

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	SDRAM, SRAM
Graphics Acceleration	Yes
Display & Interface Controllers	DVD, VDC
Ethernet	10/100Mbps (1), 100Mbps (1)
SATA	-
USB	USB 2.0 (2)
Voltage - I/O	1.2V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	256-LFBGA
Supplier Device Package	256-LFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7s721010vcbg-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(2) Non-port pins

Pin Name	Pin No.	I/O	Function	Alternate Function
ADTRG0	13	Input	External trigger input for A/D converters 0, 1	INTP4/P04
ADTRG1	12	Input		INTP5/P05
ANI00	1	Input	Analog input to A/D converters 0, 1	-
ANI01	2	Input		-
ANI02	3	Input		-
ANI03	4	Input		_
ANI10	58	Input		_
ANI11	57	Input		-
ANI12	56	Input		-
ANI13	55	Input		_
AV _{DD0}	63	-	Positive power supply for A/D converters 0, 1 (same	-
AV _{DD1}	60	-	potential as V _{DD})	_
AV _{REF0}	64	-	Reference voltage input for A/D converters 0, 1 (same	-
AV _{REF1}	59	_	potential as AVDD0 and AVDD1)	_
AV _{SS0}	62	_	Ground potential for A/D converters 0, 1 (same potential	-
AV _{SS1}	61	-	as Vss)	_
EVDD	26, 47	_	Positive power supply for external pin	_
EVss	27, 48	-	Ground potential for external pin	-
EVTQ0	20	Input	External event count input of TMQ0	TOQH03/P14
FLMD0	25	Input	Pin for setting flash memory programming mode	-
FLMD1	30	Input		PDL5
INTP0	17	Input	External maskable interrupt request input	TOQH0OFF/P00
INTP1	16			TOQ1OFF/P01
INTP2	15			TOP2OFF/P02
INTP3	14			TOP3OFF/P03
INTP4	13			ADTRG0/P04
INTP5	12			ADTRG1/P05
INTP6	11			P06
REGC	10	-	Regulator output stabilization capacitance connection	-
RESET	5	Input	System reset input	-
RXDA0	44	Input	Serial receive data input of UARTA0, UARTA1	P30
RXDA1	42			P32
SCKB0	38	I/O	Serial clock I/O of CSIB0	P42
SIB0	40	Input	Serial receive data input of CSIB0	P40
SOB0	39	Output	Serial transmit data output of CSIB0	P41

3.4.5 Recommended use of address space

The architecture of the V850ES/IE2 requires that a register that serves as a pointer be secured for address generation when operand data in the data space is accessed. The \pm 32 KB area of addresses stored in this pointer can be directly accessed by an instruction for operand data. Because the number of general-purpose registers that can be used as a pointer is limited, however, by keeping the performance from dropping during address calculation when a pointer value is changed, as many general-purpose registers as possible can be secured for variables, and the program size can be reduced.

(1) Program space

Of the 32 bits of the PC (program counter), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Regarding the program space, therefore, a 64 MB space of contiguous addresses starting from 0000000H unconditionally corresponds to the memory map.

To use the internal RAM area as the program space, access addresses 3FFD800H to 3FFEFFFH (6 KB).

Caution When a branch instruction is positioned at the upper limit of the internal RAM area, a prefetch operation (invalid fetch) that will be located in the on-chip peripheral I/O area is not generated.

(2) Data space

With the V850ES/IE2 it seems that there are sixty-four 64 MB address spaces on the 4 GB CPU address space. Therefore, the least significant bit (bit 25) of a 26-bit address is sign-extended to 32 bits and allocated as an address.

The operating conditions of the PRERR flag are shown below. For the operating conditions of the PRERR2 flag, read PRCMD and SYS as PRCMD2 and SYS2 in the following explanation.

- (i) Set condition (PRERR flag = 1)
 - When data is written to a special register without writing anything to the PRCMD register (when <3> is executed without executing <2> in 3.4.7 (1) Setting data to special registers)
 - When data is written to an on-chip peripheral I/O register other than a special register (including execution of a bit manipulation instruction) after writing data to the PRCMD register (if <3> in 3.4.7 (1)
 Setting data to special registers is not the setting of a special register)
- **Remark** Even if an on-chip peripheral I/O register is read (excluding execution of a bit manipulation instruction) between a write access to the PRCMD register and a write access to a special register (such as an access to the internal RAM), the PRERR flag is not set and data can be written to the special register.
- (ii) Clear condition (PRERR flag = 0)
 - When 0 is written to the PRERR flag
 - When the system is reset
- Cautions 1. If 0 is written to the PRERR bit of the SYS register which is not a special register, immediately after a write access to the PRCMD register, the PRERR bit is cleared to 0 (the write access takes precedence).
 - 2. If data is written to the PRCMD register, which is not a special register, immediately after a write access to the PRCMD register, the PRERR bit is set to 1.

4.3.4 Port 3

Port 3 can be set to the input or output mode in 1-bit units. Port 3 has an alternate function as the following pins.

Table 4-7. Alternate-Function Pins of Port 3

Pin Name	Pin No.	Alternate-Function Pin	I/O	Pull-Up ^{Note 1}
P30 ^{Note 2}	44	RXDA0	Input	Provided
P31	43	TXDA0	Output	
P32 ^{Note 2}	42	RXDA1	Input	
P33	41	TXDA1	Output	

Notes 1. Software pull-up function

2. These pins operate as Schmitt trigger inputs when they are read in the port mode.

(1) Registers

(a) Port 3 register (P3)

After res	set: Undef	ined R/\	W Add	lress: FFF	FF406H			
	7	6	5	4	3	2	1	0
P3	0	0	0	0	P33	P32	P31	P30
	P3n		Control o	of output da	ata (in outp	ut mode) (ı	n = 0 to 3)	
	0	Output 0.						
	1	Output 1.						

(b) Port 3 mode register (PM3)

After re	set: FFH	R/W	Address:	FFFFF42	26H			
	7	6	5	4	3	2	1	0
PM3	1	1	1	1	PM33	PM32	PM31	PM30
	PM3n		Control of i	nput/outp	ut mode (in	port mode)	(n = 0 to 3)
	0	Output m	node					
	1	Input mo	de					

Figure 6-4. TMP3 Block Diagram

(1) 16-bit counter

This 16-bit counter can count internal clocks or external events.

The count value of this counter can be read by using the TPnCNT register.

When the TPnCTL0.TPnCE bit = 0, the value of the 16-bit counter is FFFFH. If the TPnCNT register is read at this time, 0000H is read.

The TPnCE bit is cleared to 0 after reset.

(2) CCR0 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TPnCCR0 register is used as a compare register, the value written to the TPnCCR0 register is transferred to the CCR0 buffer register. When the count value of the 16-bit counter matches the value of the CCR0 buffer register, a compare match interrupt request signal (INTTPnCC0) is generated.

The CCR0 buffer register cannot be read or written directly.

The TPnCCR0 register is cleared to 0000H after reset, and the CCR0 buffer register is cleared to 0000H.

Figure 6-11. Register Setting for Interval Timer Mode Operation (3/3)

(g) TMPn capture/compare register 1 (TPnCCR1)

The TPnCCR1 register is not used in the interval timer mode. However, the set value of the TPnCCR1 register is transferred to the CCR1 buffer register. When the count value of the 16-bit counter matches the value of the CCR1 buffer register, the TOPm1 pin output is inverted and a compare match interrupt request signal (INTTPnCC1) is generated.

By setting this register to the same value as the value set in the TPmCCR0 register, a PWM waveform with a duty factor of 50% can be output from the TOPm1 pin.

When the TPnCCR1 register is not used, it is recommended to set its value to FFFFH. Also mask the register by the interrupt mask flag (TPnCCIC1.TPnCCMK1).

- **Remarks 1.** TMPk I/O control register 1 (TPkIOC1) and TMPn option register 0 (TPnOPT0) are not used in the interval timer mode.
 - 2. n = 0 to 3, m = 0, 2, 3 k = 0, 2

User's Manual U17716EJ2V0UD

<R>

Figure 6-26. Software Processing Flow in External Trigger Pulse Output Mode (2/2)

(9) TMQn capture/compare register 2 (TQnCCR2)

The TQ0CCR2 register is a 16-bit register that can be used as a capture register or a compare register depending on the mode. The TQ1CCR2 register is a 16-bit register that can only be used as a compare register.

The TQ0CCR2 register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TQ0OPT0.TQ0CCS2 bit. In the pulse width measurement mode, the TQ0CCR2 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TQnCCR2 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

TQnCCR2
QnCCR2

(b) Notes on rewriting the TQ0CCR0 register

If the value of the TQ0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow. When the overflow may occur, stop counting once and then change the set value.

If the value of the TQ0CCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TQ0CCR0 register has been rewritten. Consequently, the value that is compared with the 16-bit counter is D_2 .

Because the count value has already exceeded D₂, however, the 16-bit counter counts up to FFFFH, overflows, and then counts up again from 0000H. When the count value matches D₂, the INTTQ0CC0 signal is generated.

Therefore, the INTTQ0CC0 signal may not be generated at the valid edge count of " $(D_1 + 1)$ times" or " $(D_2 + 1)$ times" originally expected, but may be generated at the valid edge count of " $(10000H + D_2 + 1)$ times".

If the set value of the TQ0CCRb register is greater than the set value of the TQ0CCR0 register, the INTTQ0CCb signal is not generated because the count value of the 16-bit counter and the value of the TQ0CCRb register do not match.

When the TQ0CCRb register is not used, it is recommended to set its value to FFFFH.

Figure 7-21. Timing Chart When Do1 < Db1

Figure 7-23. Basic Timing in External Trigger Pulse Output Mode

Figure 7-29. Software Processing Flow in One-Shot Pulse Output Mode (2/2)

Figure 9-10. 100% PWM Output Waveform (with Dead Time)

Remark f means forced raising and means forced lowering.

<R>

(13) AVsso and AVss1 pins

These pins are the ground pins of A/D converters 0 and 1. Always make the potential at the AVssn pin the same as that at the EVss pin even when A/D converters 0 and 1 are not used.

(14) AVDD0 and AVDD1 pins

These pins are the analog power supply pins of A/D converters 0 and 1.

Supply the same potential to the AVDD0 and AVDD1 pins.

Always make the potential at the AV_{DDn} pin the same as that at the EV_{DD} pin even when A/D converters 0 and 1 are not used.

The operating voltage range of the AVDDn pin is VDD = EVDD = AVREFn = AVDDn = 4.5 to 5.5 V.

(15) Controller

This circuit executes control, such as enabling/disabling A/D converters 0 and 1 and selecting the operation mode and trigger mode.

11.3 Control Registers

A/D converters 0 and 1 are controlled by the following registers.

- A/D converter n mode registers 0 to 2 (ADAnM0 to ADAnM2)
- A/D converter n channel specification register (ADAnS)

The following registers are also used.

- A/Dn conversion result registers 0 to 3 (ADAnCR0 to ADAnCR3)
- A/Dn conversion result registers 0H to 3H (ADAnCR0H to ADAnCR3H)

(1) A/D converter n mode register 0 (ADAnM0)

The ADAnM0 register is an 8-bit register that specifies the operation mode and controls conversion operations. This register can be read or written in 8-bit or 1-bit units. However, bit 0 is read-only. Writing executed to bit 0 is ignored.

Reset sets this register to 00H.

11.7 Operation in External Trigger Mode

In the external trigger mode, the analog input pins (ANIn0 to ANIn3) are A/D converted at the ADTRGn pin input timing.

The ADTRG0 pin has an alternate function as the P04/INTP4 pin and the ADTRG1 pin has an alternate function as the P05/INTP5 pin. To set the external trigger mode, set the PMC04 bit of port mode control register 0 (PMC0) to 1 and the ADA0M2.ADA0TMD1 bit to 0 with A/D converter 0. With A/D converter 1, set the PMC05 bit of port mode control register 0 (PMC0) to 1 and the ADA1M2.ADA1TMD1 bit to 0.

For the valid edge of the external input signal in the external trigger mode, the rising edge, falling edge, or both rising and falling edges can be specified by setting the ADAnM0.ADAnETS1 and ADAnM0.ADAnETS0 bits.

When the ADAnM0.ADAnCE bit is set (1), the A/D converter waits for a trigger and, when the trigger is input from the ADTRGn pin, starts A/D conversion.

After the end of A/D conversion, the conversion result is stored in A/Dn conversion result register m (ADAnCRm) and, at the same time, the A/Dn conversion end interrupt request signal (INTADn) is generated.

After the end of A/D conversion, the A/D converter waits for a trigger regardless of the operation mode set by the ADAnM0.ADAnMD1 and ADAnM0.ADAnMD0 bits.

When conversion is started, the ADAnM0.ADAnEF bit is set to 1 (conversion in progress). However, while the A/D converter is waiting for a trigger, the ADAnEF bit = 0 (conversion stopped).

If a valid trigger is input during A/D conversion, the conversion operation is stopped and started again from the beginning. If the ADAnM0, ADAnM2, and ADAnS registers are written during A/D conversion, the conversion is stopped and the A/D converter waits for a trigger again.

Remark n = 0, 1m = 0 to 3

13.4.7 Continuous transfer mode (master mode, transmission mode)

MSB first (CB0CTL0.CB0DIR bit = 0), communication type 1 (CB0CTL1.CB0CKP and CB0CTL1.CB0DAP bits = 00), communication clock (f_{CCLK}) = $f_{XX}/2$ (CB0CTL1.CB0CKS2 to CB0CTL1.CB0CKS0 bits = 000), transfer data length = 8 bits (CB0CTL2.CB0CL3 to CB0CTL2.CB0CL0 bits = 0000)

(1) Operation flow

(2) Generation of exception in servicing program

Servicing program of maskable interrupt or exception

The priority order for multiple interrupt servicing control has 8 levels, from 0 to 7 for each maskable interrupt request signal (0 is the highest priority), but it can be set as desired via software. The priority order is set using the xxPRn0 to xxPRn2 bits of the interrupt control request register (xxlCn), provided for each maskable interrupt request signal. After system reset, an interrupt request signal is masked by the xxMKn bit and the priority order is set to level 7 by the xxPRn0 to xxPRn2 bits.

The priority order of maskable interrupts is as follows.

Interrupt servicing that has been suspended as a result of multiple servicing control is resumed after the servicing of the higher priority interrupt has been completed and the RETI instruction has been executed. A pending interrupt request signal is acknowledged after the current interrupt servicing has been completed and the RETI instruction has been executed.

Caution In a non-maskable interrupt servicing routine (time until the RETI instruction is executed), maskable interrupts are suspended and not acknowledged.

- **Remark** xx: Identification name of each peripheral unit (see **Table 14-2**)
 - n: Peripheral unit number (see Table 14-2)

<R> (1) Security setting by PG-FP4 and PG-FP5 (Security flag settings)

When disabling the read command (Disable Read), to raise the security level, it is recommended to also disable the block erase command (Disable Block Erase) and program command (Disable Program). Furthermore, when rewriting program is not necessary similarly to the mask ROM versions, additionally disable the chip erase command (Disable Chip Erase).

	Supply voltage Vdd [V] 05.00 Vdd2 [V] 02.50	Command options Image: Blank check before Erase Image: Blank check before Erase Image: Blank check before Erase Image: Blank check before Erase
	On Target 🔽 Vdd monitoring 🔽	 Security flag after Program Checksum after Program
	Vpp [V] 00.00	Security flag settings
į	Clk Vdd2 Serial Port Vdd	Disable Block Erase Disable Program Disable Read
	Reset Vdd H/S Input Vdd	Disable Boot block cluster reprogramming Reset vector: 000000 h
	Program download/upload	Boot block cluster setting End Boot block
_		OK Cancel Apply

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/