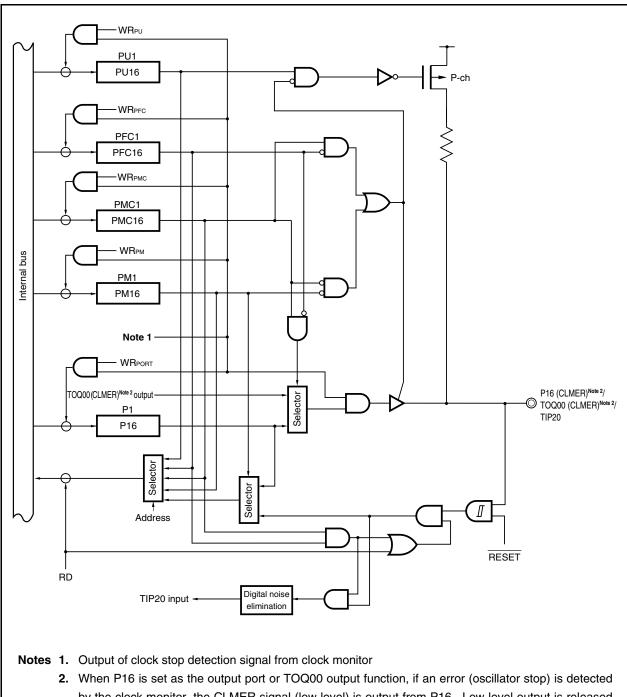


Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**


Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

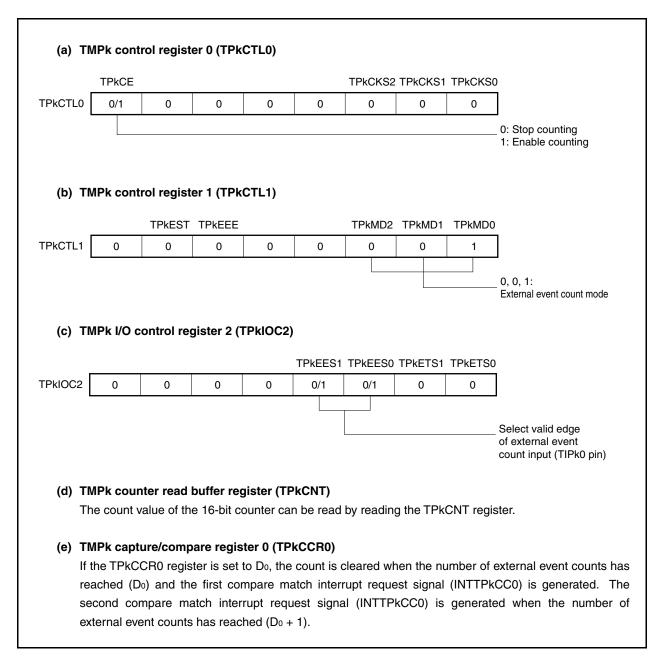
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	SDRAM, SRAM
Graphics Acceleration	Yes
Display & Interface Controllers	DVD, VDC
Ethernet	10/100Mbps (1), 100Mbps (1)
SATA	-
USB	USB 2.0 (2)
Voltage - I/O	1.2V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	256-LQFP
Supplier Device Package	256-LQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7s721010vlfp-aa0

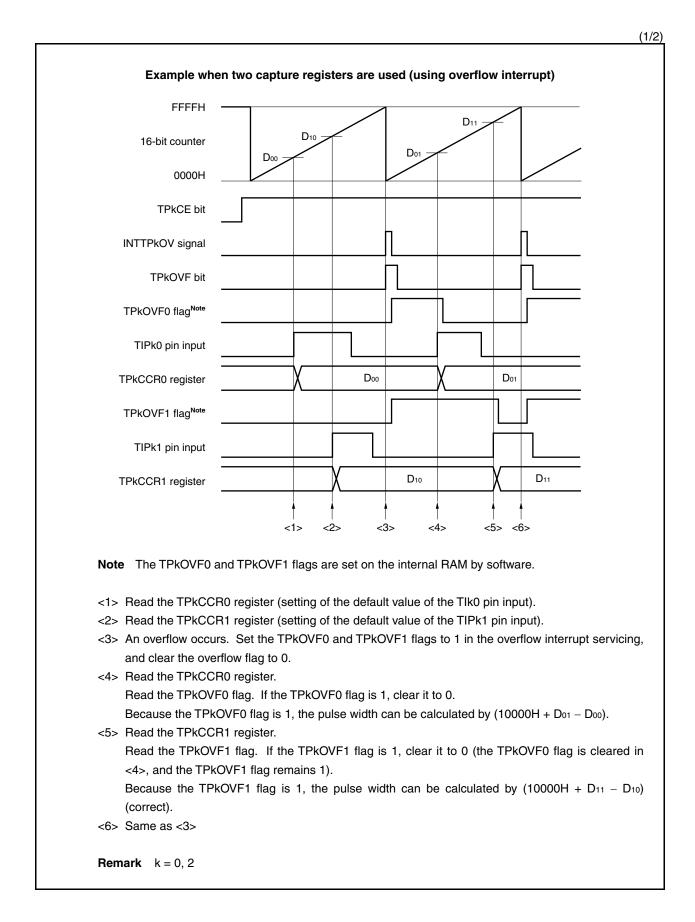
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

 When P16 is set as the output port or TOQ00 output function, if an error (oscillator stop) is detected by the clock monitor, the CLMER signal (low level) is output from P16. Low-level output is released by reset signal. For details, see Table 4-5 Alternate-Function Pins of Port 1.

Pin Name	Alternate Pin		Alternate Pin Pnx Bit of Pn Register PMnx B		PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bit
	Name	I/O			PMCn Register	PFCEn Register	PFCn Register	(Register)
P16 (CLMER) ^{Note}	TOQ00 (CLMER) ^{Note}	Output	P16 = Setting not required	PM16 = Setting not required	PMC16 = 1	_	PFC16 = 0	
	TIP20	Input	P16 = Setting not required	PM16 = Setting not required	PMC16 = 1	-	PFC16 = 1	
P17	TOP21	Output	P17 = Setting not required	PM17 = Setting not required	PMC17 = 1	-	PFC17 = 0	
	TIP21	Input	P17 = Setting not required	PM17 = Setting not required	PMC17 = 1	-	PFC17 = 1	
P20	TOQ1T1	Output	P20 = Setting not required	PM20 = Setting not required	PMC20 = 1	-	_	
P21	TOQ1B1	Output	P21 = Setting not required	PM21 = Setting not required	PMC21 = 1	_	_	
P22	TOQ1T2	Output	P22 = Setting not required	PM22 = Setting not required	PMC22 = 1	—	_	
P23	TOQ1B2	Output	P23 = Setting not required	PM23 = Setting not required	PMC23 = 1	-	-	
P24	TOQ1T3	Output	P24 = Setting not required	PM24 = Setting not required	PMC24 = 1	-	-	
P25	TOQ1B3	Output	P25 = Setting not required	PM25 = Setting not required	PMC25 = 1	-	_	
P26	TOQ10	Output	P26 = Setting not required	PM26 = Setting not required	PMC26 = 1	-	_	
P27	TOP31	Output	P27 = Setting not required	PM27 = Setting not required	PMC27 = 1	-	-	
P30	RXDA0	Input	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	-	_	
P31	TXDA0	Output	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	-	_	
P32	RXDA1	Input	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	-	PFC32 = 1	
P33	TXDA1	Output	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	-	PFC33 = 1	
P40	SIB0	Input	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	-	-	
P41	SOB0	Output	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	-	_	
P42	SCKB0	I/O	P42 = Setting not required	PM42 = Setting not required	PMC42 = 1	-	-	


Note When P16 is set as the output port or TOQ00 output function, if an error (oscillator stop) is detected by the clock monitor, the CLMER signal (low level) is output from P16. Low-level output is released by reset signal. For details, see Table 4-5 Alternate-Function Pins of Port 1.


When the TPkCE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H. The counter counts each time the valid edge of external event count input is detected. Additionally, the set value of the TPkCCR0 register is transferred to the CCR0 buffer register.

When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, and a compare match interrupt request signal (INTTPkCC0) is generated.

The INTTPkCC0 signal is generated for the first time when the valid edge of the external event count input has been detected "value set to TPkCCR0 register" times. After that, the INTTPkCC0 signal is generated each time the valid edge of the external event count has been detected "value set to TPkCCR0 register + 1" times.

Figure 6-18. Register Setting for Operation in External Event Count Mode (1/2)

(e) Interrupt operation

TMQn generates the following five interrupt request signals.

- INTTQnCC0 interrupt: This signal functions as a match interrupt request signal of the CCR0 buffer register and as a capture interrupt request signal to the TQnCCR0 register.
- INTTQnCC1 interrupt: This signal functions as a match interrupt request signal of the CCR1 buffer register and as a capture interrupt request signal to the TQnCCR1 register.
- INTTQnCC2 interrupt: This signal functions as a match interrupt request signal of the CCR2 buffer register and as a capture interrupt request signal to the TQnCCR2 register.
- INTTQnCC3 interrupt: This signal functions as a match interrupt request signal of the CCR3 buffer register and as a capture interrupt request signal to the TQnCCR3 register.
- INTTQnOV interrupt: This signal functions as an overflow interrupt request signal.

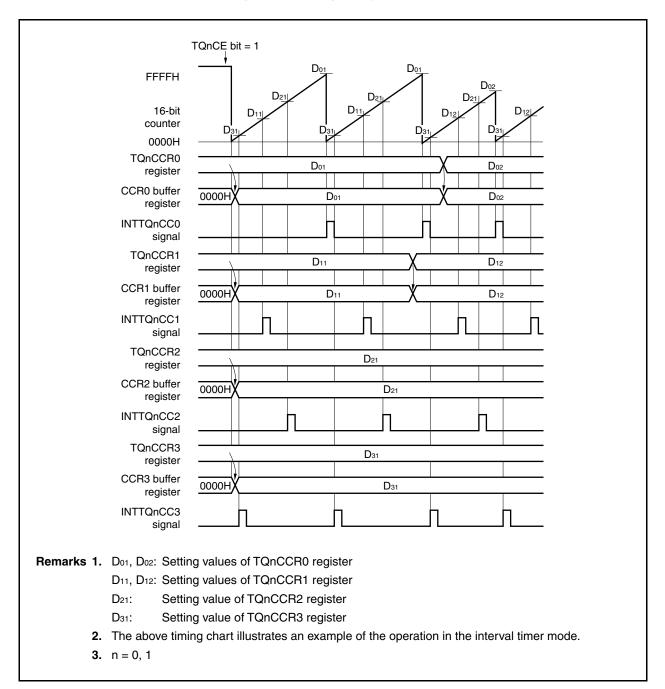
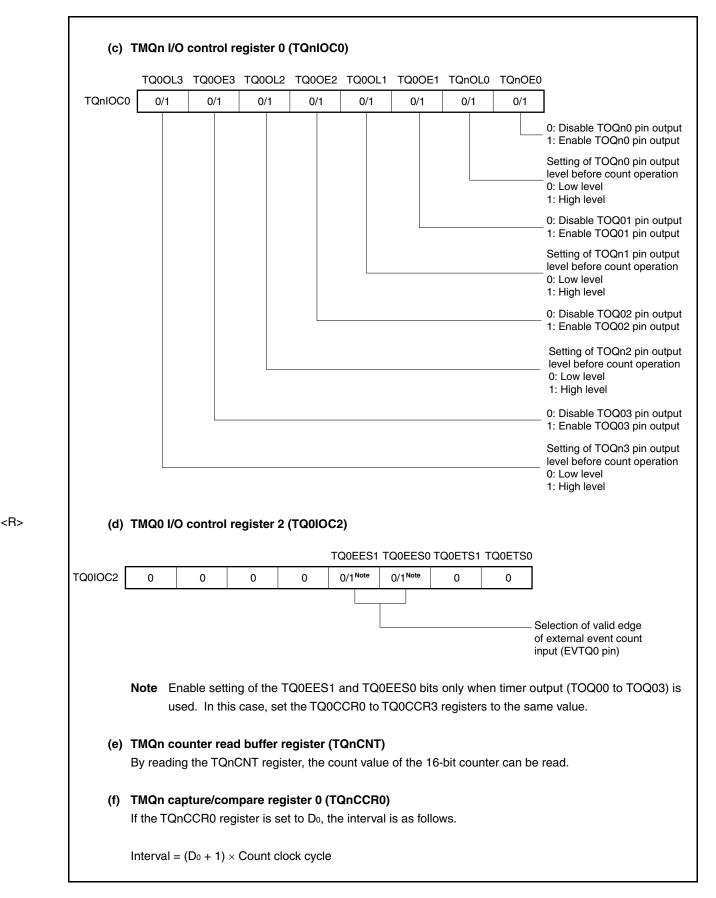



Figure 7-5. Timing of Anytime Write

Figure 7-10. Register Setting for Interval Timer Mode Operation (2/3)

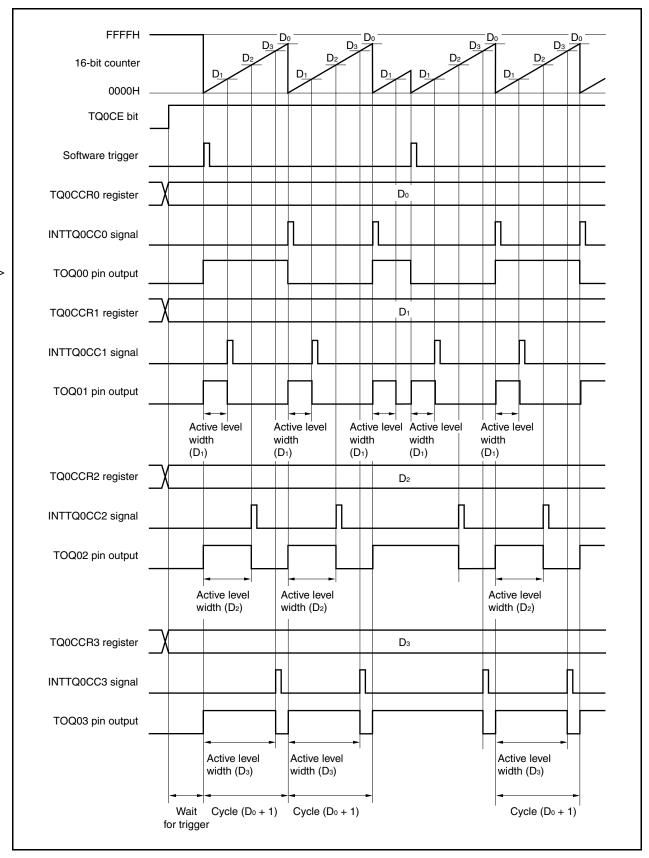


Figure 7-23. Basic Timing in External Trigger Pulse Output Mode

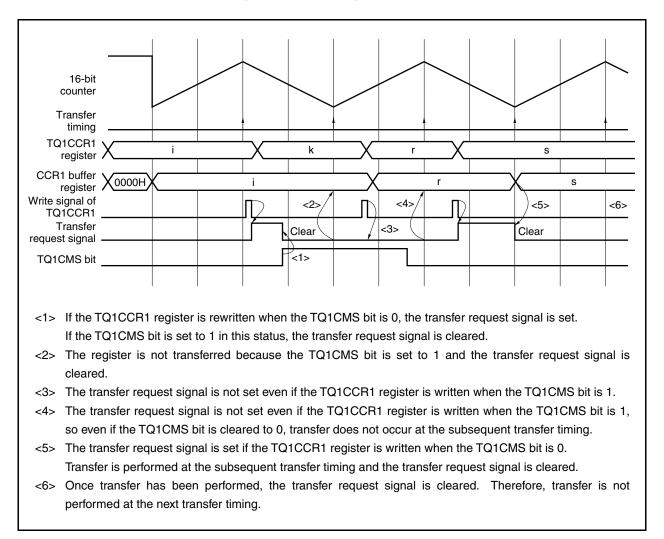
(3) TMQ1 option register 2 (TQ1OPT2)

The TQ1OPT2 register is an 8-bit register that controls the timer Q1 option function.

This register can be rewritten when the TQ1CTL0.TQ1CE bit is 1. However, rewriting the TQ1DTM bit is prohibited when the TQ1CE bit is 1. The same value can be rewritten.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.


After re	eset: 00H	R/W	Address:	FFFFF62	:1H				
TQ1OPT2	<7> TQ1RDE	<6> TQ1DTM TO	<5> Q1ATM03 T	<4> Q1ATM02	<3> TQ1AT03	<2> TQ1AT0	<1> 2 TQ1AT0 ⁻	<0> 1 TQ1AT00	
	TQ1RDE			Transf	er culling	anabla			
		Do not cull t	rancfor (tr				ony time at y	oroct	
	Ŭ	and valley).			ng is gen	eraleu eve	ery time at t	ciest	
	1	Cull transfer register.	r at the sar	me interva	l as interr	upt culling	set by the	TQ1OPT1	
	TQ1DTM Dead-time counter operation mode selection								
	0 Dead-time counter counts up normally and, if TOQ1m output of TMQ1 is at a narrow interval (TOQ1m output width < dead-time width), the dead-time counter is cleared and counts up again.								
	1 Dead-time counter counts up normally and, if TOQ1m output of TMQ1 is at a narrow interval (TOQ1m output width < dead-time width), the dead-time counter counts down and the dead-time control width is automatically narrowed.								
		the TQ1DTM	l bit is disa	abled durin	a timer o	aration	lf it is rowrit	ton by	
	mistake, s TQ1DTM	stop the timer bit.	operation						
	TQ1DTM	bit. 1. When TQ1OI	using	by clearin intern ID0 bits	g the TQ	CE bit to	0, and re-s		
	TQ1DTM	bit. 1. When TQ1OI TQ1RI Theref The in and tr	using PT1.TQ1I DE bit to fore, the iterrupt a ransfer a	intern IDO bits a 1. interrupt and tran are set a	g the TQ rupt c are set t and tran sfer car	CE bit to culling to other nsfer are	0, and re-s (the T than 0000 generate set separ	Q10PT1.T	e to set t ame timir ne interru
	TQ1DTM	bit. 1. When TQ1OI TQ1RI Theref The in and tr perfor	using PT1.TQ1I DE bit to fore, the iterrupt a ransfer a med nor	intern IDO bits : 1. interrupt and tran are set : mally.	g the TQ	aulling to other nsfer are not be	0, and re-s (the T than 0000 generate set separ RDE bit	Q1OPT1.T D0), be sur ed at the s ately. If th	re to set t ame timin ne interru sfer is n
	TQ1DTM	bit. 1. When TQ10I TQ1RI Theref The in and tr perfor 2. To gen more. When time p	using PT1.TQ1I DE bit to fore, the aterrupt a ransfer a med norn nerate th the open beriod is	intern ID0 bits a 1. interrupt and tran are set a mally. ne dead- ration is not gen	g the TQ rupt c are set t and tran sfer car separate time pe stopped erated a	Ulling so other nsfer are not be ly (TQ1 riod, se d (TQ1C and the	0, and re-s (the T than 0000 generate set separ RDE bit t the TQ1 TL0.TQ10 output le	Q1OPT1.T O0), be sur ed at the s ately. If the = 0), trans DTC regis CE bit = 0 vel of the	e to set t ame timin ne interru sfer is n ster to 1), the dea TOQ1T1
	TQ1DTM	bit. 1. When TQ10I TQ1RI Theref The in and tr perfor 2. To gen more. When time p TOQ11 For th stoppe	using PT1.TQ1I DE bit to fore, the terrupt a ransfer a med norn nerate th the oper period is I3 pins a ne syste ed, set th	intern internupt interrupt and tran are set s mally. ne dead- ration is not gen and TOQ ¹	g the TQ rupt c are set t and tran sfer car separate time pe stoppe erated a IB1 to TC ection, T T1 to TC	thereford CE bit to culling to other ansfer are anot be ely (TQ1 riod, set d (TQ1C and the OQ1B3 p thereford OQ1T3 at	0, and re-s (the T than 0000 e generate set separ RDE bit t the TQ1 TL0.TQ10 output le bins will k e, before and TOQ1E	Q1OPT1.T Q1OPT1.T D0), be sur ed at the s ately. If th = 0), tran DTC regis CE bit = 0 vel of the pe in the ir operatio 31 to TOQ	e to set t ame timin he interru sfer is n ster to 1), the dea TOQ1T1 hitial statu n is bein 1B3 pins
	TQ1DTM	bit. 1. When TQ10I TQ1RI Theref The in and tr perfor 2. To gen more. When time p TOQ11 For th stoppe the hig	using PT1.TQ1I DE bit to fore, the terrupt a ransfer a med norn nerate th the oper period is I3 pins a ne syste ed, set th	interrupt interrupt interrupt and tran are set s mally. ne dead- ration is not gen and TOQ ⁻ em prote ne TOQ1 ⁻ dance st	g the TQ rupt c are set t and tran sfer can separate time pe stoppe erated a IB1 to To ection, f T1 to TC ate, or s	thereford CE bit to culling to other ansfer are anot be ely (TQ1 riod, set d (TQ1C and the OQ1B3 p thereford OQ1T3 at	0, and re-s (the T than 0000 e generate set separ RDE bit t the TQ1 TL0.TQ10 output le bins will k e, before and TOQ1E	OTC regis CE bit = 0 ovel of the ir operatio	e to set t ame timin he interru sfer is n ster to 1), the dea TOQ1T1 hitial statu n is bein 1B3 pins

(4) Rewriting TQ1OPT0.TQ1CMS bit

The TQ1CMS bit can select the anytime rewrite mode and batch rewrite mode. This bit can be rewritten during timer operation (when TQ1CTL0.TQ1CE bit = 1). However, the operation and caution illustrated in Figure 9-31 are necessary.

If the TQ1CCR1 register is written when the TQ1CMS bit is cleared to 0, a transfer request signal (internal signal) is set.

When the transfer request signal is set, the register is transferred at the next transfer timing, and the transfer request signal is cleared. This transfer request signal is also cleared when the TQ1CMS bit is set to 1.

Figure 9-36. Rewriting TQ1CMS Bit

(5) Successive approximation register (SAR)

The SAR is a 10-bit register that sets voltage tap data whose values from the array match the voltage values of the analog input pins, 1 bit at a time starting from the most significant bit (MSB).

If data is set in the SAR all the way to the least significant bit (LSB) (end of A/D conversion), the contents of the SAR (conversion results) are held in A/Dn conversion result registers 0 to 3 (ADAnCR0 to ADAnCR3) (n = 0, 1). When all the specified A/D conversion operations have ended, an A/Dn conversion end interrupt request signal (INTADn) is generated.

(6) A/Dn conversion result registers 0 to 3 (ADAnCR0 to ADAnCR3), A/Dn conversion result registers 0H to 3H (ADAnCR0H to ADAnCR3H) (n = 0, 1)

The ADAnCR0 to ADAnCR3 and ADAnCR0H to ADAnCR3H registers are registers that hold the A/D conversion results. Each time A/D conversion ends, the conversion result is loaded from the successive approximation register (SAR) and stored in the higher 10 bits of the ADAnCR0 to ADAnCR3 registers. The lower 6 bits of these registers are always 0 when read.

The higher 8 bits of the result of A/D conversion are read from the ADAnCR0H to ADAnCR3H registers. To read the result of A/D conversion in 16-bit units, specify the ADAnCR0 to ADAnCR3 registers. To read the higher 8 bits, specify the ADAnCR0H to ADAnCR3H registers.

(7) A/D converter n mode register 0 (ADAnM0) (n = 0, 1)

This register is used to specify the operation mode and controls the conversion operation.

(8) A/D converter n mode register 1 (ADAnM1) (n = 0, 1)

This register is used to set the number of conversion clocks of the analog input to be A/D converted.

(9) A/D converter n channel specification register (ADAnS) (n = 0, 1)

This register is used to specify the analog input pin to be A/D converted.

(10) A/D converter n mode register 2 (ADA2M2) (n = 0, 1)

This register is used to specify the buffer mode and specify the mode in the hardware trigger mode.

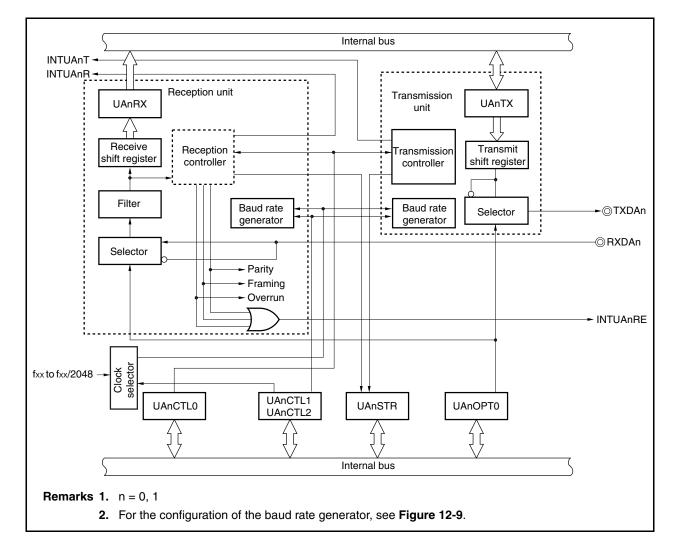
(11) ANIn0 to ANIn3 pins (n = 0, 1)

The ANIn0 to ANIn3 pins are analog input pins for A/D converters 0 and 1. They input the analog signals to be A/D converted.

Caution Make sure that the voltages input to ANIn0 to ANIn3 do not exceed the rated values. If a voltage higher than or equal to AVREFN or lower than or equal to AVssn (even within the range of the absolute maximum ratings) is input to a channel, the conversion value of the channel is undefined, and the conversion values of the other channels may also be affected.

(12) AVREF0 and AVREF1 pins

This is the pin for inputting the reference voltage of A/D converters 0 and 1. It converts signals input to the ANIn0 to ANIn3 pins to digital signals based on the voltage applied between AV_{REFn} and AV_{SSn} (n= 0, 1). Always make the potential at the AV_{REFn} pin the same as that at the EV_{DD} pin even when A/D converters 0 and 1 are not used.


The operating voltage range of the AVREFn pin is VDD = EVDD = AVDDn = AVREFn = 4.5 to 5.5 V.

12.2 Configuration

The block diagram of the UARTAn is shown below.

UARTAn includes the following hardware units.

Item	Configuration
Registers	UARTAn control register 0 (UAnCTL0) UARTAn control register 1 (UAnCTL1) UARTAn control register 2 (UAnCTL2) UARTAn option control register 0 (UAnOPT0) UARTAn status register (UAnSTR) UARTAn receive shift register UARTAn receive data register (UAnRX) UARTAn transmit shift register UARTAn transmit data register (UAnTX)

12.5.6 Parity types and operations

The parity bit is used to detect bit errors in the communication data. Normally the same parity is used on the transmission side and the reception side.

In the case of even parity and odd parity, it is possible to detect odd-count bit errors. In the case of 0 parity and no parity, errors cannot be detected.

(a) Even parity

(i) During transmission

The number of bits whose value is "1" among the transmit data, including the parity bit, is controlled so as to be an even number. The parity bit values are as follows.

- Odd number of bits whose value is "1" among transmit data: 1
- Even number of bits whose value is "1" among transmit data: 0

(ii) During reception

The number of bits whose value is "1" among the reception data, including the parity bit, is counted, and if it is an odd number, a parity error is output.

(b) Odd parity

(i) During transmission

Opposite to even parity, the number of bits whose value is "1" among the transmit data, including the parity bit, is controlled so that it is an odd number. The parity bit values are as follows.

- Odd number of bits whose value is "1" among transmit data: 0
- Even number of bits whose value is "1" among transmit data: 1

(ii) During reception

The number of bits whose value is "1" among the receive data, including the parity bit, is counted, and if it is an even number, a parity error is output.

(c) 0 parity

During transmission, the parity bit is always made 0, regardless of the transmit data. During reception, parity bit check is not performed. Therefore, no parity error occurs, regardless of whether the parity bit is 0 or 1.

(d) No parity

No parity bit is added to the transmit data.

Reception is performed assuming that there is no parity bit. No parity error occurs since there is no parity bit.

(2/2)

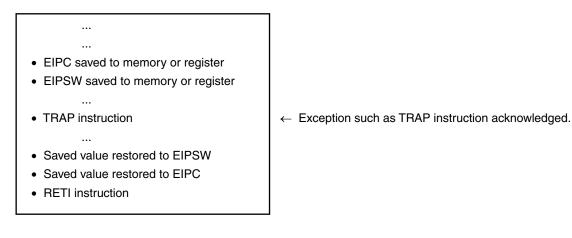
CB0DIR ^{Note 1}	Specification of transfer direction mode (MSB/LSB)					
0	MSB first					
1	LSB first					
CB0TMS ^{Note 1}	Transfer mode specification					
0	Single transfer mode					
1	Continuous transfer mode					
type 2 or	sing single transmission or transmission/reception mode with communication r 4 (CB0CTL1.CB0DAP bit = 1), write the transfer data to the CB0TX after checking that the CB0STR.CB0TSF bit is 0.					
CB0SCE	Specification of start transfer disable/enable					
0	Communication start trigger invalid					
1	Communication start trigger valid					
 In slave This bit (a) In s Set In single or trans 	data is ended ^{Note 3} . mode enables or disables the communication start trigger. ingle reception mode or continuous reception mode the CB0SCE bit to 1 ^{Note 4} . e transmission or transmission/reception mode, or continuous transmission mission/reception mode ction of the CB0SCE bit is invalid. It is recommended to set this bit to 1.					
	 These bits can only be rewritten when the CB0PWR bit = 0 However, the CB0PWR can be set to 1 at the same time as these bits are rewritten. If the CB0SCE bit is read while it is 1, the next communication operation is started. 					

14.3.6 In-service priority register (ISPR)

The ISPR register holds the priority level of the maskable interrupt currently acknowledged. When an interrupt request signal is acknowledged, the bit of this register corresponding to the priority level of that interrupt signal request is set to 1 and remains set while the interrupt is serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request signal having the highest priority is automatically cleared to 0 by hardware. However, it is not cleared to 0 when execution is returned from non-maskable interrupt servicing or exception processing.

This register is read-only, in 8-bit or 1-bit units.


Reset sets this register to 00H.

Caution In the interrupt enabled (EI) state, if an interrupt is acknowledged during the reading of the ISPR register, the value of the ISPR register may be read after the bit is set (1) by this interrupt acknowledgment. To read the value of the ISPR register properly before interrupt acknowledgment, read it in the interrupt disabled (DI) state.

ISPR					<3>	<2>	<1>	<0>
L	ISPR7	ISPR6	ISPR5	ISPR4	ISPR3	ISPR2	ISPR1	ISPR0
-								
	ISPRn		Priority of	of interrupt	currently b	eing ackno	wledged	
	0	Interrupt re	equest sigr	nal with pric	ority n is no	t acknowle	dged	
	1	Interrupt re	equest sigr	nal with pric	ority n is be	ing acknov	/ledged	

(2) Generation of exception in servicing program

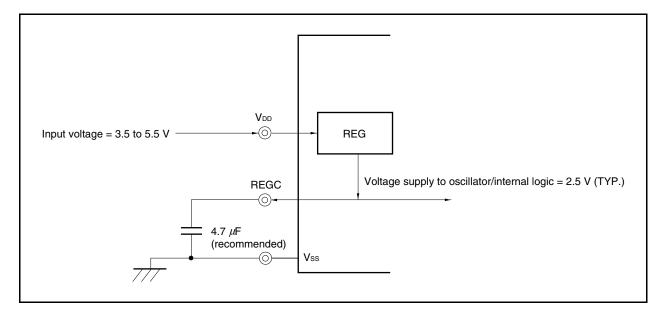
Servicing program of maskable interrupt or exception

The priority order for multiple interrupt servicing control has 8 levels, from 0 to 7 for each maskable interrupt request signal (0 is the highest priority), but it can be set as desired via software. The priority order is set using the xxPRn0 to xxPRn2 bits of the interrupt control request register (xxlCn), provided for each maskable interrupt request signal. After system reset, an interrupt request signal is masked by the xxMKn bit and the priority order is set to level 7 by the xxPRn0 to xxPRn2 bits.

The priority order of maskable interrupts is as follows.

Interrupt servicing that has been suspended as a result of multiple servicing control is resumed after the servicing of the higher priority interrupt has been completed and the RETI instruction has been executed. A pending interrupt request signal is acknowledged after the current interrupt servicing has been completed and the RETI instruction has been executed.

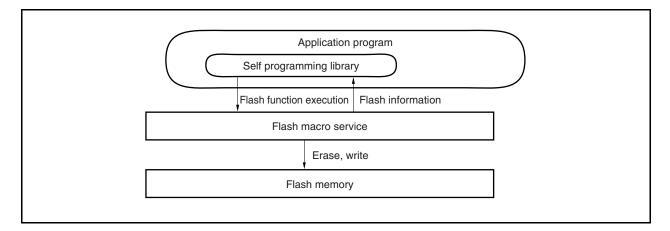
Caution In a non-maskable interrupt servicing routine (time until the RETI instruction is executed), maskable interrupts are suspended and not acknowledged.


- Remark xx: Identification name of each peripheral unit (see Table 14-2)
 - n: Peripheral unit number (see Table 14-2)

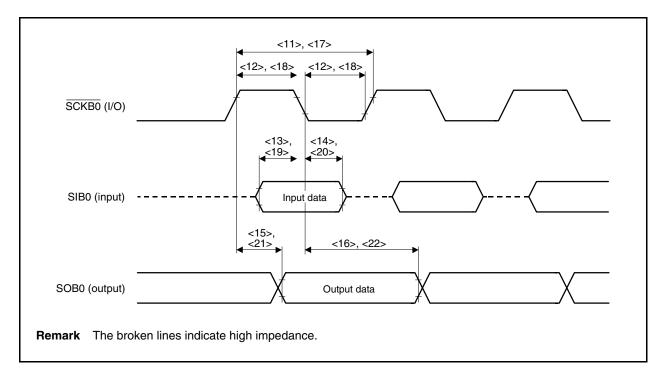
17.2 Operation

The regulator of this product always operates in any mode (normal operation mode, HALT mode, IDLE mode, STOP mode, or during reset).

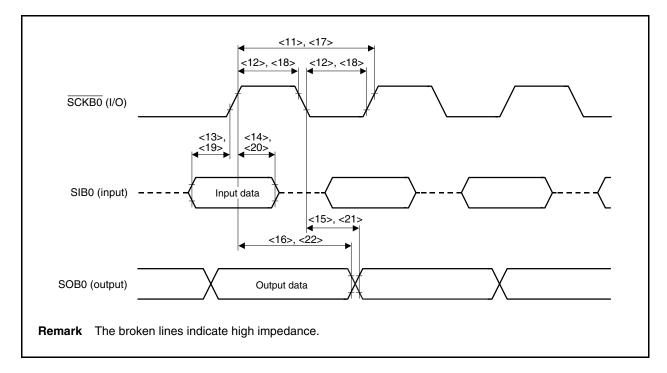
Be sure to connect a capacitor (4.7 μ F (recommended value)) to the REGC pin to stabilize the regulator output. A diagram of the regulator pin connection method is shown below.



18.5 Rewriting by Self Programming (µPD70F3714 only)


18.5.1 Overview

The V850ES/IE2 supports a flash macro service that allows the user program to rewrite the internal flash memory by itself. By using this interface and a self programming library that is used to rewrite the flash memory with a user application program, the flash memory can be rewritten by a user application transferred in advance to the internal RAM or external memory. Consequently, the user program can be upgraded and constant data can be rewritten in the field.



CSIB Timing: CB0CTL1.CB0CKP, CB0CTL1.CB0DAP Bits = 10

CSIB Timing: CB0CTL1.CB0CKP, CB0CTL1.CB0DAP Bits = 11

	(2/5
Page	Description
p. 213	Modification of description in 6.6.5 (2) (b) 0%/100% output of PWM waveform
p. 232	Modification of description in Figure 6-41 Configuration in Pulse Width Measurement Mode
p. 233	Modification of description in 6.6.7 Pulse width measurement mode (TPkMD2 to TPkMD0 bits = 110)
pp. 234, 235	Modification of description in Figure 6-43 Register Setting in Pulse Width Measurement Mode
p. 236	Deletion of description from Figure 6-44 Software Processing Flow in Pulse Width Measurement Mode
p. 238	Addition of description to Table 7-1 TMQn Overview
p. 246	Modification of description in 7.4 (3) TMQn I/O control register 0 (TQnIOC0)
p. 262	Modification of description in 7.6 (1) (a) Counter start operation
pp. 270 to 272	Modification of description in Figure 7-10 Register Setting for Interval Timer Mode Operation
р. 273	Addition of description to Figure 7-11 Software Processing Flow in Interval Timer Mode
p. 278	Modification of description in 7.6.1 (2) (d) Operation of TQnCCR1 to TQnCCR3 registers
p. 280	Addition of 7.6.1 (3) Operation by external event count input (EVTQ0)
p. 281	Addition of description to 7.6.2 External event count mode (TQ0MD2 to TQ0MD0 bits = 001)
p. 284	Addition of description to Figure 7-17 Register Setting for Operation in External Event Count Mode
p. 286	Addition of description to 7.6.2 (2) Operation timing in external event count mode
p. 292	Modification of figure description in Figure 7-23 Basic Timing in External Trigger Pulse Output Mode
p. 293	Addition of description to 7.6.3 External trigger pulse output mode (TQ0MD2 to TQ0MD0 bits = 010)
p. 301	Modification of description in 7.6.3 (2) (b) 0%/100% output of PWM waveform
p. 309	Modification of description in Figure 7-28 Register Setting in One-Shot Pulse Output Mode
pp. 310, 311	Modification of description in Figure 7-29 Software Processing Flow in One-Shot Pulse Output Mode
p. 323	Modification of description in 7.6.5 (2) (b) 0%/100% output of PWM waveform
p. 346	Modification of description in 7.6.7 Pulse width measurement mode (TQ0MD2 to TQ0MD0 bits = 110)
p. 363	Addition of description to 9.2 (1) TMQ1 dead-time compare register (TQ1DTC)
p. 365	Addition of description to 9.3 (2) TMQ1 option register 1 (TQ1OPT1)
p. 366	Addition of description to 9.3 (3) TMQ1 option register 2 (TQ1OPT2)
p. 370	Addition of description to Figure 9-3 Output Control of TOQ1Tm and TOQ1Bm Pins (Without Dead Time)
p. 378	Modification of Figure 9-5 Outline of 6-Phase PWM Output Mode
p. 383	Modification of Figure 9-9 0% PWM Output Waveform (with Dead Time)
p. 384	Modification of Figure 9-10 100% PWM Output Waveform (with Dead Time)
p. 385	Modification of Figure 9-11 PWM Output Waveform from 0% to 100% and from 100% to 0% (with Dead Time)
р. 389	Addition of description to 9.4.3 Interrupt culling function
p. 438	Modification of description in 11.4.1 Basic operation
p. 475	Modification of Figure 12-1 Block Diagram of UARTAn
p. 476	Modification of description in 12.2 (5) UARTAn status register (UAnSTR)
p. 477	Modification of description in 12.3 (1) UARTAn control register 0 (UAnCTL0)
p. 487	Modification of Figure 12-5 Continuous Transmission Operation Timing
p. 523	Modification of figure description in 13.4.7 (2) Operation timing
p. 559	Addition of description to 14.3.4 Interrupt control registers (xxICn)
p. 572	Addition of description to 14.6.1 (2) Restore