Typical connection diagram using the ADC	. 159
Figure 56. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})	. 160
Figure 57. Power supply and reference decoupling $(V_{\text{REF+}} \text{ connected to } V_{\text{DDA}})$.	. 160
Figure 58. 12-bit buffered/non-buffered DAC.	. 164
Figure 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	. 165
Figure 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	. 167
Figure 61. Asynchronous multiplexed PSRAM/NOR read waveforms.	. 168
Figure 62. Asynchronous multiplexed PSRAM/NOR write waveforms	. 170
Figure 63. Synchronous multiplexed NOR/PSRAM read timings	. 172
Figure 64. Synchronous multiplexed PSRAM write timings.	. 174
Figure 65. Synchronous non-multiplexed NOR/PSRAM read timings	. 176
Figure 66. Synchronous non-multiplexed PSRAM write timings	. 177
Figure 67. NAND controller waveforms for read access	. 178
Figure 68. NAND controller waveforms for write access	. 179
Figure 69. NAND controller waveforms for common memory read access	. 179
Figure 70. NAND controller waveforms for common memory write access.	. 180
Figure 71. SDRAM read access waveforms (CL = 1)	. 181
Figure 72. SDRAM write access waveforms	. 182
Figure 73. Quad-SPI SDR timing diagram.	. 184
Figure 74. Quad-SPI DDR timing diagram.	. 185
Figure 75. DCMI timing diagram	. 186
Figure 76. LCD-TFT horizontal timing diagram	. 187
Figure 77. LCD-TFT vertical timing diagram	. 188
Figure 78. SDIO high-speed mode	. 188
Figure 79. SD default mode	. 189
Figure 80. LQFP100 - 100-pin, 14 x 14 mm low-profile guad flat package outline	. 191
Figure 81. LQFP100 - 100-pin. 14 x 14 mm low-profile guad flat	
recommended footprint.	. 193
Figure 82. LQFP100 marking example (package top view)	. 193
Figure 83. LQFP144 - 144-pin, 20 x 20 mm low-profile guad flat package outline	. 194
Figure 84. LQFP144 - 144-pin.20 x 20 mm low-profile guad flat package	
recommended footprint.	. 196
Figure 85. LQFP144 marking example (package top view)	. 196
Figure 86. WLCSP168 - 168-pin, 4,891 x 5,692 mm, 0,4 mm pitch wafer level chip	
scale package outline	. 197
Figure 87. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid	
arrav package outline	. 199
Figure 88. UFBGA169 marking example (package top view)	. 200
Figure 89. LQFP176, 24 x 24 mm, 176-pin low-profile guad flat package outline	. 201
Figure 90. LQFP176 recommended footprint	. 203
Figure 91. LQFP176 marking example (package top view)	. 204
Figure 92. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch,	

1 Description

The STM32F469xx devices are based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex[®]-M4 core features a Floating point unit (FPU) single precision which supports all ARM[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F469xx devices incorporate high-speed embedded memories (Flash memory up to 2 Mbytes, up to 384 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers, and a true random number generator (RNG). They also feature standard and advanced communication interfaces:

- Up to three I²Cs
- Six SPIs, two I²Ss full duplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI),
- Two CANs
- One SAI serial audio interface
- An SDMMC host interface
- Ethernet and camera interface
- LCD-TFT display controller
- Chrom-ART Accelerator™
- DSI Host.

Advanced peripherals include an SDMMC interface, a flexible memory control (FMC) interface, a Quad-SPI Flash memory, and camera interface for CMOS sensors. Refer to *Table 2* for the list of peripherals available on each part number.

The STM32F469xx devices operate in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) only in full speed mode, is available on all packages.

The supply voltage can drop to 1.7 V (refer to Section 2.19.2). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F469xx devices are offered in eight packages, ranging from 100 to 216 pins. The set of included peripherals changes with the device chosen, according to *Table 2*.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages allow to disable the internal reset through the PDR_ON signal when connected to VSS.

1. PDR_ON signal to be kept always low.

2.20 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

2.20.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

2.24.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

2.24.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F46x devices (see *Table 6* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F46x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/down counter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

2.24.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

DocID028196 Rev 4

Figure 16. STM32F46x UFBGA169 ballout

1. The above figure shows the package top view.

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 22.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure* 23.

Electrical characteristics

- 7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 8. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 9. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} .

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs. Flash memory wait states ⁽¹⁾⁽²⁾	I/O operation	Possible Flash memory operations
V _{DD} = 1.7 to 2.1 V ⁽³⁾	Conversion time	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	No I/O	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	up to 1.2 Msps	22 MHz	180 MHz with 8 wait states and over-drive ON	compensation	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time	24 MHz	180 MHz with 7 wait states and over-drive ON	I/O compensation	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽⁵⁾	up to 2.4 Msps	30 MHz	180 MHz with 5 wait states and over-drive ON	works	32-bit erase and program operations

Table 16. Limitations depending on the operating power supply range	Table 18. Limitations de	pending on the	operating power	supply range
---	--------------------------	----------------	-----------------	--------------

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.

 Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

- 3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).
- 4. Prefetch is not available.
- 5. When V_{DDUSB} is connected to V_{DD} , the voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

5.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 19*.

1. Legend: ESR is the equivalent series resistance.

Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM,
regulator ON

						Max ⁽¹⁾			
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			180	103	109 ⁽⁴⁾	142	175 ⁽⁴⁾		
			168	94	99	124	149		
			150	84	89	114	140		
			144	77	81	104	127		
			120	57	60	79	98		
		All	90	43	46	64	84		
		Peripherals	60	30	33	51	70		
		enabled ⁽²⁾⁽³⁾	30	16	19	37	57		
	Supply current in RUN mode		25	14	16	34	54		
			16	7	10	28	48		
			8	4	7	26	46		
			4	3	6	24	44		
1			2	3	5	23	43	m۸	
'DD			180	50	56 ⁽⁴⁾	89	124 ⁽⁴⁾	ША	
			168	45	51	75	102		
			150	41	46	70	97		
			144	37	42	63	88		
			120	28	31	49	69		
		All	90	21	24	42	63		
		Peripherals	60	15	17	36	56		
		disabled ⁽²⁾	30	9	11	29	49		
			25	7	10	28	48		
			16	4	7	25	45		
			8	3	6	22	44		
			4	3	5	23	43		
				2	2	5	23	43	

1. Guaranteed based on test during characterization.

2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

4. Guaranteed by test in production.

DocID028196 Rev 4

Symbol				Typ ⁽¹⁾			Max ⁽²⁾		
	Parameter	Parameter Conditions	T _A = 25 °C			T _A = 25 ℃	T _A = 85 °C	T _A = 105 °C	Unit
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	v	_{DD} = 3.3	v	
I _{DD_STBY} i		Backup SRAM ON, RTC and LSE oscillator OFF	1.7	2.5	2.9	6 ⁽³⁾	18	35 ⁽³⁾	
	Supply current in Standby mode	Backup SRAM OFF, RTC and LSE oscillator OFF	1.0	1.8	2.20	5 ⁽³⁾	15	30 ⁽³⁾	
		Backup SRAM OFF, RTC ON and LSE oscillator in Power Drive mode	1.7	2.7	3.2	7	20	39	
		Backup SRAM ON, RTC ON and LSE oscillator in Power Drive mode	2.4	3.4	4.0	8	25	48	μA
		Backup SRAM ON, RTC ON and LSE oscillator in High Drive mode	3.2	4.2	4.8	10	29	57	
		Backup SRAM OFF, RTC ON and LSE oscillator in High Drive mode	2.5	3.5	4.1	8	25	48	

Table 30. Typical and maximum current consumption in Standby mode

1. PDR is off for V_{DD}=1.7 V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μ A

2. Based on characterization, not tested in production unless otherwise specified.

3. Based on characterization, tested in production.

time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	-	26	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
I _{DD}	HSE current consumption	V _{DD} =3.3 V, ESR= 30 Ω, C _L =5 pF@25 MHz	-	450	-	
		V _{DD} =3.3 V, ESR= 30 Ω, C _L =10 pF@25 MHz	-	530	-	μΛ
ACC _{HSE} ⁽²⁾	HSE accuracy	-	- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	1	mA/V
t _{SU(HSE)} ⁽³⁾	Startup time	V_{DD} is stabilized	-	2	-	ms

 Table 37. HSE 4-26 MHz oscillator characteristics ⁽¹⁾

1. Guaranteed by design.

2. This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 31*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from www.st.com.

1. R_{FXT} value depends on the crystal characteristics.

		(,			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on $V_{\mbox{\scriptsize DD}}$	VCO freq = 192 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	m۸
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on $V_{\mbox{DDA}}$	VCO freq = 192 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	IIIA

Table 42. PLLI2S (audio PLL) characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Based on test during characterization.

Table 43. PLLSAI (audio and LCD-TFT PLL) characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾	-		0.95 ⁽²⁾	1	2.10	
f _{PLLSAI_OUT}	PLLSAI multiplier output clock	-		-	-	216	MHz
f _{VCO_OUT}	PLLSAI VCO output	-		192	-	432	
+	DLLSALlock time	VCO freq = 192 MHz	<u>.</u>	75	-	200	110
LOCK		VCO freq = 432 MHz		100	-	300	μs
Jitter ⁽³⁾	Main SAI clock jitter	Cycle to cycle at	RMS	-	90	-	
		12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples		-	90	-	ps
	FS clock jitter	Cycle to cycle at 48 k on 1000 samples	КНz	-	400	-	ps
I _{DD(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DD}	VCO freq = 192 MHz VCO freq = 432 MHz	2	0.15 0.45	-	0.40 0.75	m۸
I _{DDA(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz	<u>:</u> :	0.30 0.55	-	0.40 0.85	

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Based on test during characterization.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 8	-	16	32	
		Program/erase parallelism (PSIZE) = x 16	-	11	22	
		Program/erase parallelism (PSIZE) = x 32	-	8	16	
	Bank erase time	Program/erase parallelism (PSIZE) = x 8	-	16	32	5
t _{BE}		Program/erase parallelism (PSIZE) = x 16	-	11	22	
		Program/erase parallelism (PSIZE) = x 32	-	8	16	
		32-bit program operation	2.7	-	3.6	
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	

Table 50. Flash memory programming (continued)

1. Based on test during characterization.

2. The maximum programming time is measured after 100K erase operations.

		71 0 0				
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	6.9	-	s
t _{BE}	Bank erase time	-	-	6.9	-	S
V _{prog}	Programming voltage	-	2.7	-	3.6	V
V _{PP}	V _{PP} voltage range	-	7	-	9	v
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour

Table 51. Flash memory programming with $V_{\mbox{\scriptsize PP}}$

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol		Functional s			
	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on BOOT0 and NRST pins	- 0	NA	mA	
	Injected current on DSIHOST_D0P, DSIHOST_D0N, DSIHOST_D1P, DSIHOST_D0N, DSIHOST_CKP, DSIHOST_CKN pins	- 0	0		
	Injected current on PA0 and PC0 pins	- 0	NA		
	Injected current on any other FT pin	- 5	NA		
	Injected current on any other pin	- 5	+ 5		

1. NA = not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

5.3.20 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under the conditions summarized in *Table 17*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IL}	FT, TTa and NRST I/O input low	1.7 V≤V _{DD} ≤3.6 V		-	0.35V _{DD} -0.04 ⁽¹⁾		
	level voltage		-		0.3V _{DD} ⁽²⁾		
	BOOT0 I/O input low level voltage	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	-	-	0.11/ ±0.1 ⁽¹⁾		
		1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-	- 0.1V _{DD} +0.1V		V	
VIH	FT, TTa and NRST I/O input	17///	0.45V _{DD} +0.3 ⁽¹⁾		_		
	high level voltage ⁽⁵⁾	1.7 V≤VDD <u></u> ≤0.0 V	0.7V _{DD} ⁽²⁾	-	-		
	BOOT0 I/O input high level	1.75 V≤V _{DD} ≤3.6 V, –40 °C≤T _A ≤105 °C	$0.17V_{-} + 0.7^{(1)}$	-			
	voltage	1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	0.17 VDD+0.7 V				

Table 58. I/O static characteristics

Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +1	8T _{HCLK} +2	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} – 1	6T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	110
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

1. Based on test during characterization.

Figure 61. Asynchronous multiplexed PSRAM/NOR read waveforms

Figure 63. Synchronous multiplexed NOR/PSRAM read timings

Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	2.5	
t _{h(SDCLKL _Data)}	Data output hold time	3.5	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time 0		-	
t _{d(SDCLKL_SDNE)}	Chip select valid time - 0		0.5	ne
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	2	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{d(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	
t _{d(SDCLKL_NBL)}	NBL valid time	-	0.5	
t _{h(SDCLKL_NBL)}	NBL output time	0	-	

Table 104. SDRAM write timings⁽¹⁾

1. Guaranteed based on test during characterization.

Table 105. LPSDR SDRAM write timings⁽¹⁾

Symbol	Symbol Parameter		Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} – 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL _Data})	Data output valid time	-	5	
t _{h(SDCLKL} _Data)	Data output hold time	2	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	2.8	
t _{d(SDCLKL} -SDNWE)	SDNWE valid time	-	2	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	1	-	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	1.5	20
t _{h(SDCLKL} - SDNE)	Chip select hold time	1	-	ns
td(SDCLKL-SDNRAS)	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	1.5	-	
t _d (SDCLKL-SDNCAS)	SDNCAS valid time	-	1.5	
td(SDCLKL-SDNCAS)	SDNCAS hold time	1.5	-	
t _{d(SDCLKL_NBL)}	NBL valid time	-	1.5	
t _{h(SDCLKL-NBL)}	NBL output time	1.5	-	

1. Guaranteed based on test during characterization.

Figure 79. SD default mode

	Table 110. Dynamic characteris	tics: SD / MMC	characteri	stics, V _{DD}	= 2.7 to 3.	6 V ⁽¹⁾			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz			
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-			
t _{W(CKL)}	Clock low time	f -50 MU-7	9.5	10.5	-				
t _{W(CKH)}	Clock high time	1 _{pp} = 50 101HZ	8.5	9.5	-	- 115			
CMD, D in	outs (referenced to CK) in MMC and SI	OHS mode							
t _{ISU}	Input setup time HS	6 - FO MU-	2.0	-	-				
t _{IH}	Input hold time HS	T _{pp} =50 MHZ	2.0	-	-	- ns			
CMD, D ou	CMD, D outputs (referenced to CK) in MMC and SD HS mode								
t _{OV}	Output valid time HS	£ 50 MUL	-	13	13.5				
t _{OH}	Output hold time HS	T _{pp} =50 MHZ	12.5	-	-	- ns			
CMD, D in	outs (referenced to CK) in SD default n	node							
t _{ISUD}	Input setup time SD		2.0	-	-				
t _{IHD}	Input hold time SD	t _{pp} =25 MHZ	2.5	-	-	– ns			
CMD, D ou	tputs (referenced to CK) in SD default	mode							
t _{OVD}	Output valid default time SD	f -05 MU-	-	1.5	2.0				
t _{OHD}	Output hold default time SD	ı _{pp} =∠ə iviHZ	1.0	-	-	- ns			

1. Guaranteed based on test during characterization.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.

6.1 LQFP100 package information

Figure 80. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

DocID028196 Rev 4

Figure 90. LQFP176 recommended footprint

^{1.} Dimensions are expressed in millimeters.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
С	0.090	-	0.200	0.0035	-	0.0079	
D	29.800	30.000	30.200	1.1732	1.1811	1.1890	
D1	27.800	28.000	28.200	1.0945	1.1024	1.1102	
D3	-	25.500	-	-	1.0039	-	
E	29.800	30.000	30.200	1.1732	1.1811	1.1890	
E1	27.800	28.000	28.200	1.0945	1.1024	1.1102	
E3	-	25.500	-	-	1.0039	-	
e	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7.0°	0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 120. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

